Subnormalized states and trace–non–increasing maps

Valerio Cappellini¹, Hans-Jürgen Sommers² and Karol Życzkowski¹,³

¹Centrum Fizyki Teoretycznej, Polska Akademia Nauk, Al. Lotników 32/44, 02-668 Warszawa, Poland
²Fachbereich Physik, Universität Duisburg-Essen, Campus Duisburg, 47048 Duisburg, Germany
³Instytut Fizyki im. Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków, Poland

(Dated: January 19, 2007)

We investigate the set of completely positive, trace–non–increasing linear maps acting on the set \(M_N \) of mixed quantum states of size \(N \). Extremal point of this set of maps is characterized and its volume with respect to the Hilbert–Schmidt (Euclidean) measure is computed explicitly for an arbitrary \(N \). The spectra of partially reduced rescaled dynamical matrices associated with trace–non–increasing completely positive maps belong to the \(N \)–cube inscribed in the set of subnormalized states of size \(N \). As a byproduct we derive the measure in \(M_N \) induced by partial trace of mixed quantum states distributed uniformly with respect to HS–measure in \(M_N \).

e-mail: valerio@cft.edu.pl h.j.sommers@uni-due.de karol@cft.edu.pl

1 Introduction

Modern application of quantum mechanics increased interest in the space of quantum states: positive operators normalized by the assumption that their trace is fixed, \(\text{Tr} \rho = 1 \). For applications in the theory of quantum information processing it is often sufficient to restrict the attention to the operators acting on a finite dimensional Hilbert space.

The set \(M_N \) of density matrices of size \(N \) forms a convex body embedded in \(\mathbb{R}^{N^2-1} \). In other words it forms a cross-section of the cone of positive operators with a hyperplane corresponding to the normalization condition. In the simplest case of one qubit the set \(M_2 \) is equivalent, with respect to the Hilbert-Schmidt (Euclidean) geometry, to a three dimensional ball, \(B_3 \). For higher dimensions the geometry of \(M_N \) gets more complicated and differs from the ball \(B_{N^2-1} \) [1, 2].

Non trivial properties of the set of mixed quantum states attracted recently a lot of attention. The volume \(V \), the hyperarea \(A \) and the radius \(R \) of the maximal ball inscribed into \(M_N \) was computed with respect to the Hilbert-Schmidt measure [3], which leads to the Euclidean geometry. The volume of the set of quantum states was computed with respect to the Bures measure related to quantum distinguishability [4], and also with respect to a wide class of measures induced by monotone Rianerian metrics [5, 6]. The set \(M_N \) is known to be of a constant width [7], so the ratio \(A/V \) coincides with the dimensionality of this set, equal to \(N^2 - 1 \).

If \(N \) is a composite number, the density operators from \(M_N \) can represent states of a composed physical system. In this case one defines the set of separable states, which forms a convex subset of the set of all states, \(M_N^{\text{sep}} \subset M_N \). Although a lot of work has been done to estimate the volume of the subset of separable states [8, 9, 10, 11, 12, 13], the problem of finding the exact value of the ratio \(\text{Vol}(M_N^{\text{sep}})/\text{Vol}(M_N) \) remains open even in the simplest case of two qubits [14].

In parallel with investigation of the set of quantum states, one studies properties of the set of completely positive (CP) maps which act on \(M_N \). Such maps are important not only from the theoretical point of view: for instance linear CP maps acting on a two–level quantum system correspond to linear optical devices used in polarisation optics [15]. Due to Jamiołkowski isomorphism [16, 17], the set of trace preserving CP maps acting on \(M_N \) forms a \(N^4 - N^2 \) dimensional subset of the \(N^4 - 1 \) dimensional set \(M_N \) of states acting on an extended Hilbert space, \(\mathcal{H}_N \otimes \mathcal{H}_N \). In the simplest case of \(N = 2 \) the structure of this 12–dimensional convex set of maps was studied in [18].

In this paper we analyze the set of subnormalized states for which \(\text{Tr} \rho \leq 1 \). Such states are obtained by taking the convex hull of the set of normalized states and the particular “zero state”. In the classical case, one could argue that such a step is equivalent to increasing the number of distinguishable events by one, and renaming 0 into \(N + 1 \). This reasoning is based on the fact that the set of subnormalized states of size \(N \) as well as the set of normalized states of size \(N + 1 \) form \(N \)–dimensional simplices. However, this is not the case in the quantum set–up, in which the set of subnormalized states \(M_N^{\text{sub}} \) has \(N^2 \) dimensions, in contrast to \(N^2 + 2N \) dimensional set \(M_{N+1} \). The fact that the dimensionality of the set of subnormalized states grows with the number \(N \) of distinguishable states exactly as \(N^2 \) plays a key role in an axiomatic approach to quantum mechanics of Hardy [19].
The main aim of this work is to describe the set of completely positive trace non-increasing maps which act on the set \mathcal{M}_N of mixed states. We compute the exact volume of this N^4 dimensional set with respect to the Euclidean (Hilbert–Schmidt) measure and characterize its extremal points. The trace non-increasing maps have a realistic physical motivation, since they describe an experiment, for which with a certain probability the apparatus does not work. This could be an interpretation of the “zero map” after action of which no result is recorded. Such maps are sometimes called trace decreasing [20], but to emphasize that the set of these maps contains also all trace preserving maps, we prefer to use a more precise name of trace non–increasing maps, (TNI).

The paper is organized as follows. In Section 2 we analyze the set of subnormalized states and compute its volume. The measures in the set of mixed states induced by partial trace are investigated in Section 3. In Section 4 we define the set of trace non–increasing maps and provide its characterization, while in Section 5 the volume of this set is calculated with respect to the flat (Hilbert–Schmidt) measure. The set of extremal trace non–increasing maps is studied in Section 6.

2 Subnormalized quantum states

Let \mathcal{M}_N denote the set of normalized quantum states acting on N–dimensional Hilbert space

$$\mathcal{M}_N := \{ \rho : \rho^\dagger = \rho, \; \rho \geq 0, \; \text{Tr} \rho = 1 \} .$$

\mathcal{M}_N forms a convex set of dimensionality $(N^2 - 1)$. In the simplest case $N = 2$, this set is equivalent to the Bloch ball, $\mathcal{M}_2 = B_3 \subset \mathbb{R}^3$.

Definition 1

An Hermitian, positive operator σ is called a subnormalized state, if $\text{Tr} \sigma \leq 1$.

The set of subnormalized states acting on the N–dimensional Hilbert space \mathcal{H}_N will be denoted by \mathcal{M}_N^sub.

By construction this set has N^2 dimensions and can be defined as a convex hull of the zero operator and the set of quantum states (see Fig. 1).

$$\mathcal{M}_N^\text{sub} := \{ \sigma : \sigma^\dagger = \sigma, \; \sigma \geq 0, \; \text{Tr} \sigma \leq 1 \} = \text{conv hull} \{ 0, \mathcal{M}_N \} . \quad (1)$$

For instance, the set \mathcal{M}_2^sub forms a four–dimensional cone with apex at 0 and base formed by the Bloch ball $\mathcal{M}_2 = B_3$. Note that the dimension of \mathcal{M}_N^sub grows exactly as squared dimension of the Hilbert space. Due to this fact the subnormalized states are a convenient notion to be used in an axiomatic approach to quantum theory [19].

In order to characterize the set \mathcal{M}_N^sub of subnormalized states we compute in this Section its volume with respect to the flat HS–measure induced by the Hilbert–Schmidt metric [3]. Consider the set \mathcal{M}_2 of 2×2 density matrices, parameterized by the real *Bloch coherence vector* $\xi \in B_3$,

$$\rho = \frac{I_2}{2} + \xi \cdot \hat{\xi} , \quad (2)$$

where $\hat{\xi}$ denotes the vector of three rescaled traceless Pauli matrices $\left(\sigma_4, \sqrt{2} \sigma_4, \sqrt{2} \sigma_4, \sqrt{2} \sigma_4\right)$. Note that with such a normalization the radius of the Bloch ball B_3 is given by $R_3 = 1/\sqrt{2}$, as it can be earned by $\text{Tr} \rho^2 \leq 1$. With this definition, the HS–distance between any two density operators, defined as the HS (Frobenius) norm of their difference, proves to be equal to the Euclidean distance $D_E(\tilde{\xi}_1, \tilde{\xi}_2)$ between the labeling Bloch vectors $\tilde{\xi}_1, \tilde{\xi}_2 \in B_3 \subset \mathbb{R}^3$,

$$D_{\text{HS}}(\rho_{\tilde{\xi}_1}, \rho_{\tilde{\xi}_2}) = \sqrt{\text{Tr} \left((\rho_{\tilde{\xi}_1} - \rho_{\tilde{\xi}_2})^2 \right)} = \| \tilde{\xi}_1 - \tilde{\xi}_2 \| = D_E(\tilde{\xi}_1, \tilde{\xi}_2) . \quad (3)$$

The above formula holds for an arbitrary N, provided that

$$\rho = \frac{I_N}{N} + \xi \cdot \hat{\xi} , \quad (4)$$

where $\hat{\xi}$ denotes the vector of $3 (N-1)/2$ rescaled traceless Pauli matrices $\left(\sigma_4, \sqrt{2} \sigma_4, \sqrt{2} \sigma_4, \sqrt{2} \sigma_4\right)$. Note that with such a normalization the radius of the Bloch sphere S_3 is given by $R_3 = 1/\sqrt{2}$, as it can be earned by $\text{Tr} \rho^2 \leq 1$. With this definition, the HS–distance between any two density operators, defined as the HS (Frobenius) norm of their difference, proves to be equal to the Euclidean distance $D_E(\tilde{\xi}_1, \tilde{\xi}_2)$ between the labeling Bloch vectors $\tilde{\xi}_1, \tilde{\xi}_2 \in S_3 \subset \mathbb{R}^3$.
the real coherence vector $\hat{\xi}$ in (4) is taken $(N^2 - 1)$-dimensional and \mathcal{E} now represents an operator-valued vector which consists of $(N^2 - 1)$ traceless Hermitian generators of SU(N), fulfilling $\text{Tr}(\Xi_i, \Xi_j) = \delta_{ij}$. Note however that in this case the geometry of the space of coherence vectors $\hat{\xi}$ does not coincide with the ball B_{N^2-1}, but constitutes instead a convex subset of it [2]. The condition $\text{Tr} \rho^2 \leq 1$ yields the upper bound for the length of the coherence vector, $|\hat{\xi}| \leq \sqrt{(N-1)/N} =: R_N$.

In the case $N = 3$ the vector \mathcal{E} consists of the set of 8 normalized Gell–Mann matrices $\{\xi_i\}_{i=1}^8$.

A metric space consisting of a set \mathcal{M}_N and a distance d is automatically endowed with a measure induced by the metric: The measure is defined by the assumption that all balls of a fixed radius defined in \mathcal{M}_N with respect to the distance d have the same weight.

The infinitesimal HS–measure around any matrix $\rho \in \mathcal{M}_N$ factorizes as [3]

$$d\mu_{\text{HS}}(\rho) = \frac{\sqrt{N}}{N!} d\nu^A(\Lambda_1, \ldots, \Lambda_N) \times d\nu^{\text{Haar}}, \quad (5)$$

where the factor $d\nu^A$ represents the measure in the simplex Δ_{N-1} of eigenvalues $\Lambda_1, \ldots, \Lambda_N$, while $d\nu^{\text{Haar}}$ depends on the eigenvectors of ρ. The pre-factor \sqrt{N} emerges in (5) when we force the variables $\Lambda_1, \ldots, \Lambda_N$ to live on the simplex Δ_{N-1}. This reduces the number of independent variables by one, since $\sum_{i=1}^N \Lambda_i = 1$, and introduces a factor $\sqrt{\det g}$ in (5), where g denotes the metric tensor in the $(N-1)$-dimensional simplex. Such a metric arises due to a change from N linearly dependent variables $\{\Lambda_i\}_{i=1}^N$ to the $(N-1)$ linearly independent ones $\{\Lambda_i\}_{i=1}^{N-1}$.

The last factor $d\nu^{\text{Haar}}$ can be integrated on the entire complex flag manifold [21, 3] defined by the coset space, $F_l^{(N)} := U(N)/[U(1)]^N$, that is the space of equivalence classes of matrices U diagonalising the given ρ. The volume of the flag manifold induced by the parametrisation used in (4) is given by [3]

$$\text{Vol} \left[F_l^{(N)} \right] = \int_{F_l^{(N)}} d\nu^{\text{Haar}} = \frac{(2\pi)^{N(N-1)/2}}{1! \ 2! \ \cdots \ (N-1)!}. \quad (6)$$

![Figure 1: The set of subnormalized states: (a) the set of eigenvalues for $N = 3$, (b) the convex cone of N^2 dimensions with zero state at the apex and the $(N^2 - 1)$ dimensional set \mathcal{M}_N as the base.](image)
Even after splitting off the \(N \)-phases of \([U(1)]^N\), a residual arbitrariness still remains in the diagonalization of \(\rho \), related to the fact that different permutations of \(N \) generically different eigenvalues \(\Lambda_i \) belong to the same unitary orbit. This explains the factor \(N! \) in (5), given by the number of equivalent Weyl chambers of the simplex \(\Delta_{N-1} \).

The measure \(d\nu^\alpha(\Lambda_1, \ldots, \Lambda_N) \) reads [3]

\[
d\nu^\alpha(\Lambda_1, \ldots, \Lambda_N) = \delta \left(\sum_{i=1}^{N} \Lambda_i - 1 \right) \prod_{i=1}^{N} \Theta(\Lambda_i) \prod_{i<j} (\Lambda_i - \Lambda_j)^2 \ d\Lambda_1 \ldots \ d\Lambda_N ,
\]

where the Dirac delta and the product of the Heaviside step functions \(\Theta \) ensure that the measure is concentrated on the simplex \(\Delta_{N-1} \).

Expression (7) defines a normalized probability distribution

\[
d\nu^\alpha(\Lambda_1, \ldots, \Lambda_N) \propto P_{\text{HS}}^{(2)}(\Lambda_1, \ldots, \Lambda_N) \ d\Lambda_1 \ldots \ d\Lambda_N ,
\]

where the upper index 2 is the repulsion exponent, widely used in random matrix theory, reminding us that we work with complex Hermitian density matrices. For later purpose, we now introduce a bigger family of probability distributions, indexed by a real parameter \(\alpha \):

\[
P^{(\alpha,2)}_N(\Lambda_1, \ldots, \Lambda_N) := C_N^{(\alpha,2)} \delta \left(1 - \sum_{i=1}^{N} \Lambda_i \right) \prod_{i=1}^{N} \Theta(\Lambda_i) \prod_{i<j} (\Lambda_i - \Lambda_j)^2 \ d\Lambda_1 \ldots \ d\Lambda_N ,
\]

with normalization constant \(C_N^{(\alpha,2)} \) given by

\[
\frac{1}{C^{(\alpha,2)}_N} := \int \delta \left(1 - \sum_{i=1}^{N} \Lambda_i \right) \prod_{i=1}^{N} \Theta(\Lambda_i) \prod_{i<j} (\Lambda_i - \Lambda_j)^2 \ d\Lambda_1 \ldots \ d\Lambda_N = \frac{\prod_{j=1}^{N} \Gamma(1 + j) \Gamma[j + (\alpha - 1)]}{\Gamma[N^2 + (\alpha - 1)N]} .
\]

The probability distribution in (8) represents a special case of \(P^{(\alpha,2)}_N \), being

\[
P_{\text{HS}}^{(2)}(\Lambda_1, \ldots, \Lambda_N) = P^{(\alpha,2)}_N(\Lambda_1, \ldots, \Lambda_N) \bigg|_{\alpha=1} .
\]

Putting together equations (5–7) and (9b) one derives [3] the (HS-) volume of the set \(\mathcal{M}_N \) of mixed quantum states

\[
\text{Vol}_{\text{HS}}(\mathcal{M}_N) = \int_{\mathcal{M}_N} d\mu_{\text{HS}}(\rho) = \frac{\sqrt{N}}{N!} \frac{\text{Vol}[\mathbf{F}^{(N)}_{C}]_{C^{(1,2)}}}{C_N^{(\alpha,2)}} = \sqrt{N} (2\pi)^{N(N-1)/2} \frac{\Gamma(1) \Gamma(2) \cdots \Gamma(N)}{\Gamma(N^2)} .
\]

To compute the volume of the set \(\mathcal{M}_N^{\text{sub}} \) of sub–normalized states we apply the following lemma, proved in Appendix A

Lemma 1

Consider a one parameter family of probability measures \(d\nu_K(\Lambda_1, \ldots, \Lambda_N) \) defined on the set \(\text{CH}(N) := \text{conv hull } [0, \Delta_{N-1}] \)

\[
d\nu_K(\Lambda_1, \ldots, \Lambda_N) = \prod_{i=1}^{N} \Theta(\Lambda_i) \Lambda_i^{K-N} \prod_{i<j} (\Lambda_i - \Lambda_j)^2 \ d\Lambda_1 \ldots \ d\Lambda_N
\]

and labeled by integers \(K \geq N \). Then the volume \(\nu_K(\text{CH}(N)) \) reads

\[
\nu_K(\text{CH}(N)) = \int_{\text{CH}(N)} d\nu_K(\Lambda_1, \ldots, \Lambda_N) = \frac{1}{KN C_N^{(K-N+1,2)}} ,
\]

where \(C_N^{(K-N+1,2)} \) is the coefficient defined in (9b), with \(\alpha = K - N + 1 \).
The measure $d\mu^{\text{sub}}_{\text{HS}}(\sigma)$ on the set of subnormalized states $\mathcal{M}^{\text{sub}}_N$ is given by

$$d\mu^{\text{sub}}_{\text{HS}}(\sigma) = \frac{1}{N!} \, dv^{\text{sub}}(\Lambda_1, \ldots, \Lambda_N) \times dv^{\text{Haar}},$$

and differs from the one of equation (5), relative to quantum normalized states, by the factor \sqrt{N}. In equation (5), such a factor was due to the change of variables needed to express the volume elements in terms of the set of $(N-1)$ independent variables on the simplex Δ_{N-1}; in the present case we do not need to change the variables anymore, and the factor \sqrt{N} does not appear.

Moreover, the definition of the measure dv^{sub} on the entire set $\mathcal{CH}(N)$ of Lemma 1 used in equation (13) differs from the one defined on the simplex Δ_{N-1} and used in equation (7). In particular, for $K = N$ equation (12) implies

$$dv^{\text{sub}}(\Lambda_1, \ldots, \Lambda_N) = dv_N(\Lambda_1, \ldots, \Lambda_N) = \Theta \left(\sum_{i=1}^N \Lambda_i - 1 \right) \prod_{i=1}^N \Theta(\Lambda_i) \prod_{i<j} (\Lambda_i - \Lambda_j)^2 \, d\Lambda_1 \ldots d\Lambda_N .$$

In analogy to the derivation of the volume (11) of the set of normalized states, the HS-volume of the set $\mathcal{M}^{\text{sub}}_N$ of subnormalized states can be earned by equations (13, 14, 6) and (9b) together with Lemma 1, in which we set $K = N$:

$$\text{Vol}_{\text{HS}}(\mathcal{M}^{\text{sub}}_N) = \frac{1}{N!} \times \text{Vol} \left[F^{(N)}_C \right] \times v_N(\mathcal{CH}(N)) = (2\pi)^{N(N-1)/2} \frac{\Gamma(1) \Gamma(2) \cdots \Gamma(N)}{N^2 \Gamma(N^2)} .$$

By comparing equations (11) and (15), we observe that

$$\text{Vol}_{\text{HS}}(\mathcal{M}^{\text{sub}}_N) = \frac{\text{Vol}_{\text{HS}}(\mathcal{M}_N)}{N^2 \sqrt{N}} ;$$

surprisingly enough, due to the Euclidean (flat) geometry induced by the HS–metric, the latter equation could be earned directly using the Archimedean formula for the volume of a D–dimensional cone of Figure 1 (panel b)

$$V = \frac{1}{D} \cdot A \cdot h ,$$

where V is the D–dimensional volume of the (hyper–) cone representing $\mathcal{M}^{\text{sub}}_N$, A is the area of its $(D-1)$–dimensional base \mathcal{M}_N, and h denotes its height, that is the distance between the base and the apex (the latter corresponding to the state $\sigma_0 = 0$). Making use of the definition of HS–distance (3), one gets the results

$$\begin{cases} V = \text{Vol}_{\text{HS}}(\mathcal{M}^{\text{sub}}_N) \\ D = \text{Dimension}(\mathcal{M}^{\text{sub}}_N) = N^2 \\ A = \text{Vol}_{\text{HS}}(\mathcal{M}_N) \\ h = D_{\text{HS}}(\mathcal{M}_N, 0) = \inf_{\rho \in \mathcal{M}_N} D_{\text{HS}}(\rho, 0) = \frac{1}{\sqrt{N}} \end{cases} ,$$

so that relation (16) can be also earned by (17–18). Note also that $h = D_{\text{HS}}(\rho_*, 0)$, where $\rho_* = \mathbb{I}_N/N$ denotes the maximally mixed state of Fig. 1, due to the following chain of relations:

$$h^2 = \inf_{\rho \in \mathcal{M}_N} D_{\text{HS}}^2(\rho, 0) = \inf_{\rho \in \mathcal{M}_N} \text{Tr} \rho^2 = \inf_{\Lambda \in \Delta_{N-1}} \sum_{i=1}^N \Lambda_i^2 = \inf_{\Lambda_1+\cdots+\Lambda_N=1} [\Lambda_1^2 + \cdots + \Lambda_N^2] = \frac{1}{N} .$$
2.1 Generating random subnormalized mixed states with respect to HS measure

As we have already seen, the HS-measure endows \mathcal{M}_N with the flat, Euclidean geometry. Moreover, as emphasized in FIG. 1, the set $\mathcal{M}_N^{\text{sub}}$ of subnormalized states constitutes with respect to this geometry an N^2-1-dimensional cone, whose (N^2-1)-dimensional base is \mathcal{M}_N. Thus, directly from (1), every state $\sigma \in \mathcal{M}_N^{\text{sub}}$ can be decomposed as

$$\sigma = a \rho + (1-a) 0 \quad ,$$

where $\rho \in \mathcal{M}_N$, 0 is the null-state and a is a positive number less or equal to 1. Therefore generating states $\{\sigma_i\}$ uniformly in the cone means to distribute homogeneously ρ_i in \mathcal{M}_N and to use them in (20). The weights $a_i\in [0,1]$ must be distributed accordingly to a density function $f(a)$ scaling as a^{N^2-1}. These random numbers may be obtained by inverting the cumulative distribution function $F(x) := \int_0^x f(x) \, dx$ over uniformly distributed random numbers $\xi_i \in [0,1]$, that is generating homogeneously $\xi_i \in [0,1]$ and taking $a_i := F^{-1}(\xi_i) = \xi_i^{1/N^2}$. As a result, given a sequence of HS-distributed mixed states $\{\rho_i\} \in \mathcal{M}_N$, as the one studied in Section 3.1, and a sequence $\{\xi_i\}$ of random numbers uniformly distributed in $[0,1]$, one obtains an algorithmic prescription to generate a sequence of HS-distributed random subnormalized states $\{\sigma_i = \xi_i^{1/N^2} \rho_i\}$.

3 Measure induced by partial trace of mixed states

The aim of this Section is to determine the measure induced on a bipartite $K \times N$ quantum system AB, represented by means of an extended Hilbert space $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B = \mathbb{C}^K \otimes \mathbb{C}^N$, by partial tracing over one of the two subsystem. Such measures will be essential in determining the volumes of various sets of maps, that is done in the subsequent Sections of this work. Without loss of generality, we consider ancillary systems A whose dimension K is greater or equal to the dimension N of the system B. The induced measure depends on the choice of the systems to trace over, and on the initial distribution of the density operators ρ_{AB} on the composite system \mathcal{H}_{AB}. We start by analyzing a propaedeutic example:

3.1 Partial tracing over pure states

Consider random pure states $\rho_{AB} = |\psi_{AB}\rangle \langle \psi_{AB}|$ distributed according to the natural unitarily invariant Fubini–Study (FS) measure on the space of pure states [2], represented in a product basis as

$$|i\rangle_A \otimes |j\rangle_B \quad .$$

The positive matrix $\rho_B = M M^\dagger$ is equal to the density matrix obtained by a partial trace on the K-dimensional space A, $\rho_B = \text{Tr}_A(\rho_{AB})$. The spectrum of ρ_B coincides with the set of Schmidt coefficients Λ_i of the pure state $|\psi_{AB}\rangle$. The matrix M needs not to be Hermitian, the only constraint is the trace condition, $\text{Tr} \, M M^\dagger = 1$, that makes ρ_B a density matrix. Furthermore, the natural measure on the space of pure states corresponds to taking M from the Ginibre ensemble [22] and then renormalize them to ensure $\text{Tr} \, M M^\dagger = 1$ [23]. The probability distribution of the Schmidt coefficients implied by the FS measure on $\mathcal{H}_A \otimes \mathcal{H}_B$ is given by [24]

$$P^{(2)}_{N,K}(\Lambda_1, \ldots, \Lambda_N) = B^{(2)}_{N,K} \delta \left(1 - \sum_i \Lambda_i\right) \prod_i \Theta(\Lambda_i) \prod_{i<j} (\Lambda_i - \Lambda_j)^2 \quad ,$$

in which the upper index 2 is the repulsion exponent, as we deal with complex density matrices. The normalization constant $B^{(2)}_{N,K}$ reads [23]

$$B^{(2)}_{N,K} := \frac{\Gamma(KN)}{\prod_{j=0}^{N-1} \Gamma(K - j) \Gamma(N - j + 1)} \quad .$$
Observe that the entire distribution (9), including the normalization constant, can be tuned into eq. (21), provided we choose \(\alpha - 1 = K - N \). In particular, for \(\alpha = 1 \), that is \(K = N \), equation (10) shows that the induced distribution for the eigenvalues of \(\rho_B \) coincides with the HS–distribution. Thus, generating normalized Wishart matrices \(MM' \), with \(M \) belonging to the Ginibre ensemble of \(N \times N \) matrices, becomes a useful procedure for producing \(N \times N \) density matrices HS–distributed, and the algorithm described in Section 2.1 becomes effective.

3.2 Partial tracing over random HS–distributed mixed states

Consider now a related problem of determining the probability distribution of states \(\rho_B = \text{Tr}_A (\rho_{AB}) \), as it is assumed that the mixed states \(\rho_{AB} \) are distributed according to the HS–measure on \(M_{KN} \).

From Section 3.1 we know that \(\rho_{AB} \) itself can be generated by taking FS–distributed pure state \(\rho_{A'B'AB} = |\psi_{A'B'AB}\rangle\langle\psi_{A'B'AB}| \) in an extended Hilbert space \(\mathcal{H}_{A'B'AB} = \mathcal{H}_{A'B} \otimes \mathcal{H}_{AB} = \mathbb{C}^{K^2} \otimes \mathbb{C}^{KN} \) and by partial tracing over the ancillary subsystem \(A'B' \). Putting all together we obtain

\[
\rho_B = \text{Tr}_A [\rho_{AB}] = \text{Tr}_A [\text{Tr}_{A'B'} (\rho_{A'B'AB})] = \text{Tr}_{A'B'} [|\psi_{A'B'AB}\rangle\langle\psi_{A'B'AB}|] \quad . \tag{22}
\]

The latter equation implies that the desired distribution is obtained by coupling the \(N \)–dimensional system \(B \) to an environment of size \(NK^2 \), generating FS–distributed pure states in this overall \(N^2K^3 \) system, and finally tracing out the environment. Hence the distribution of the spectrum of \(\rho_B \) is given by \(P^{(2)}_{NK^2}(\Lambda_1, \ldots, \Lambda_N) \) of equation (21).

In the rest of this Section we will consider the special case \(K = N \). This assumption corresponds to generating mixed states distributed according to the HS measure on the space \(M_{N^2} \) of bipartite systems, and tracing out one of them. In particular we will focus on the simplest cases of \(N = 2 \) (qubits) and \(N = 3 \) (qutrits).

3.3 Partial trace of two–qubits mixed quantum states

Let us start with the simplest case \(N = 2 \), for which \(B^{(2)}_{N^2, N^2} = B^{(2)}_{2,8} = 180 \) 180 and the simplex \(\Lambda_1 \), corresponding to the positive \(\Lambda_1, \Lambda_2 \) such that \(\Lambda_1 + \Lambda_2 = 1 \), is nothing but an interval \([0, 1]\). The probability distribution (21) reads in this case

\[
P^{(2)}_{2,8}(\Lambda_1, \Lambda_2) = 180 \ 180 \ \delta(1 - \Lambda_1 - \Lambda_2) \ \Theta(\Lambda_1) \ \Theta(\Lambda_2) \ \Lambda_1^6 \ \Lambda_2^6 \ (\Lambda_1 - \Lambda_2)^2 \quad . \tag{23}
\]

We express the eigenvalues \(\Lambda_1 \) and \(\Lambda_2 \) in terms of a real parameter \(r \in [-\frac{1}{2}, \frac{1}{2}] =: \Lambda_1 \) as follows

\[
\begin{align*}
\Lambda_1 &= \frac{1}{2} + r \\
\Lambda_2 &= \frac{1}{2} - r
\end{align*}
\quad . \tag{24}
\]

and we earn from (23) the radial distribution inside the Bloch ball

\[
\bar{P}(r) = 720 720 \ \chi_{\Lambda_1} (r) \left(\frac{1}{4} - r^2 \right)^6 r^2 \quad , \tag{25}
\]

where \(\chi_{\Lambda_1} (r) \) denotes the indicator function of the simplex \(\Lambda_1 \) (see FIG. 2a).

3.4 Partial trace of two–qutrits mixed quantum states

For \(N = 3 \) the eigenvalues \(\Lambda_1, \Lambda_2 \) and \(\Lambda_3 \) can be expressed in polar coordinates \((r, \phi)\) in a form similar to (24),

\[
\begin{align*}
\Lambda_1 &= \frac{1}{3} + r \cos (\phi + \frac{2}{3} \pi) \\
\Lambda_2 &= \frac{1}{3} + r \cos (\phi) \\
\Lambda_3 &= \frac{1}{3} + r \cos (\phi - \frac{2}{3} \pi)
\end{align*}
\quad . \tag{26}
\]
Similarly as before, we indicate with $\hat{\Delta}_2$ the counter–image of the simplex Δ_2, that is the set in the (r, ϕ) plane such that $(\Lambda_1(r, \phi), \Lambda_2(r, \phi), \Lambda_3(r, \phi)) \in \Delta_2$.

Computing the Jacobian of the transformation (26) (with $\Lambda_3 = 1 - \Lambda_1 - \Lambda_2$) we see that the volume element transforms as

$$dV = d\Lambda_1 d\Lambda_2 = \frac{\sqrt{3}}{2} \times \chi_{\hat{\Delta}_2}(r, \phi) \times r dr d\phi.$$

The value of the radial variable r is related to the purity of the mixed state, $3/2 r^2 = \text{Tr} \rho^2 - 1/3$, where $\text{Tr} \rho^2 = \Lambda_1^2 + \Lambda_2^2 + \Lambda_3^2$.

The constant $B_{3,27}^{(2)}$ follows from (21b)

$$B_{3,27}^{(2)} = \frac{80!}{12 \cdot 24! \cdot 25! \cdot 26!}.$$

We are now in the position to compute for this case the explicit probability distribution (21)

$$P_{3,27}(\Lambda_1, \Lambda_2, \Lambda_3) = B_{3,27}^{(2)} \chi_{\hat{\Delta}_2}(\Lambda_1, \Lambda_2, \Lambda_3) \Lambda_1^{24} \Lambda_2^{24} \Lambda_3^{24} (\Lambda_1 - \Lambda_2)^2 (\Lambda_1 - \Lambda_3)^2 (\Lambda_2 - \Lambda_3)^2,$$

that in the polar plane reads

$$\bar{P}(r, \phi) = \frac{9}{64} \frac{80!}{24! \cdot 25! \cdot 26!} \chi_{\hat{\Delta}_2}(r, \phi) r^6 \sin^2(3\phi) \left(\frac{1}{27} - \frac{1}{4} r^2 + \frac{1}{4} r^3 \cos(3\phi) \right)^{24}.$$

The latter distribution is invariant under the transformations $\phi \to -\phi$ and $\phi \to \phi + 2k\pi/3$, $k \in \mathbb{Z}$, as shown in FIG. 2.

![Figure 2: Induced distributions in the simplices of eigenvalues obtained by partial trace of mixed states of $N \times N$ systems distributed according to HS measure. (a) $N = 2$, $\Delta_1 = [-1/2, 1/2]$. Comparison of an histogram with theoretical prediction (25) represented by solid line. (b) $N = 3$. Contour lines of the distribution (28) in the simplex Δ_2. (c) $N = 3$. Plot obtained numerically for 10^5 random states of size $N^2 = 9$.](image)

4 Trace–non–increasing maps

A generic state of a N–dimensional quantum system is completely described once a positive, Hermitian and normalized density matrix $\rho \in \mathcal{M}_N$ is given. In order to analyze and classify the set of all possible physical operations on a quantum
system, we need to describe the set of superoperators Φ mapping M_N onto itself. The linearity of physical operations can be expressed by forcing the superoperator $\Phi : M_N \mapsto M_N$ to act as a matrix action on the “vector” ρ, that is

$$\rho' = \Phi \rho \quad \text{or} \quad \rho'_{mn} = \Phi_{mn} \rho_{nv}$$

We use Einstein summation convention for indices appearing twice. In order to map the domain M_N onto itself, the linear super-operator Φ must fulfill these additional

Properties 1

i) $\rho' = (\rho')^\dagger \iff \Phi_{mn} = \Phi^*_{mn}$

ii) $\text{Tr} \rho' = \text{Tr} \rho = 1 \iff \Phi_{mn} = \delta_{nv}$

iii) $\rho' \geq 0 \iff \Phi_{mn} \rho_{nv} \geq 0 \quad \text{when} \quad \rho \geq 0$.

In particular, all the superoperators Φ fulfilling property (29b) are called trace preserving (TP). For any given Φ, it proves convenient to introduce the *dynamical matrix* D_Φ, uniquely and linearly obtained from the superoperator by reshuffling the indices [25, 26]:

$$D_{mn}^{\rho'} = \Phi_{mn} \rho_{nv} \quad (30)$$

The dynamical matrix can be thought as a matrix on a bipartite $N \times N$ quantum system AB, represented by means of an extended Hilbert space H_{AB} of the same kind of the one in Section 3, so that $D_{mn}^{\rho'} = \lambda(m) \otimes_B \langle n | D_\Phi | \mu \rangle_A \otimes | \nu \rangle_B$.

In terms of D_Φ, Properties 1 can be re-expressed as follows:

Properties 2

i) $\rho' = (\rho')^\dagger \iff D_{mn}^{\rho'} = D^*_{mn} \rho_{nv}$ so $D_\Phi = D_\Phi^\dagger$.

ii) $\text{Tr} \rho' = \text{Tr} \rho = 1 \iff D_{mn}^{\rho'} = \delta_{nv}$ so $\text{Tr}_A D_\Phi = I_N$.

iii) $\rho' \geq 0 \iff D_{mn}^{\rho'} \rho_{nv} \geq 0 \quad \text{when} \quad \rho \geq 0$.

In the following we will focus on the set CP_N of maps $\Phi : B(C^N) \mapsto B(C^N)$ that are completely positive [27], that is on maps Φ such that for every identity map $I_K : C^K \mapsto C^K$ the extended maps $\Phi \otimes I_K : B(C^N) \otimes C^K \mapsto B(C^N) \otimes C^K$ are positive (here $B(C^N)$ is the Banach space of bounded linear operators on C^N). A very important property characterizes the dynamical matrix D_Φ of a completely positive (CP) map Φ:

Theorem (Choi [28]): A linear map Φ is completely positive if and only if the corresponding dynamical matrix D_Φ is positive.

Note that property (31c) holds true in general once that the positivity of the matrix D_Φ is proved for product states of $C^N \otimes C^N$, as stated in the Jamiołkowski Theorem [16]. This property is implied by complete positivity, that is a stronger condition. If we combine equations (31a–31b) with the complete positivity, we observe that for any given $\Phi \in CP_N^{TP}$ (i.e. the set of completely positive trace preserving maps), its rescaled dynamical matrix $\rho_\Phi := D_\Phi / N$ possesses the three properties of Hermiticity, positivity and normalization. Thus ρ_Φ belongs to the set M_{N^2} of density matrices of size N^2. This leads to the celebrated Jamiołkowski isomorphism [16], that maps the entire set CP_N^{TP} of quantum maps onto a proper $(N^4 - N^2)$-dimensional subset of the set M_{N^2} of quantum states on extended system. This subset, denoted by $M_{N^2}^{TP}$, contains all states ρ such that $\text{Tr}_A \rho = I_N$. The N^2 constraints reducing the dimension of M_{N^2} come from equation (31b). With the aim of removing these N^2 constraints, we introduce a family of linear maps:
Definition 2

A linear positive map \(\Phi \) is called trace–non–increasing (TNI), if \(\text{Tr} \, \Phi(\rho) \leq \text{Tr} \, \rho = 1 \) for any \(\rho \in \mathcal{M}_N \).

We state now a Lemma that makes a link between CP–TNI maps and their images given by Jamiołkowski isomorphism, that is the set of their (rescaled) dynamical matrices:

Lemma 2

For any given \(\Phi \in \mathcal{CP}^{\text{TNI}}_N \), its rescaled dynamical matrix \(\sigma_\Phi := D_\Phi / N \) is Hermitian (according to (31a)), positive (as in the statement of Choi Theorem) and fulfills the following constraint:

\[
\text{ii'}) \quad \text{Tr} \, \Phi(\rho) = \text{Tr} \, \rho' \leq \text{Tr} \, \rho = 1 \Leftrightarrow \text{Tr}_A \, \sigma_\Phi \leq \frac{I_N}{N} \quad .
\]

For a proof of this Lemma, see Appendix A.2. Note that the above constraint is a kind of a relaxation of (31b). The reduced and rescaled dynamical matrix \(\text{Tr}_A \sigma_\Phi \) belongs then to a subset of the set \(\mathcal{M}^{\text{sub}}_N \) defined in (1). To specify this subset consider the following set of sub–tracial states

\[
\mathcal{M}^{\text{□}}_N := \left\{ \sigma \in \mathcal{M}^{\text{sub}}_N : \sigma \leq \frac{I_N}{N} \right\} = \left\{ \sigma \in \mathcal{M}^{\text{sub}}_N : \max [\text{EV}(\sigma)] \leq \frac{1}{N} \right\} ,
\]

where \(\text{EV}(\sigma) \) denotes the set of eigenvalues of \(\sigma \). This definition allows us to rewrite condition (32) as

\[
\Phi \in \mathcal{CP}^{\text{TNI}}_N \quad \Leftrightarrow \quad \text{Tr}_A \sigma_\Phi \in \mathcal{M}^{\text{□}}_N .
\]

Finally, we can summarize the result of equation (34), in the next

Proposition

Every trace non increasing map \(\Phi \in \mathcal{CP}^{\text{TNI}}_N \) can be represented by a sub–tracial state \(\tilde{\sigma}_\Phi \in \mathcal{M}^{\text{□}}_N \subset \mathcal{M}^{\text{sub}}_N \), whose explicit expression is given in terms of the rescaled dynamical matrix \(\sigma_\Phi \) of Lemma 2 by

\[
\tilde{\sigma}_\Phi := \text{Tr}_A \sigma_\Phi = \frac{1}{N} \text{Tr}_A D_\Phi .
\]

Moreover, the rescaled dynamical matrix \(\sigma_\Phi \) offers itself another representation of \(\Phi \) into an \(N^4 \)–dimensional proper subset of \(\mathcal{M}^{\text{sub}}_N \), as one can derive from the right hand side of (32) that

\[
\text{Tr} \, \sigma_\Phi = \text{Tr}_{AB} \, \sigma_\Phi = \text{Tr}_B \left(\text{Tr}_A \, \sigma_\Phi \right) \leq \text{Tr}_B \left(\frac{I_N}{N} \right) = 1 .
\]

In the next Definition 3, we will denote this set with \(\mathcal{M}^{\text{□}}_{N^2} \).

Definition 3

\[
\mathcal{M}^{\text{□}}_{N^2} := \left\{ \sigma \in \mathcal{M}^{\text{sub}}_N : \text{Tr}_A \sigma \in \mathcal{M}^{\text{□}}_N \right\} .
\]

To clarify the notation used we collect the sets of states and maps considered in table 1.

In the space of the \(N \)–eigenvalues of \(N \times N \) positive Hermitian matrices, the set \(\mathcal{M}^{\text{□}}_N \) of sub–tracial states defined in (33) consists of a cube inscribed into the set \(\mathcal{M}^{\text{sub}}_N \) of subnormalized states of size \(N \). Such a multi–dimensional cube has a vertex in the origin, is oriented along axes, and touches the simplex of quantum states \(\mathcal{M}_N \) in a single point \(I_N/N \), as shown in FIG. 3 for \(N = 2 \) and \(N = 3 \). Observe that every \(\tilde{\sigma}_\Phi \) of \(M^N_{1/2} \) can be rescaled in order to let it belong to the cube of \(\mathcal{M}^{\text{□}}_N \).

In terms of maps it means that every \(\Phi \in \mathcal{CP}^1_N \) can be mixed with the 0 map in order to become trace–non–increasing.

The set \(\mathcal{M}^{\text{□}}_{N^2} \) of CP–TNI maps has \(N^4 \) dimensions. It contains the \(N^4 - N^2 \) dimensional set \(\mathcal{M}^{\text{□}}_{N^2} \) of CP–TP maps, which satisfy \(\text{Tr} \, \Phi(\rho) = \text{Tr} \, (\rho) \), as a subset. The set \(\mathcal{CP}^{\text{TP}}_N \) forms extremal points in \(\mathcal{CP}^{\text{TNI}}_N \).
Table 1: The two kinds of CP-TP and CP–TNI maps analyzed in this Section are mapped in the set of their correspondent superoperators Φ, the set of their rescaled dynamical matrices σ_Φ, and the set of their representative sub–tracial states $\check{\sigma}_\Phi$. Inclusion relations between the sets under consideration are explicitly shown in the table.

5 Volume of the set of CP TNI maps

In Section 4, the Jamiołkowski isomorphisms allowed us to establish links between superoperators $\Phi \in CP^T_N$, rescaled dynamical matrices $\sigma_\Phi = \text{Tr}_A \sigma_\Phi \in M^{\!\circ}_{N^2}$, and sub–tracial states $\check{\sigma}_\Phi \in M^\text{sub}_N$. In this Section we will make use of this representation aiming to define a measure in CP^T_N and compute its volume.

We start defining the Hilbert Schmidt measure $d\mu_{\text{HS}}^\text{sub}$ on the space of trace non–increasing maps $\Phi \in CP^T_N$, as the HS measure of their representative reduced dynamical matrices $\sigma_\Phi \in M^{\!\circ}_{N^2} \subset M^\text{sub}_N$. Such a measure is analogous to the one introduced in (13–14), restricted from M^sub_N to $M^{\!\circ}_{N^2}$, and reads

$$d\mu_{\text{HS}}^\text{sub}(\sigma_\Phi) = d\mu_{\text{HS}}^\text{sub}(\check{\sigma}_\Phi)\bigg|_{M^{\!\circ}_{N^2} \subset M^\text{sub}_N} = \frac{1}{N^{2!}} \, d\nu^\text{sub}(\Lambda_1, \ldots, \Lambda_N)\bigg|_{M^{\!\circ}_{N^2} \subset M^\text{sub}_N} \times d\nu^\text{Haar}. \quad (35)$$

Here $\Lambda_1, \ldots, \Lambda_N$ denote the eigenvalues of the matrix σ_Φ of size N^2.

The restriction of the space from M^sub_N to $M^{\!\circ}_{N^2}$ does not affect the Haar measure on the entire complex flag manifold Fl^Hilb_C, given by the coset space $U(N^2)/[U(1)]^{N^2}$ of equivalence classes of unitary matrices of eigenstates of σ_Φ. The volume of this flag manifold follows from (6)

$$\text{Vol}\left[Fl^{(N^2)}_C\right] = \int_{Fl^{(N^2)}_C} d\nu^\text{Haar} = \frac{(2\pi)^{N^2(N^2-1)/2}}{1! \, 2! \cdots (N^2 - 1)!}. \quad (36)$$

In order to parallel (11) and (15) we need to compute the volume spanned by the eigenvalues of matrices contained in $M^{\!\circ}_{N^2}$ according to the measure $d\nu^\text{sub}(\Lambda_1, \ldots, \Lambda_N)$, multiply it by the volume (36) of the flag manifold $Fl^{(N^2)}_C$ and divide the result by $N^{2!}$ as in (35). Performing this task one obtains

$$\text{Vol}_{\text{HS}}(CP^T_N) = \frac{1}{N^{2!}} \, \text{Vol}\left[EV\left(M^{\!\circ}_{N^2}\right)\right] \times \text{Vol}\left[Fl^{(N^2)}_C\right] = \frac{1}{N^{2!}} \int_{EV\left(M^{\!\circ}_{N^2}\right)} d\nu^\text{sub}(\Lambda_1, \ldots, \Lambda_N) \times \text{Vol}\left[Fl^{(N^2)}_C\right]. \quad (37)$$

Note that the operation of partial trace maps the set $M^{\!\circ}_{N^2}$ into M^sub_N. Assuming that mixed states from $M^{\!\circ}_{N^2} \subset M^\text{sub}_N$ are distributed according to the HS measure, we need to analyze the measure induced in M^sub_N by partial trace.

In Section 3.2 we described how the normalized HS–distribution on M_{N^2}, whose expression is equivalent to the induced distribution $P^{(2)}_{N,NN^2}(\Lambda_1, \ldots, \Lambda_{N^2})$ of equation (21), is mapped by partial tracing into the distribution $P^{(2)}_{N,NK^2}(\Lambda_1, \ldots, \Lambda_N)$. In particular, for $K = N$, the HS–distribution on M_{N^2} is mapped into $P^{(2)}_{N,N\!\cdot\!N^2}(\Lambda_1, \ldots, \Lambda_N)$.
Figure 3: The set of CP trace-non-increasing maps \(\Phi \in CP^{TNI}_N \) represented, by means of the Jamiołkowski isomorphism, as the subset \(M^{\square}_N \) of the set of subnormalized states \(M_{N}^{\text{sub}} \), in terms of the reduced and rescaled dynamical matrices \(\tilde{\sigma}_\Phi = \text{Tr}_A \sigma_\Phi \). The eigenvalues of these matrices \(\tilde{\sigma}_\Phi \) span an \(N \)–dimensional cube inscribed into the set of subnormalized states of size \(N \), here plotted for (a) \(N = 2 \) and (b) \(N = 3 \).

In a completely equivalent way, the measure \(d\nu^{\text{sub}}(\Lambda_1, \ldots, \Lambda_N) = d\nu_N(\Lambda_1, \ldots, \Lambda_N) \) of equation (35) is transformed by partial tracing into the measure \(d\nu^{\text{sub}}(\Lambda_1, \ldots, \Lambda_N) \), and (37) yields

\[
\text{Vol}_{\text{HS}}(CP^{TNI}_N) = \frac{1}{N^2!} \int_{\text{EV}(M^\square_N)} d\nu_N(\Lambda_1, \ldots, \Lambda_N) \times \text{Vol} \left[F_C^{N^2} \right] = \frac{\text{Vol} \left[F_C^{N^2} \right]}{N^2!} \int_{\text{EV}(M^\square_N)} d\nu_N(\Lambda_1, \ldots, \Lambda_N). \tag{38}
\]

Making use of (12) and (36) we arrive at

\[
\text{Vol}_{\text{HS}}(CP^{TNI}_N) = \frac{(2\pi)^N (N^2 - 1)/2}{1! 2! \cdots N^2!} \int \prod_{i=1}^N \Theta \left(\frac{1}{N} - \Lambda_i \right) \times \prod_{i=1}^N \Theta(\Lambda_i) \Lambda_i^{N^2 - N} \prod_{i<j}(\Lambda_i - \Lambda_j)^2 d\Lambda_1 \cdots d\Lambda_N \ . \tag{39}
\]

where we have made explicit the domain of integration using the Heaviside step function \(\Theta \). Last integral can be computed using next Lemma 3, whose proof is in Appendix A.3.

Lemma 3

On the \(N \)–dimensional cube \(\square_N := \left[0, \frac{1}{N} \right]^N \), consider the one parameter family of measures \(d\nu^2_K(\Lambda_1, \ldots, \Lambda_N) \)

\[
d\nu^2_K(\Lambda_1, \ldots, \Lambda_N) = \prod_{i=1}^N \Theta \left(\frac{1}{N} - \Lambda_i \right) \Theta(\Lambda_i) \Lambda_i^{N^2 - N} \prod_{i<j}(\Lambda_i - \Lambda_j)^2 d\Lambda_1 \cdots d\Lambda_N , \tag{40}
\]

labeled by any integer \(K \geq N \). Then the volume \(v^2_K(\square_N) \) reads

\[
\int_{\square_N} d\nu^2_K(\Lambda_1, \ldots, \Lambda_N) = \frac{I(K-N+1, 1, 1, N)}{N^K} \ . \tag{41}
\]
where \(I(K - N + 1, 1, 1, N)\) is the Selberg’s integral [22]

\[
I(K - N + 1, 1, 1, N) = \prod_{j=1}^{N} \frac{\Gamma(1+j) \Gamma(K-N+j) \Gamma(j)}{\Gamma(2) \Gamma(K+j)} .
\] \[(42)\]

Finally, using Lemma 2, equation (39) yields the final formula for the HS volume of the set of TNI maps

\[
\text{Vol}_{\text{HS}}\left(\mathcal{CP}_{N}^{\text{TNI}}\right) = \frac{(2\pi)^{N^{2}(N^{2}-1)/2}}{N! 2! \cdots N^{2}!} \int_{\mathcal{D}_{N}} d\nu_{N}^{2}(\Lambda_{1}, \ldots, \Lambda_{N})
= \frac{(2\pi)^{N^{2}(N^{2}-1)/2}}{N! 2! \cdots N^{2}!} \prod_{j=1}^{N} \frac{\Gamma(1+j) \Gamma(N^{3} - N + j) \Gamma(j)}{N^{j} \Gamma(N^{3} + j)} .
\] \[(43)\]

Equation (38) implies that the HS volume of the set of CP–TNI maps is proportional to the volume of the set of sub–tracial states \(\mathcal{M}_{N}^{\text{TNI}}\) of (33) computed according to the induced measure \(d\nu_{N}(\Lambda_{1}, \ldots, \Lambda_{N})\). In particular, Lemma 3 allows us to compute such a volume according to any given induced measure \(d\nu_{K}(\Lambda_{1}, \ldots, \Lambda_{N})\). Moreover, as we explained in the Remark of page 17, also the volume of all sub–normalized states \(\mathcal{M}_{N}^{\text{sub}}\) can be computed according to the any induced measure. For comparison, we present below their ratio for any value of parameter \(K\), reminding the reader that in the former calculations we set \(K = N^{3}\).

\[
\frac{\text{Vol}_{N,K}\left(\mathcal{M}_{N}^{\text{TNI}}\right)}{\text{Vol}_{N,K}\left(\mathcal{M}_{N}^{\text{sub}}\right)} = \frac{NK}{N^{K}} C_{N}^{(K-N+1,2)} \times I(K - N + 1, 1, 1, N) = \frac{(NK)!}{N^{K}} \prod_{j=1}^{N} \frac{\Gamma(j)}{\Gamma(K+j)} .
\] \[(44)\]

6 Extremal CP TNI maps

We start this Section by introducing another representation for CP–TNI maps \(\Phi : \rho \mapsto \rho'\), alternative to the one described in Section 4, and summarized in the next Lemma 4 (for a proof see Appendix A.4).

Lemma 4

For any given CP–TNI map \(\Phi\), its action on density matrices \(\rho \in \mathcal{M}_{N}\) can be described by using a discrete family of \(N \times N\) operators \(A_{\mu}\), whose number \(S\) does not exceed \(N^{2}\). The explicit action of the map \(\Phi\) reads

\[
\Phi (\rho) = \sum_{\mu=1}^{S} A_{\mu} \rho A_{\mu}^\dagger
\] \[(44a)\]

and the matrices \(A_{\mu}\) fulfill

\[
\sum_{\mu=1}^{S} A_{\mu}^\dagger A_{\mu} = N \tilde{\sigma}_{\Phi}^T ,
\] \[(44b)\]

where the sub–tracial state \(\tilde{\sigma}_{\Phi} \in \mathcal{M}_{N}^{\text{TNI}}\) is given by the reduced and rescaled dynamical matrix correspondent to the map \(\Phi\), as in the Proposition of pag. 10, and \(\sigma^T\) means transpose of \(\sigma\). Conversely, if \(S \leq N^{2}\) operators \(A_{\mu}\) of size \(N \times N\) fulfill

\[
\frac{1}{N} \sum_{\mu=1}^{S} A_{\mu}^\dagger A_{\mu} = \tilde{\sigma} \in \mathcal{M}_{N}^{\text{TNI}} ,
\] \[(45a)\]
\[\Phi(\rho) := \sum_{\mu=1}^{S} A_\mu \rho A_\mu^\dagger \] (45b)

defines a CP–TNI map.

When \(\Phi \) is a CP–TP map, that is when \(\tilde{\sigma}_\Phi = \tilde{\sigma}_\Phi^T = I_N/N \), then equations (44) define the usual Kraus–Stinespring representation and the operators \(A_\mu \) are said \textit{Kraus operators}. In this sense Lemma 4 can be seen as an extension of the KS–representation.

We aim to use the previous Lemma on a particular sub–class of CP–TNI maps, represented by very trivial sub–tracial states, as in the following

\textbf{Definition 4}

We say that a map \(\Phi \in CP_{TNI} \) is \textit{k–extremal} if its representative sub–tracial state \(\tilde{\sigma}_\Phi \in M_N^{\text{sub}} \) is diagonal and possesses exactly \(k \) non vanishing entries, all equal to \(1/N \). Those sub–tracial states represent maximally mixed states in \(k \)–dimensional subspace. In the following such maps will be denoted by \(\Phi_k \).

Let \(\Omega_N \) denote the ordered set of positive integer less or equal to \(N \), and let \(\mathcal{P}(\Omega_N) \) be the set \textit{“sorted parts of \(\Omega_N \”}”, that is the set of all possible ordered collections of elements of \(\Omega_N \). Consider the partition

\[\mathcal{P}(\Omega_N) = \bigcup_{k=0}^{N} \mathcal{P}_k(\Omega_N) , \] (46)

where each \(\mathcal{P}_k(\Omega_N) \) contains exactly \(k \) elements, \(\mathcal{P}_0(\Omega_N) = \{\emptyset\} \) and \(\mathcal{P}_N(\Omega_N) = \{\Omega_N\} \). Thus it proves convenient to use the natural isomorphism

\[\zeta \in \mathcal{P}_k(\Omega_N) \sim \tilde{\sigma}_\zeta = \frac{1}{N} \sum_{\ell \in \zeta} |\ell\rangle \langle \ell| \] (47)

for labeling the set of \(k \)–extremal CP–TNI maps: see Figure 4 for an example with \(N = 3 \), on which

\[\mathcal{P}_3(\Omega_3) = \{\Omega_3\} = \{\{1, 2, 3\}\} , \quad \mathcal{P}_2(\Omega_3) = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\} \quad \text{and} \quad \mathcal{P}_1(\Omega_3) = \{\{1\}, \{2\}, \{3\}\} \quad \text{and} \quad \mathcal{P}_0(\Omega_3) = \{\emptyset\} . \]

The vectors \(|\ell\rangle \) are meant to be orthonormal. Figure 4 illustrates another geometrical meaning of the integer number \(k \) labeling a \(k \)–extremal map: it is proportional to the \textit{taxi distance} in \(\mathbb{R}^N \) between \(\vec{0} \) and the vector of diagonal entries of \(\tilde{\sigma}_\zeta \), that is the minimal number of sides connecting \(0 \) to \(\tilde{\sigma}_\zeta \) in the plot of eigenvalues.

From (47) we earn that \(\tilde{\sigma}_\zeta \) is essentially a projector operator rescaled by \(N \), \(\tilde{\sigma}_\zeta = P_\zeta /N \): we denote as \(M_\zeta \) the image of \(M_N \) obtained by projection,

\[M_\zeta := \bigcup_{\rho \in M_N} P_\zeta \rho P_\zeta \subset M_N^{\text{sub}} . \] (48)

Using the isomorphism (47), Lemma 4 can be re–phrased as follows:

\textbf{Lemma 5}

For any given \(k \)–extremal CP–TNI map \(\Phi_k \), that is for any given \(\zeta \in \mathcal{P}_k(\Omega_N) \), its action on density matrices \(\rho \in M_N \) can be described by using a discrete family of \(N \times N \) operators \(A_\mu \), whose number \(S \) does not exceed \(N^2 \). The explicit action of the map \(\Phi_k \) reads

\[\Phi(\rho) = \sum_{\mu=1}^{S} A_\mu \rho A_\mu^\dagger \] (49a)
and the matrices A_μ fulfill
\[\sum_{\mu=1}^\xi A_\mu^\dagger A_\mu = N \tilde{\sigma}_\xi . \] (49b)

Simply using the previous Lemma 5 we deduce the following

Properties 3

Let Φ_k be a k-extremal CP–TNI map, represented by some $\tilde{\sigma}_\xi$, with $\xi \in P_k (\Omega_N)$. Then it holds true:

1) when $k = N$, Φ_N belongs to \mathcal{CP}_N^{TP}. When $k < N$ the trace preserving condition becomes ρ–dependent: nevertheless $\Phi_k \in \mathcal{CP}_N^{TNI}$ acts as a Trace Preserving map on $\rho \in \mathcal{M}_\xi$;

2) acting on the maximally mixed state $\rho_* := I_N/N$ reveals the parameter k, being $\text{Tr} \left[\Phi_k (\rho_*) \right] = k/N$;

3) $\mathcal{M}_N^{\mu\nu} \supseteq \Phi_k (\rho_*) = (k/N) \omega$, for some $\omega \in \mathcal{M}_N$. When $k = N$ and Φ is unital, then $\omega = \rho_*$.

Proof of Properties 3:

1) Tracing both sides of equation (49a), using the cyclicity property of the trace, and inserting (49b), one obtains
\[\text{Tr} \left[\Phi_k (\rho) \right] = \text{Tr} \left(N \tilde{\sigma}_\xi \rho \right) = \text{Tr} \left(P_\xi \rho \right) , \]
where P_ξ is the projector of equation (48). Then using the property of projector and cyclicity, together with definition (48), one gets
\[\text{Tr} \left[\Phi_k (\rho) \right] = \text{Tr} \left(P_\xi \rho P_\xi \right) . \] (50)

Assuming that $\rho \in \mathcal{M}_\xi$ means, according to definition (48), that it exists a quantum state $x \in \mathcal{M}_N$ such that $\rho = P_\xi x P_\xi$, so that
\[\text{Tr} \left[\Phi_k (\rho) \right] = \text{Tr} \left(P_\xi^2 x P_\xi^2 \right) = \text{Tr} \left(P_\xi x P_\xi \right) = \text{Tr} \left(\rho \right) . \] (51)
and Φ_k shows trace preservation on M_ζ. In particular, for $k = N$, $M_\zeta = M_N$ and (51) holds in full generality.

2) From the same lines of previous point (1) one gets: $\text{Tr} \left[\Phi (\rho_*) \right] = \text{Tr} \left(N \hat{\sigma} / N \right) = \text{Tr} \left(P_\zeta \right) / N = k / N$.

3) We deduce from Lemma 5 that

$$\Phi (\rho_*) = \frac{1}{N} \sum_{i=1}^{s} A_\mu A_\mu^\dagger, \tag{52}$$

that is positive and Hermitian too. Its normalization, computed in previous point (2), makes this state a sub-normalized state. The second statement in (3) is actually the definition of CP unital maps.

As a particular example, we will consider now the case of k-extremal CP–TNI maps Φ_k associated with rescaled dynamical matrices that are product states, $\sigma_\zeta = \omega \otimes \hat{\sigma}_\zeta$ for some $\omega \in M_N$ and $\zeta \in P_k (\Omega_N)$. For this very special case, the action of Φ_k on a generic $\rho \in M_N$ reads

$$\Phi (\rho) = \omega \text{Tr} \left(P_\zeta \rho \right) : \tag{53}$$

the map Φ_k sends the entire k–dimensional subspace spanned by M_ζ into ω, whereas the complementary subspace is annihilated.

7 Concluding Remarks

In this work we investigated the set of subnormalized quantum states and the set of completely positive, trace non–increasing maps. In particular we computed the volume of the set of subnormalized states and provided an algorithm to generate such states randomly with respect to the Hilbert–Schmidt (Euclidean) measure.

We described the structure of the set of CP–TNI maps and computed its volume. It is worth to emphasize that up till now no exact result for the Hilbert-Schmidt volume of the set of CP–TP maps is known, (although some estimates can be done [29]). On the other hand, in this work we obtained an exact result for the HS volume of the set of TNI maps, which includes the set of TP maps.

Our paper contains several side results worth mentioning. In particular, we found:

a) the probability distribution of states obtained by partial trace of mixed states of the bi–partite system distributed according to the Hilbert–Schmidt measure;

b) the volume of the sets of normalized, subnormalized and subtracial states with respect to the measures induced by partial trace;

c) an interpretation of the extremal trace non–increasing maps, which act as trace preserving on certain subspaces.

It is a pleasure to thank L. Hardy and S. Szarek for fruitful discussions. We gratefully acknowledge financial support by the SFB/Transregio-12 project financed by DFG, a grant number 1 P03B 042 26 of the Polish Ministry of Science and Information Technology and the European Research project COCOS.

A Proof of the Lemmata

A.1 Proof of Lemma 1

For any given $t \in \mathbb{R}^+$, consider the quantity

$$G (t, N, K) := \int \Theta \left(t - \sum_{i=1}^{N} A_i \right) \prod_{i=1}^{N} \Theta (A_i) \Lambda_i^{K-N} \prod_{i<j} \left(\Lambda_i - \Lambda_j \right)^2 \, d\Lambda_1 \ldots d\Lambda_N, \tag{54}$$
where Θ is the Heaviside step function, fulfilling $\Theta(tx) = \Theta(x)$ for every positive t. By rescaling the variables $\Lambda_i \rightarrow t\Lambda_i$ we get

$$G(t, N, K) = t^{NK} \int \Theta \left(1 - \sum_{i=1}^{N} \Lambda_i \right)^N \prod_{i=1}^{N} \Theta(\Lambda_i) \prod_{i<j} (\Lambda_i - \Lambda_j)^2 \ d\Lambda_1 \ldots d\Lambda_N .$$

Comparing with (54) gives us the scaling relation $G(t, N, K) = t^{NK} G(1, N, K)$. By taking the derivative at $t = 1$, we obtain

$$\left[\frac{d}{dt} G(t, N, K) \right]_{t=1} = NK \cdot G(1, N, K) ,$$

and equation (54), together with (9b), yield

$$\left[\frac{d}{dt} G(t, N, K) \right]_{t=1} = \int \delta \left(1 - \sum_{i=1}^{N} \Lambda_i \right)^N \prod_{i=1}^{N} \Theta(\Lambda_i) \prod_{i<j} (\Lambda_i - \Lambda_j)^2 \ d\Lambda_1 \ldots d\Lambda_N = \frac{1}{C_N^{(K-N+1,2)}} .$$

Observe that $G(1, N, K)$ on the r.h.s. of (55) is nothing but the integral in the statement of Lemma 1, so the result follows.

Remark (Volume of M_N and M_N^{sub} with respect to induced measures)

The one parameter measure $d\nu_K(\Lambda_1, \ldots, \Lambda_N)$ introduced in Lemma 1 is called induced measure [23], and appears as natural measure for reduced density matrices of pure states equidistributed on a bipartite system of dimension $N \times K$. As it is evident by comparing (7) and (12), the HS–distribution coincides with $d\nu_K(\Lambda_1, \ldots, \Lambda_N)$, and with respect to this specific measure we compute the volumes of M_N and of M_N^{sub}, given by equation (11) and (15). As a by–product of Lemma 1, we are able to compute the volumes of quantum states and that of sub–normalized states also in the case of induced measure for arbitrary K.

$$\text{Vol}_{N, K}(M_N) = \frac{\sqrt{N}}{N!} \frac{\text{Vol} \left[F^{(N)}_{\text{C}} \right]}{C_N^{(K-N+1,2)}} = \sqrt{N} \left(2\pi\right)^{(N-1)/2} \frac{\Gamma(K-N+1) \Gamma(K-N+2) \cdots \Gamma(K-1) \Gamma(K)}{\Gamma(N^2)} .$$

and

$$\text{Vol}_{N, K}(M_N^{\text{sub}}) = \frac{1}{N!} \frac{\text{Vol} \left[F^{(N)}_{\text{C}} \right]}{N K C_N^{(K-N+1,2)}} = \frac{2K \left(2\pi\right)^{(N-1)/2} \Gamma(K-N+1) \Gamma(K-N+2) \cdots \Gamma(K-1) \Gamma(K)}{N K \Gamma(N^2)} .$$

A.2 Proof of Lemma 2

Let us define $e^{(\phi)} = \Phi_{nm} = D_{nm}$. From (31a) it follows that $e^{(\phi)}$ is Hermitian. For any given $\rho \in M_N$, the hypothesis $\Phi \in \mathcal{C}^{\text{TNI}}_N$ implies $\rho_{nm} = \Phi_{nm} \rho_{nm} = e^{(\phi)}_{nm} \rho_{nm} = \text{Tr} \left(e^{(\phi)} \rho \right) \leq \text{Tr}(\rho) = 1 = \text{Tr}(\mathbb{I} \rho)$.

In other words

$$\text{Tr} \left[(\mathbb{I}_N - e^{(\phi)}) \rho \right] > 0 , \quad \forall \rho \in M_N .$$

The matrix $\left(\mathbb{I}_N - e^{(\phi)}\right)$ is Hermitian, thus there exists a unitary U_{ϕ} such that $U_{\phi} (\mathbb{I}_N - e^{(\phi)}) U_{\phi}^\dagger = \Xi^{(\phi)}$, with $\Xi^{(\phi)}$ diagonal. Equation (56) must hold for all $\rho \in M_N$, so that will hold in particular on the sequence of density matrices

$$\rho^{(\phi)} = U_{\phi}^\dagger |i\rangle \langle i| U_{\phi} .$$
Inserting each of the N matrices of (57) into equation (56), and using the cyclic property of the trace, one obtains

$$\Xi^{(\Phi)}_{ii} \geq 0, \quad \forall \ 1 \leq i \leq N,$$

or equivalently

$$\epsilon^{(\Phi)}_{ii} \leq 1, \quad \forall \ 1 \leq i \leq N.$$ (58)

Now (32) follows by observing that $\epsilon^{(b)} = N \operatorname{Tr}_A \sigma_{\Phi}$.

A.3 Proof of Lemma 3

Directly from (40–41) we write

$$\int d\nu(K(\Lambda_1, \ldots, \Lambda_N)) = \int \prod_{i=1}^{N} \Theta\left(\frac{1}{N} - \Lambda_i\right) \Theta(\Lambda_i) \Lambda_i^{K-N} \prod_{i<j} (\Lambda_i - \Lambda_j)^2 \ d\Lambda_1 \ldots d\Lambda_N.$$

By rescaling variables $\Lambda_i \to \lambda_i/N$, one obtains the result

$$\int d\nu(K(\lambda_1, \ldots, \lambda_N)) = N^{-NK} \int \prod_{i=1}^{N} \Theta(1 - \lambda_i) \Theta(\lambda_i) \lambda_i^{K-N} \prod_{i<j} (\lambda_i - \lambda_j)^2 \ d\lambda_1 \ldots d\lambda_N$$

equivalent to eq. (41) (see [22] for the definition of the Selberg’s integral).

A.4 Proof of Lemma 4

In Section 4 we decided to express every CP–TNI map $\Phi : \rho \mapsto \rho'$ in terms of a linear superoperator Φ and a related dynamical matrix D_Φ, as follows

$$\rho'_{ik} = \Phi_{ik} \rho_{kj} = D_{ij} \rho_{jl}.$$ (60)

According to Lemma 2, the $N^2 \times N^2$ dynamical matrix D_Φ is Hermitian and positive, thus one can benefit of its spectral decomposition. Defining as $|m^{(\mu)}\rangle := \sum_{ij} m^{(\mu)}_{ij} |i; j\rangle$ the μth (bi–indexed) eigenvector of D_Φ, corresponding to the eigenvalue $m^{(\mu)} \in \mathbb{R}^+$, the square root decomposition reads

$$D_\Phi = \sum_{\mu=1}^{S} m^{(\mu)} |m^{(\mu)}\rangle \langle m^{(\mu)}| = \sum_{\mu=1}^{S} \left(\sqrt{m^{(\mu)}} |m^{(\mu)}\rangle \right) \left(\sqrt{m^{(\mu)}} \langle m^{(\mu)}|\right) = \sum_{\mu=1}^{S} |A_\mu\rangle \langle A_\mu|.$$ (61)

with $|A_\mu\rangle := \sqrt{m^{(\mu)}} |m^{(\mu)}\rangle$ and S is given by the number of eigenvalues of D_Φ different from zero. Equation (61) can be re–expressed in matrix form as

$$D_{ij} = \sum_{\mu=1}^{S} [A_\mu]_{ij} [A_\mu]_{kl},$$ (62)
where the symbol \bar{x} denotes the complex conjugate of x. Now we observe that the each bi-indexed vector $[A_{\mu}]_{ij}$, of size N^2, can be seen as a square matrix of size N, and reshuffling its indexes one gets $[A_{\mu}]_{ki} = [A^\dagger_{\mu}]_{ik}$. Equation (60) becomes

$$
\rho'_{ik} = D_{ij} \rho_{j\ell} = \sum_{\mu=1}^{S} [A_{\mu}]_{ij} \rho_{j\ell} [A_{\mu}^\dagger]_{i\ell},
$$
(63)

that is the matrix form of (44a).

The explicit matrix form of the l.h.s. of (44b) reads

$$
\sum_{\mu=1}^{S} [A_{\mu}^\dagger]_{ij} [A_{\mu}]_{ij} = \sum_{\mu=1}^{S} \sum_{\ell=1}^{N} [A_{\mu}]_{i\ell} [A_{\mu}^\dagger]_{j\ell} = \sum_{\ell=1}^{N} \sum_{\mu=1}^{S} [A_{\mu}]_{i\ell} [A_{\mu}^\dagger]_{j\ell} = \sum_{\ell=1}^{N} D_{ij} = \frac{1}{\text{Tr}} [D_{ij} \Phi]_{ji},
$$
(64)

where we made use of (62), so that (44b) follows from the Proposition of pag. 10.

To prove the second part of the Lemma, one simply notes that the r.h.s of (61) always defines a positive and Hermitian $N^2 \times N^2$ matrix D, no matter of which S complex $N \times N$ matrices have been used. The additional constraint that makes D becoming a dynamical matrix, representative of some CP–TNI map Φ, is given by (34). Imposing (34), in terms of the family of matrices A_{μ}, is equivalent of imposing (45a), as it can be earned by reversing the chain (64) and by noting that $\tilde{\sigma} \in M_{N}^C \implies \tilde{\sigma}^T \in M_{N}^C$. Finally the claim can be obtained through the same steps (61–63) as before and this ends the proof.

References

