A two-Factor Asset Pricing Model
and the Fat Tail Distribution of Firm Sizes *

Y. Malevergne1,2 and D. Sornette1

1 ETH Zurich – Department Management, Technology and Economics, Switzerland
2 EM-Lyon Business School – Department Economics, Finance and Control, France
e-mails: ymalevergne@ethz.ch and dsornette@ethz.ch

Abstract

We derive a theoretical two-factor model which has empirically a similar explanatory
power as the Fama-French three-factor model. In addition to the usual market risk, our
model accounts for a diversification risk, proxied by the equally-weighted portfolio, and
which results from an “internal consistency factor” appearing for arbitrary large economies,
as a consequence of the concentration of the market portfolio when the distribution of the
capitalization of firms is sufficiently heavy-tailed as in real economies. Our model rationalizes
the superior performance of the Fama and French three-factor model in explaining the cross
section of stock returns: the size factor constitutes an alternative proxy of the diversification
factor while the book-to-market effect is related to the increasing sensitivity of value stocks
to this factor.

Introduction

In the standard equilibrium and/or arbitrage pricing framework, the value of any asset is
uniquely specified from the belief that only the systematic risks need to be remunerated
by the market. This is the conclusion of the CAPM (Treynor 1961, Treynor 1999, Sharpe
1964, Lintner 1965, Mossin 1966) and of the APT (Ross 1976, Roll and Ross 1980, Roll
and Ross 1984, Roll 1994). Here, we show that, even for arbitrary large economies when
the distribution of the capitalization of firms is sufficiently heavy-tailed as is the case of real
economies, there may exist a new source of significant systematic risk, which has been totally
neglected up to now but must be priced by the market. This new source of risk can readily
explain several asset pricing anomalies on the sole basis of the internal-consistency of the
market model.

This result is based on two ingredients. The first one is the tautological internal consis-
tency condition that the market portfolio, and any other factor that can be replicated by
a portfolio of assets traded on the market, is constituted – by construction – of the assets
whose returns it is supposed to explain. This internal consistency condition leads mechan-
ically to correlations between the return residuals, as already stressed by Fama (1973) and
Sharpe (1990, footnote 13) when the return on the market portfolio is considered as the only
explaining factor, or by Chamberlain (1983) in the case where there exists several linearly
independent portfolios that contain only “factor” variance and are therefore optimal for any
risk-averse investor. These correlations are equivalent to the existence of at least one internal
consistency factor (uncorrelated with the market and the other explanatory factors), which
is a function of the weights of the market portfolio and of the portfolios replicating the other

*The authors acknowledge helpful discussions and exchanges with M. Avellaneda, M. Brennan, X. Gabaix,
M. Grinblatt, M. Meerschaert, V. Pisarenko, R. Roll, D. Zajdenweber, W. Ziemba and the seminar participants
at New York University. All remaining errors are ours.
factors. The impact of this new factor is usually neglected away on the basis of the law of large numbers applied to well-diversified portfolios.

Actually, when the distribution of the weights of the portfolios replicating the explaining factors – the distribution of the capitalization of firms in the case of the market portfolio, for instance – is sufficiently heavy-tailed, the law of large numbers, which is at the origin of the diminishing contribution of the residual risks to the total risk of “well-diversified portfolios” (Ross 1976, Huberman 1982), breaks down. Intuitively, whatever the size of the economy, the largest firms contribute idiosyncratic risks that cannot be diversified. In this case, the generalized central limit theorem (Gnedenko and Kolmogorov 1954) shows that the impact of an internal consistency factor does not vanish even for infinite economies. This may be the origin of a significant amount of risk for portfolios that would have been otherwise assumed “well-diversified” in its absence. As a consequence, when writing down for instance the APT, an additional explaining factor must be accounted for.

This result must be contrasted with the many seminal papers deriving the APT and providing pricing bounds for finite economies. Indeed, following for instance Dybdig (1983) or Grinblatt and Titman (1983), among others, the residual risk of well-diversified portfolios resulting from the finiteness of the economy should be priced but the pricing error relative to a pure factor model disappeared in the limit of a large economy, as a full diversification of the non-systematic risk is achieved. In contrast, we find that the lack of diversification persists even when the number of traded assets is infinite. Beside, the generalization of Ross (1976)’s results provided by Chamberlain (1983) breaks down as a result of this lack of diversification. Indeed, Chamberlain (1983)’s results explicitly require that the risk of any sequence of portfolios bearing only residual risks converges to zero if the portfolios are well-diversified. Similarly, one cannot apply anymore Connor (1982)’s result that the APT pricing equation holds exactly if each asset has an infinitesimal weight in the economy. Indeed, in economies with a heavy-tailed distribution of firm sizes, the largest company has a size of the same order as the total size of all the companies. These different remarks are in fact intimately entangled as will become clear in the sequel of this article. We stress that our results are driven by the fat-tailed nature of the distribution of the weights of the portfolios replicating the factors (when replication is possible), as occurs for the market portfolio when the distribution of firm sizes is heavy-tailed. Our results do not rely on any other distributional assumption concerning the explanatory factors or the disturbance terms.

For simplification, we will assume that both the factors and the disturbance terms have finite variance, but it is simply for the convenience of the exposition of our results. They could easily be generalized to the case where factors and disturbance terms do not admit a finite second moment on the basis of the result established by Wang (1988), for instance.

The introduction of our new “internal consistency factor,” which basically accounts for the lack of diversification of the market portfolio, allows us to provide a theoretical explanation of several well-known pricing anomalies. In particular, the relevance of the two effects studied by Fama and French (1992, 1993, 1995), namely the small-firm effect (first documented by Banz (1981)) and the book-to-market ratio, can be understood from and rationalized within the theoretical framework of the ATP when the “internal consistency factor”, and its associated diversification premium, is accounted for. Thus, our model bridges the gap between Fama and French phenomenological model and the arbitrage pricing theory. More precisely, our model provides an understanding of the superior performance of Fama and French’s three-factor model in explaining the cross section of stock returns. Indeed, the new internal consistency factor provides a rationalization of the size factor as a proxy of the

1 In a different context, Gabaix (2005) has proposed that the same kind of argument can explain that idiosyncratic firm-level fluctuations are responsible for an important part of aggregate shocks, and therefore provide a microfoundation for aggregate productivity shocks. Indeed, as in the present article, it is suggested that the traditional argument according to which individual firm shocks average out in aggregate breaks down if the distribution of firm sizes is fat-tailed, as documented empirically.

2 This simply results from the large deviation theorem on heavy-tailed distribution according to which, given N iid random variables S_1, \ldots, S_N with a fat tailed distribution, we have (Embrechts et al. 1997)

$$
\lim_{x \to \infty} \frac{\Pr \left[\max(S_1, \ldots, S_N) \geq x\right]}{\Pr \left[S_1 + \cdots + S_N \geq x\right]} = 1.
$$
internal consistency factor. Besides, consistent with the fact that high book-to-market stocks have significantly lower beta’s with respect to the market portfolio compared with low book-to-market stocks (Bernardo et al. 2007), the book-to-market effect also emerges naturally from our formalism. In the context of the on-going debate (Lakonishok et al. 1994, Daniel et al. 2001) on the interpretation of the two empirical effects analyzed by Fama and French (1993), we provide an explanation with solid economic underpinning.

The article is organized as follows. In the next section, we synthesize the available empirical evidence on the fat-tailed nature of the distribution of firm sizes and their consequence on the lack of diversification of the market portfolio. Then, in section 2, we make clear the consequences of the internal consistency condition mentioned above; due to the internal consistency condition, we show that the disturbance terms must obey a condition which determines their correlation. Next we presents our main results on the asymptotic behavior of the variance of well-diversified portfolios: we show that, together with the market risk, there is an additional source of systematic risk resulting from the internal consistency condition. This additional risk may be of the same order as the market risk even for infinite economies when the distribution of the capitalization of companies is sufficiently heavy-tailed. Section 3 confirms, by use of numerical simulations, the relevance of the concentration effect for markets with a realistic number of traded assets. Then, it discusses the consequences for the arbitrage pricing of financial assets, providing an expression that accounts for the premium required by the investors to bear this systematic “internal consistency” risk and we propose proxies for the empirical assessment of this risk premium. It allows us to provide theoretical economic explanations of some of the empirical factors reported in the literature while an empirical analysis shows that, on the basis of only two factors (the market portfolio and the equally-weighted portfolio), our model is at least as successful as the Fama and French three-factor model over the period Jan. 1927 to Dec. 2005 for the US market data available on Professor French’s website [http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html]. Section 4 summarizes our results and draw some conclusion.

1 The distribution of firm sizes and the concentration of the market portfolio

The study of the distribution of firm sizes benefits from a rich history. Zipf (1949) made an important early contribution by establishing that US corporation assets approximately followed the law $s(n) \sim 1/n$ (now referred to as the Zipf’s law): when sizes are ranked from the largest to the smallest, Zipf’s law states that the firm size $s(n)$ of the n^{th} largest firm is inversely proportional to its rank n. Inverting this relation, we have that the rank of the n^{th} largest firm is inversely proportional to its size $n \sim 1/s(n)$ which is nothing but the sample complementary cumulative distribution of the Pareto law with a tail exponent $\mu = 1$.

Zipf’s law seems to be a robust property of business firms (Ijiri and Simon 1977). Indeed, several proxies for the size of companies have been used which recover the same robust results that the exponent μ is equal or close to 1: assets, market capitalizations, number of employees, profits, revenues, sales, value added and so on (Axtell 2001, Axtell 2006, Gabaix et al. 2006, Marsili 2005, Simon and Bonini 1958). Beside, Ramsden and Kiss-Haypa (2000) have analyzed the distribution of firms by revenues in 20 countries in America, Asia and Europe and report an exponent μ ranging from 0.44 to 1.25 with a median value equal to 0.85.

Several models have attempted to provide explanations for the distribution of firm sizes, in terms of the law of proportional effect (Gibrat 1931, Simon and Bonini 1958), of economies of scale and costs reduction (Bain 1956, Robinson 1961), of the distribution of managerial talents and efficient allocation of productivity factors across managers (Lucas 1978), or of the partition of the set of workers (Axtell 2006), among others. But, only recently, the closeness of the exponent μ to the value 1 has been justified from a simple argument proposed by Gabaix et al. (2006). They have transposed the mechanism given for cities (Gabaix 1999a, Gabaix and Ioannides 2004, and the references therein) to firm sizes and mutual

4 Other social entities, such as cities, share this property (Zipf 1949, Gabaix 1999a, Gabaix 1999b, Gabaix and Ioannides 2004).
fund capitalizations: starting from the traditional argument based upon Gibrat’s law of proportional effect, whereby firm growth is treated as a random process and growth rates are independent of firm size, a log-normal process modified with small perturbations to ensure convergence to a non-degenerate steady-state distribution yields a power law distribution. The value of its exponent $\mu = 1$ then results from the condition that the average normalized size of firms stays constant in a stationary economy.

Consubstantial with the fat tailed character of the distribution of firm sizes is the concentration of the market portfolio. Indeed, the market portfolio, defined as the value-weighted portfolio of all the assets traded on a given market suffers from an inherent lack of diversification, resulting from the fat tail distribution of firm sizes, in the sense that only a few dozen of companies account for a very large part of the overall market capitalization. For instance, the top ten largest companies of the US market represents about one fifth to one fourth of the US market capitalization.

More generally, given an economy of N firms, whose sizes S_i, $i = 1, \ldots, N$, follow a Pareto law with tail index μ, the ratio of the capitalization of the largest firm to the total market capitalization

$$R_N = \frac{\max S_i}{\sum_{i=1}^N S_i}$$

(1)

which is nothing but the weight of the largest company in the market portfolio, behaves on average like

$$E[R_N] \rightarrow 0, \quad \text{if } \mu > 1,$$

$$E[1/R_N] \rightarrow \frac{1}{1-\mu}, \quad \text{if } \mu < 1,$$

(2)

(3)

as the number of firms N goes to infinity (Bingham et al. 1987).

This result means that when the distribution of firm sizes admits a finite mean, the weight of the largest firm in the market portfolio goes to zero, and so do the weights of any other firms, in the limit of a large market. In terms of asset pricing, the fact that the weight of each individual firm in the economy is infinitesimal ensures that the APT pricing equation holds for each asset and not only on average (Connor 1982). In contrast, when the distribution of firm sizes has no finite mean, the asymptotic weight of the largest firm in the market portfolio does not vanish, illustrating the fact that for such an economy, the market portfolio is not well diversified, all the more so the smallest the tail index μ. A practical consequence is then that the APT pricing equation, if it holds, only holds on average, with possibly large pricing errors for individual assets.

In order to get a closer look at the concentration of the market portfolio, we focus on its Herfindahl index, which is perhaps the most widely used measure of economic concentration (Polakoff 1981, Lovett 1988),

$$H_N = ||w_m||^2 = \sum_{i=1}^N w_{m,i}^2$$

(4)

where $w_{m,i}$ denotes the weight of asset i in the market portfolio whose composition is given by the N-dimensional vector w_m. The Herfindahl takes into account the relative size and distribution of the firms traded on the market. It approaches zero when the market consists of a large number of firms with comparable sizes. It increases both as the number of firms in the market decreases and as the disparity in size between those firms increases. Our use of the Herfindahl index is not only guided by common practice but also by its superior ability to provide meaningful information about the degree of diversification of an unevenly distributed stock portfolio (Woerheide and Persson 1993). Following tradition, we say that a portfolio is well-diversified, if its Herfindahl index goes to zero when the number N of firms traded in the market goes to infinity.

For illustration purpose, let us first concentrate on an economy where the sizes, sorted in descending order, of the N firms are deterministically given by

$$S_{i,N} = \left(\frac{i}{N} \right)^{-1/\mu}.$$

(5)
We have arbitrarily chosen the size of the smallest firm as equal to one. Alternatively, one can think of $S_{i,N}$ as the size of the i^{th} largest firm relative to the size of the smallest one. With this simple model, the rank i of the i^{th} largest company is directly proportional to its size taken to the power of minus μ, as it should in order for the distribution of sizes to obey a Pareto law with a tail index equal to μ. It is easy to check that the weight of the largest firm in the market portfolio goes to zero, as N goes to infinity, when μ is larger than or equal to one while it goes to some positive constant when μ is less than one. More precisely, we have

$$w_{m,1} \rightarrow 0, \quad \text{if } \mu \geq 1,$$

$$w_{m,1} \rightarrow \frac{1}{\zeta(1/\mu)}, \quad \text{if } \mu < 1,$$

where $\zeta(\cdot)$ denotes the Riemann zeta function (Abramovitz and Stegun 1972, p. 807).

For the Herfindahl index, one gets

$$H_N = \begin{cases}
\frac{1}{1 - (1 - \mu)^2} \cdot \frac{1}{N} + O\left(N^{2/\mu - 2}\right), & \mu > 2, \\
\ln N + \frac{\gamma}{4N} + O\left(N^{-3/2 \ln N}\right), & \mu = 2, \\
\frac{1 - \mu}{\mu} \cdot \frac{\zeta(2/\mu)}{\zeta(1/\mu)^2} \cdot \frac{1}{N^{2-2/\mu}} + O\left(N^{3(1/\mu - 1)}\right), & 1 < \mu < 2, \\
\frac{\pi^2}{6 \left(\gamma + \ln N\right)^2} + O\left(N^{-1(\gamma + \ln N)^2}\right), & \mu = 1, \\
\frac{\zeta(2/\mu)}{\zeta(1/\mu)^2} + O\left(N^{1-1/\mu}\right), & \mu < 1.
\end{cases}$$

In accordance with the behavior of the weight of the largest firm, H_N goes to zero when the index μ is larger than or equal to one, while it goes to some positive constant otherwise. However, the decay rate of H_N toward zero becomes slower and slower as μ approaches 1 (from above). In practice, when the number of traded firms is large – but finite – the concentration of the market portfolio can remain significant even if μ is larger than one, specifically when μ lies between one and two.

In order to illustrate this situation, the upper panel of figure 1 depicts the value of the weight of the largest firm in the market portfolio while the lower panel shows the Herfindahl index as a function of μ. The plain curves show the limit situation of an infinite economy while the dotted and dash-dotted curves account for the effect of a finite economy: the dotted curve refers to the case where only one thousand companies are traded while the dash-dotted curve corresponds to an economy with ten thousand firms. Clearly, finite economy size effects cannot be neglected for market sizes as found in the real economy.

[Insert Figure 1 about here]

To be a little bit more general, we now consider the case where the firm sizes are randomly drawn from a power law distribution of size. By application of the generalized law of large numbers (Feller 1971, Gnedenko and Kolmogorov 1954, Ibragimov and Linnik 1975) and using standard results on the limit distribution of self-normalized sums (Darling 1952, Logan et al. 1973), we can state that

Proposition 1. The asymptotic behavior of the concentration index H_N is the following:

1. provided that $\text{E}[S^2] < \infty$,

$$H_N = \frac{1}{N} \text{E}\left[\frac{S^2}{\text{E}[S]^2}\right] + o_p(1/N),$$

2. provided that S is regularly varying with tail index $\mu = 2$ and $s^\mu \cdot \text{Pr}[S > s] \rightarrow c$ as $s \rightarrow \infty$,

$$H_N = \frac{c}{\text{E}[S]^2} \ln N + o_p \left(\frac{1}{N \ln N}\right).$$
3. provided that S is regularly varying with tail index $\mu \in (1, 2)$ and $s^\mu \cdot \Pr [S > s] \to c$ as $s \to \infty$,

$$H_N = \frac{\pi}{2 \cdot \ln N} \cdot \xi_N + O_p \left(\frac{1}{\ln N} \right),$$

where ξ_N is a sequence of positive random variables with stable limit law $S(\mu/2, 1)$.

4. provided that S is regularly varying with tail index $\mu = 1$ and $s^\mu \cdot \Pr [S > s] \to c$ as $s \to \infty$,

$$H_N = \frac{\pi}{2 \cdot \ln N} \cdot \xi_N + O_p \left(\frac{1}{\ln N} \right),$$

where ξ_N is a sequence of positive random variables with stable limit law $S(1/2, 1)$.

5. provided that S is regularly varying with tail index $\mu \in (0, 1)$ and $s^\mu \cdot \Pr [S > s] \to c$ as $s \to \infty$,

$$H_N = \frac{4}{\pi^{1/\mu}} \left[\Gamma \left(\frac{1 + \mu}{2} \right) \cos \frac{\pi \mu}{4} \right]^{2/\mu} \cdot \xi_N,$$

where ξ_N and ζ_N are two sequences of strongly correlated positive random variables that converge in law to $S(\mu/2, 1)$ and $S(\mu, 1)$ respectively.

6. provided that S is slowly varying.

$$H_N \to 1, \quad \text{a.s.}$$

As a consequence of the fourth statement of the proposition above, for economies in which the distribution of firm sizes follows Zipf’s law ($\mu = 1$) the asymptotic behavior of the concentration index H_N of the market portfolio is given by

$$H_N \asymp \frac{\pi}{2 \cdot (\ln N)^2} \cdot \xi_N,$$

where ξ_N is a sequence of positive random variables with stable limit law $S(1/2, 1)$, namely the Lévy law with density

$$f(x) = \frac{1}{\sqrt{2\pi}} \cdot x^{-3/2} e^{-\frac{x^2}{2}}, \quad x \geq 0.$$ \hspace{1cm} (9)

This shows that, even if the concentration of the market portfolio goes to zero in the limit of an infinite economy, it goes to zero extremely slowly as the size N of the economy diverges. Accounting for the fact that the median value of the Lévy law $\mathcal{L}(1)$ is approximately equal to 2.198, a typical value of H_N is $4 – 5\%$ for a market where 7000 to 8000 assets are traded, which is much higher than the concentration index of a well-diversified portfolio – typically the equally-weighted portfolio – which should be of the order of 0.012 – 0.014%. Intuitively, $H_N \approx 4 – 5\%$ means that there are only about 1/$H_N \approx 20 – 25$ effective assets in a typical portfolio supposedly well-diversified on 7000 – 8000 assets.

This simple illustrative example shows, roughly speaking, that the market portfolio reflects the behavior of the 20 to 25 largest assets traded on the market. In this context, one can wonder (i) how the market portfolio alone could explain the expected return on any

5. The stable law $S(\alpha, \beta)$ has characteristic function $\psi_{\alpha, \beta}(s) = \begin{cases} \exp \left[-|s|^\alpha + i s \beta \tan \frac{\pi \alpha}{2} |s|^{\alpha - 1} \right] & \alpha \neq 1, \\ \exp \left[-|s| - i s \beta \frac{\pi}{2} \cdot \ln s \right] & \alpha = 1, \end{cases}$ with $\beta \in [-1, 1]$.

6. More precisely, the sequence of random vectors $(\xi_N, \zeta_N)'$ converges to an operator-stable law with stable marginal laws $S(\mu/2, 1)$ and $S(\mu, 1)$ respectively, and a spectral measure concentrated on arcs $\pm (x, x^2)$. The full characterization of the spectral measure is beyond the scope of this article (see Meerschaert and Scheffler 2001, Section 10.1) for details).

7. The random variable S is slowly varying if its distribution function F satisfies $\lim_{x \to \infty} \frac{1 - F(tx)}{1 - F(x)} = 1$, for all $t > 0$. It corresponds to the limit case where S is regularly varying with $\mu \to 0$.

8. These figures are compatible with the number of stocks currently listed on the Amex, the Nasdaq and the Nyse.
asset, irrespective of its size, as predicted by the CAPM and (ii) if it is actually optimal for a rational investor to put her money in this risky portfolio alone, as proposed by the two-fund separation theorem. This suggests that the lack of diversification of the market portfolio is responsible, to a large extent, for the failure of the CAPM to explain the cross-section of stock returns. This failure has been documented in particular by Fama and French (1992, 1993), who find basically no support for the CAPM’s central result of a positive relation between expected returns and the global market risk (quantified by the beta parameter). This therefore raises the question of the existence of a concentration premium.

Many authors have proposed alternative or additional factors in the quest to cure the deficiencies of the CAPM and provide explanations for the so-called pricing anomalies. Three main classes of additional factors can be distinguished: macro-economic factors, firm-specific factors and behavioral factors.

Firm-specific factors. The fact that industry sector groupings may be important in the study of the return generating process has been stressed for a long time (King 1966, Alexander and Francis 1986). Similarly, the importance of market capitalization (or small-firm effect) has been documented in the early eighties by Banz (1981) and Reinganum (1981) while Stattman (1980) and Rosenberg et al. (1985) underlined the role of the book-to-market ratio. If other ratios such as the earnings-to-price ratio (Basu 1977) and the dividend yield (Blume 1980, Rozeff 1984, Keim 1985) for instance, also predict future returns, most of the attention has been drawn to the size and the book-to-market effect during the past decade as a result of their superior performance to explain the cross-section of stock returns (Fama and French 1992, 1993, 1995, 1996). Among various interpretation of the explaining power of the size and the book-to-market ratio, Campbell and Voulevento (2004) and Campbell et al. (2005) have considered breaking the beta of a stock with the market portfolio into two components, one reflecting news about the market’s future cash flows and one reflecting news about the market’s discount rates in order explain the size and value “anomalies” in stock returns.

Behavioral factors. Two major issues have been considered. On the one hand, Rubinstein (1973) and Krauss and Litzenberger (1976) have proposed to account for the departure of the distributions of returns from normality and for the sensibility of the investors for the skewness and kurtosis of the distribution of stock returns. The relevance of this approach has been underlined by Lim (1989) and Harvey and Siddique (2000) who have tested the role of the asymmetry in the risk premium by accounting for the skewness of the distribution of returns. Along the same line, many other extensions have been presented such as the VaR-CAPM (Alexander and Baptista 2002), in order to account more carefully for the risk perception of investors. On the other hand, several studies have developed phenomenological models capturing the reversal of long-term returns (Chan 1988, Chopra et al. 1992, DeBont and Thaler 1985, 1987) and the continuation of short-term trends (Chan et al. 1996, Jegadeesh and Titman 1993, Jegadeesh and Titman 2001, Richards 1999).

Most of these factors actually provide a significant improvement in explaining the cross-section of asset returns. However they do not provide a clear identification of the most prominent ones. Even if the Fama and French three factor model is now widely recognized as the benchmark, the reasons for its superiority in explaining the cross-section of asset returns are still debated. It is in this context that we propose to focus on the consequences of the undisputable fact that the market portfolio is highly concentrated on a small number of very large companies and therefore can obviously not account for the behavior of the smallest ones. As we are going to demonstrate, this will allow us to rationalize the size
effect, in relation with what we propose to call a “diversification factor,” which, to some extent, also justify the relevance of the book-to-market factor.

2 Internal consistency conditions of factor models and their consequences on diversification

Under the assumption that the return on the market portfolio is a factor explaining the return on individual assets, our demonstration is based on two ingredients.

- The internal consistency condition states that the market portfolio is made of the assets whose returns it is supposed to explain. As a consequence, there are correlations between the disturbance terms.
- The lack of diversification of the market portfolio (associated with the fat tail distribution of firm sizes) make these correlations non-negligible, giving birth to an additional factor which significantly contributes to the asymptotic variance of a priori well-diversified portfolios.

2.1 The factor model

Consider an economy with \(N \) firms whose returns on stock prices are determined according to the following equation

\[
\vec{r} = \vec{\alpha} + \vec{\beta}_m \cdot [r_m - E[r_m]] + B \vec{\phi} + \vec{\varepsilon},
\]

where

- \(\vec{r} \) is the random \(N \times 1 \) vector of asset returns;
- \(\vec{\alpha} = E[\vec{r}] \) is the \(N \times 1 \) vector of asset return mean values. We do not make any assumption neither on the ex-ante mean-variance efficiency of the market portfolio, nor on the absence of arbitrage opportunity, so that \(\vec{\alpha} \) is not, a priori, specified;
- \(r_m \) is the random return on the market portfolio;
- \(\vec{\beta}_m \) is the \(N \times 1 \) vector of the factor loadings of the market factor;
- \(\vec{\phi} \) is the random \(N \times 1 \) vector of risk factors \(\phi_i \) which are assumed to have zero mean \(E[\phi_i] = 0 \), unit variance, are uncorrelated with each other and with \(r_m \);
- \(B \) is the \(N \times q \) matrix of factor loadings;
- \(\vec{\varepsilon} \) is the random \(N \times 1 \) vector of disturbance terms with zero average \(E[\vec{\varepsilon}] = 0 \) and covariance matrix \(\Omega = E[\vec{\varepsilon} \cdot \vec{\varepsilon}] \). The disturbance terms are assumed to be uncorrelated with the market return \(r_m \) and the factors \(\phi \).

It would be natural to assume that (i) \(\Omega \) is diagonal in order to have the \(i^{th} \) contribution of \(\vec{\varepsilon} \) embodying the specific risk contribution to the \(i^{th} \) asset but, as we shall see in the sequel, the internal consistency condition makes this impossible and forces the disturbances \(\vec{\varepsilon} \) to be correlated. A weaker hypothesis on \(\Omega \) would be that (ii) all its eigenvalues are uniformly bounded from above by some constant \(\lambda \) (i.e., the bound is independent of the size of the economy: \(\forall N, \max_{||x||=1} x^T \Omega x \leq \lambda) \). This implies that the covariance matrix of the stock returns defined as

\[
\Sigma = E[(\vec{r} - \vec{\alpha})(\vec{r} - \vec{\alpha})^T] = \vec{\beta}_m^T \cdot \text{Var} \ r_m + BB' + \Omega, \tag{12}
\]

where the prime denotes the transpose operator, has an approximate \(q + 1 \) factor structure, according to the definition in Chamberlain (1983) and Chamberlain and Rothschild (1983). But these two assumptions (i) and (ii) are in fact equivalent, as shown by Grinblatt and Titman (1985). Indeed, a simple repackaging of the \(N \) security returns into \(N \) new returns constructed by forming \(N \) portfolios of the primitive assets allows one to get a new formulation of expression (11) with mutually uncorrelated disturbance terms.

To understand why the disturbance terms cannot be uncorrelated, let us first denote by \(\vec{w}_m \) the vector of the weights of the market portfolio. Accounting for the fact that the market
factor is itself built upon the universe of assets that it is supposed to explain, the model must necessarily fulfill the internal consistency relation

\[r_m = \bar{w}_m \cdot \bar{r}. \]

(13)

Left-multiplying (11) by \(\bar{w}_m \), the internal consistency condition (13) implies the following relationship

\[\left[\bar{w}_m \cdot \beta - 1 \right] \cdot \left(r_m - E[r_m] \right) + w'_m \cdot B \bar{\phi} + w'_m \cdot \bar{\varepsilon} = 0. \]

(14)

Then, by our assumption of absence of correlation between \(r_m \), \(\bar{\phi} \) and \(\bar{\varepsilon} \), it follows trivially that

\[\bar{w}_m \cdot \bar{\varepsilon} = 0 \quad \text{almost surely,} \]

(15)

while

\[\bar{w}_m \cdot \beta = 1 \quad \text{and} \quad \bar{w}_m B = 0. \]

(16)

Several authors have pointed out a consequence of the internal consistency condition that the market portfolio is made of (or can be replicated by) the assets they are intended to explain (Fama 1973, Sharpe 1990). An a priori important consequence of this internal consistency condition is the breakdown of the standard assumption of independence (or, at least, of the absence of correlation) between the non-systematic components of the returns of securities. In other words, the standard factor model decompositions assume that the disturbance terms for security \(i \) are uncorrelated with the comparable components for security \(j \). But, this cannot be strictly the case as can be seen from the above derivation. This presence of correlations between the disturbance terms may a priori pose problems in the pricing of portfolio risks: only when the disturbance terms can be averaged out by diversification can one conclude that the only non-diversifiable risk of a portfolio is born out by the contribution of the market portfolio which is weighted by the beta of the portfolio under consideration.

Previous authors have suggested that this is indeed what happens in economies in the limit of a large market \(N \to \infty \), for which the correlations between the disturbance terms vanish asymptotically and the internal consistency condition seems irrelevant. For example, while Sharpe (1990, footnote 13) concluded that, as a consequence of equation (14), at least two of the disturbances, say \(\varepsilon_i \) and \(\varepsilon_j \), must be negatively correlated, he suggested that this problem may disappear in economies with infinitely many securities. Actually, we show below that this apparently quite reasonable line of reasoning does not tell the whole story: even for economies with infinitely many securities, when the companies exhibit a large distribution of sizes as they do in reality, the constraint (15) can lead to the important consequence that the risk born out by an investor holding a well-diversified portfolio does not reduce to the market risk in the limit of a very large portfolio, as usually believed. A significant proportion of “specific risk” may remain which cannot be diversified away by a simple aggregation of a very large number of assets.

2.2 Correlation structure of the disturbance terms

The fact that the disturbance terms \(\varepsilon \) in the market model (11) are correlated according to the condition (15) means that there exists at least one common “factor” \(f \) to the \(\varepsilon \)'s, so that \(\varepsilon \) can be expressed as

\[\varepsilon = \bar{\gamma} \cdot f + \bar{\eta}, \]

(17)

where \(\bar{\gamma} \) is the vector of loading of the factor (13). The factor \(f \) could be chosen a priori such as to explain one of the many anomalies reported in the previous section. But, as recalled, we want to move away from this logic of invoking macro-economic, firm-specific

9 Right multiplying equation (14) by \(\varepsilon \) and taking the expectation, given that the return on the market portfolio, the factors \(\bar{\phi} \) and the disturbance terms \(\bar{\varepsilon} \) are uncorrelated, we obtain that \(\bar{w}_m \cdot \Omega = 0 \). Then, right multiplying \(\bar{w}_m \cdot \Omega = 0 \) by \(\bar{w}_m \) gives \(0 = \bar{w}_m \cdot \Omega \cdot \bar{w}_m = w'_m \cdot E[\varepsilon'] \cdot w_m = E[\langle w'_m \cdot \varepsilon \rangle \cdot \langle w'_m \cdot \varepsilon \rangle] = E[\langle w'_m \cdot \varepsilon \rangle^2], \) hence the result (15).

10 With this representation, we avoid the case where the explaining factor—here the market portfolio—could be replicated by a single traded asset. Indeed, in such a case, the replicating portfolio would be concentrated on one single asset, say the first one, so that the internal consistency condition would read \(\varepsilon_1 = 0 \) without any other constraint on the \(\varepsilon_i, \ i > 1 \).
or behavioral factors. We prefer to focus on the parsimonious single market factor model, and just account for the lack of diversification of the market portfolio which calls for a diversification premium. As a bonus, we will see that this strategy turns out to provide a fundamental basis of explaining a significant part of the pricing anomalies. Our only requirement is that the covariance matrix of \(\varepsilon \) exhibits an eigenvalue that goes to infinity in the limit of an infinite economy, when \(H_N \) does not go to zero. In contrast, when \(H_N \) goes to zero as \(N \to \infty \), the largest eigenvalue should remain bounded. This requirement derives simply from the results of Chamberlain (1983) and Chamberlain and Rothschild (1983), who have linked the existence of \(K \) unbounded eigenvalues (in the limit \(N \to \infty \)) of the covariance matrix of the asset returns to a unique approximate factor structure, such that the \(K \) associated eigenvectors converge and play the role of \(K \) factor loadings.

For simplicity, we choose \(\eta \) to be a vector of uncorrelated residuals with zero mean. Since \(\bar{w}_m \varepsilon = 0 \), \(f \) and \(\eta \) are not independent from one another. More precisely, we have

\[
f = \frac{-\bar{w}_m \gamma}{2},
\]

provided that \(\bar{w}_m \gamma \neq 0 \); if not, the random vector \(\eta \) would have to satisfy \(\bar{w}_m \eta = 0 \), which contradicts our assumption of an absence of correlations between the components of \(\dot{\eta} \). Therefore, in this framework, \(f \) is not actually a factor – it should be uncorrelated with \(\eta \) if it was – but is rather an “endogenous” factor. The market model (11) then becomes

\[
\dot{r} = \alpha + \beta \cdot [r_m - E[r_m]] + \gamma \cdot f + \eta,
\]

with

- \(\text{Cov} (r_m, f) = \text{Cov} (r_m, \eta) = 0 \), as the result of the absence of correlation between \(r_m \) and \(\varepsilon \);
- \(\text{Var} \dot{\eta} = \Delta \), where \(\Delta \) is a diagonal matrix,
- \(\text{Var} f = \frac{\bar{w}_m \Delta \bar{w}_m}{(\bar{w}_m \gamma)'} \), and
- \(\text{Cov} (f, \eta) = -\frac{1}{\bar{w}_m \gamma} \cdot \bar{w}_m \Delta \).

In order to understand and illustrate the relevance and the limits of the assertion according to which the existence of correlations between two disturbance terms \(\varepsilon_i \) and \(\varepsilon_j \) should be negligible in an infinite size market (Fama 1973, Sharpe 1990), let us now evaluate their typical magnitude. To simplify the notations, let us rescale without loss of generality the vector \(\gamma \) by \(\bar{w}_m \gamma \), so that the relation (18) becomes

\[
f = -\bar{w}_m \eta,
\]

with \(\bar{w}_m \gamma = 1 \). The covariance matrix \(\Omega \) of \(\varepsilon \) is

\[
\Omega = (\bar{w}_m \Delta \bar{w}_m) \gamma \gamma' - \bar{w}_m \gamma \Delta - \Delta \bar{w}_m \gamma' + \Delta,
\]

and the correlation between \(\varepsilon_i \) and \(\varepsilon_j \) (\(i \neq j \)) is

\[
\rho_{ij} = \frac{(\bar{w}_m \Delta \bar{w}_m) \gamma_i \gamma_j - \gamma_i \bar{w}_m \Delta_{ij} - \gamma_j \bar{w}_m \Delta_{ii}}{\sqrt{((\bar{w}_m \Delta \bar{w}_m) \gamma_i^2 - 2 \gamma_i \bar{w}_m \Delta_{ii} + \Delta_{ii}) \cdot ((\bar{w}_m \Delta \bar{w}_m) \gamma_j^2 - 2 \gamma_j \bar{w}_m \Delta_{jj} + \Delta_{jj})}}.
\]

For illustration purpose, let us assume that all the \(\gamma_i \)'s are equal to one (the condition \(\bar{w}_m \gamma = 1 \) is then automatically satisfied from the normalization of the weights \(\bar{w}_m \)) and that \(\Delta_{ii} = \Delta \) for all \(i \)'s. The cumbersome relation (22) simplifies into

\[
\rho_{ij} = \frac{H_N - w_{m,i} - w_{m,j}}{\sqrt{(1 + H_N - 2w_{m,i})(1 + H_N - 2w_{m,j})}},
\]

\[
= \frac{H_N}{1 + H_N} \cdot (1 + O(w_{m,i,j}/H_N)).
\]

\[^{11}\text{It should be enough to assume that all the eigenvalues of the covariance matrix of } \eta \text{ are positive and uniformly bounded by some positive constant (Grinblatt and Titman 1983).}\]
Then, expression (24) shows that, provided that the market portfolio is sufficiently well-diversified, namely provided that the weight of each asset and the concentration index goes to zero in the limit of a large market \((N \to \infty)\), the correlations \(\rho_{ij}\) between any two disturbance terms goes to zero as usually assumed. However, the largest eigenvalue of the correlation matrix, associated with the (asymptotic) eigenvector \(\vec{1}= (1,1,\ldots,1)'\), is \(\lambda_{\max,N} \approx N \cdot \frac{H_N}{1-H_N}\) and goes to infinity, as the size of the economy grows unbounded, as soon as \(H_N\) goes to zero more slowly than \(1/N\). This clearly shows that the correlations between the disturbance terms are not necessarily negligible.

The question, that we now have to address, is whether these weak correlations may challenge the usual assumption that well-diversified portfolios do not bear additional non-diversified sources of risks. For this, let us consider a well diversified portfolio \(\vec{w}_p\), i.e., a portfolio such that \(||\vec{w}_p||^2 \to 0\) as the size of the economy goes to infinity. From equation (21), the residual variance of this portfolio, namely the part of the variance of the portfolio that cannot be ascribed to systematic risk factors, reads

\[
\vec{w}_p'\Omega\vec{w}_p = (\vec{w}_m'\Delta\vec{w}_m) \left(\bar{\gamma} \vec{w}_p'\right)^2 - 2(\vec{w}_m'\Delta\vec{w}_m) (\bar{\gamma} \vec{w}_p') + \vec{w}_p'\Delta\vec{w}_p'.
\]

In addition to our previous hypothesis that \(\Delta\) is a diagonal matrix, we assume that its entries are uniformly bounded from below by some positive constant \(c_1\) and from above by some constant \(c_2 < \infty\) and that \(|\bar{\gamma} \vec{w}_m'\) is uniformly bounded from below by some positive constant \(c'\) and from above by some finite constant \(c''\) (this is the case, for instance, when one considers \(\bar{\gamma} = \vec{1}\), which is compatible with the requirement \(w_m' \cdot \bar{\gamma} = 1\) assumed in the representation (21)). Then

\[
\vec{w}_p'\Delta\vec{w}_p' \leq c_2 \cdot ||\vec{w}_p'||^2 \to 0, \quad (26)
\]

\[
|| (\vec{w}_m'\Delta\vec{w}_m) (\bar{\gamma} \vec{w}_p') || \leq c_2 \cdot c' \cdot ||w_m'|| \cdot ||\vec{w}_p'|| \to 0, \quad (27)
\]

and

\[
c_1 \cdot c' \cdot ||w_m'||^2 \leq (\vec{w}_m'\Delta\vec{w}_m) (\bar{\gamma} \vec{w}_p')^2 \leq c_2 \cdot c'' \cdot ||w_m'||^2, \quad (28)
\]

so that

\[
\vec{w}_p'\Omega\vec{w}_p \sim K \cdot H_N, \quad K > 0, \quad N \to \infty. \quad (29)
\]

Therefore, the residual variance \(\vec{w}_p'\Omega\vec{w}_p\) of any “well-diversified portfolio” \(\vec{w}_p\) goes to zero, as the size \(N\) of the economy goes to infinity, if and only if the concentration index \(H_N\) of the market portfolio goes to zero. In the case of a real economy, section [1] has shown that the Herfindahl index \(H_N\) of the market portfolio goes to zero but at the particularly slow decay rate of \(1/(\ln N)^2\). As a consequence, the residual variance may still account for a significant part of the total portfolio variance. We will give a numerical example in the next paragraph providing a more precise statement concerning the behavior of the residual variance of the equally-weighted portfolio.

2.3 Asymptotic behavior of the variance of the excess return of the equally-weighted portfolio

In order to investigate more precisely the impact of the correlations between the disturbance terms induced by the condition of internal consistency on the variance of the returns of a “well-diversified” portfolio, we consider first the simple case of the equally-weighted portfolio whose composition is given by the vector \(\vec{w}_e = \frac{1}{N}\vec{1}\). Algebraic manipulations yield

\[
\text{Var} \ r_e = \beta_e^2 \cdot \text{Var} \ r_m + \frac{\bar{\gamma}^2}{N} \cdot \sum_{i=1}^{N} S_i^2 \Delta_{ii} - 2\bar{\gamma} N \cdot \frac{1}{N} \cdot \sum_{i=1}^{N} S_i \Delta_{ii} + \frac{1}{N} \left(\frac{1}{N} \sum_{i=1}^{N} \Delta_{ii}\right), \quad (30)
\]

where \(r_e\) denotes the return on the equally-weighted portfolio and \(\beta_e\) its beta with the market factor. We have reintroduced the explicit dependence on the term \(\sum_{i=1}^{N} w_{m,i} \gamma_i\) (no more assumed to be scaled to the value 1) and have explicitied the fact that the market weight of firm \(i\) is \(w_{m,i} = S_i / \sum_{i=1}^{n} S_i\).

Two of the four terms in the right-hand-side (r.h.s.) of expression (30) are standard. The first term \(\beta_e^2 \cdot \text{Var} \ r_m\) is the traditional contribution of the market risk factor weighted by
the beta of the portfolio. The last rightmost term in the r.h.s. of \(30\) represents the usual contribution of the diversifiable risk of the portfolio when one assumes that the disturbance terms are uncorrelated and therefore represents the specific sources of risk. The two other terms are new and result from the existence of correlations between the disturbances. In the absence of such correlations, \(\bar{\gamma}\) would be zero and these two terms disappear.

Assuming that the \(\Delta_{ii}\)'s are \(N\) iid (positive) random variables with finite expected value \(E[\Delta_{ii}] < \infty\), we get that \(\frac{1}{N}\sum_{i=1}^{N} \Delta_{ii}\) and \(\frac{1}{N} \bar{\gamma}_N \cdot \frac{\sum_{i=1}^{N} S_i \Delta_{ii}}{\sum_{i=1}^{N} S_i \gamma_i}\) are \(O_p(1/N)\), irrespective of the fact that the distribution of firm sizes admits or does not admit a finite mean \(\mu\). This implies that, in the limit of large \(N\), the third and fourth terms in the r.h.s. of expression \(30\) can be neglected, leading to

\[
\text{Var } r_c = \beta_c^2 \cdot \text{Var } r_m + \bar{\gamma}_N^2 \cdot \frac{\sum_{i=1}^{N} S_i^2 \Delta_{ii}}{\left(\sum_{i=1}^{N} S_i \gamma_i\right)^2} + O_p(1/N) .
\]

(31)

The fact that the fourth term in expression \(30\) disappears in the limit \(N \to \infty\) is not surprising since it recovers the standard result on the diversification of the idiosyncratic risks. More interestingly, the fact that the third term in \(30\) also goes to zero as \(1/N\) means that it does not introduce (in the limit of a large market) an additional risk worth considering.

Proposition 2 below reveals through expression \(31\) that the only significant additional contribution to the risks of the equally-weighted portfolio stems from the term

\[
\bar{\gamma}_N^2 \cdot \frac{\sum_{i=1}^{N} S_i^2 \Delta_{ii}}{\left(\sum_{i=1}^{N} S_i \gamma_i\right)^2} ,
\]

(32)

which is nothing but the variance (conditional of the \(\gamma_i\)'s and the \(S_i\)'s) of the term \(\bar{\gamma}_N \cdot f\) resulting from the expression of the market model \(19\).

By the same kind of arguments as in Proposition 1, we get that the contribution \(32\) exhibits three different behaviors. Either the variance of the distribution of firm sizes is finite and the term \(32\) goes to zero has \(1/N\), or only the mean of the distribution of firm sizes exists and the term \(32\) goes to zero at a much slower rate or, finally, if the mean of the distribution of firm sizes does not exist, the additional risk term \(32\) converges to some finite positive value. More precisely, we can state the following results:

Proposition 2. Assuming that the \(\gamma_i\)'s are iid random variables such that \(E[|\gamma|] < \infty\), and that the \(\Delta_{ii}\)'s are iid positive random variables such that \(E[\Delta_{ii}] = \bar{\Delta} < \infty\), the asymptotic behavior of the variance of the equally-weighted portfolio is the following:

1. provided that \(E[S^2] < \infty\),

\[
\text{Var } r_c = \beta_c^2 \cdot \text{Var } r_m + O_p(1/N) ,
\]

2. provided that \(S\) is regularly varying with tail index \(\mu = 2\) and \(s^\mu \cdot \Pr[S > s] \to c > 0\), as \(s\) goes to infinity,

\[
\text{Var } r_c = \beta_c^2 \cdot \text{Var } r_m + \frac{c \cdot \bar{\Delta} \ln N}{E[S^2]} + o_p(\ln N/N) ,
\]

3. provided that \(S\) is regularly varying with tail index \(\mu \in (1, 2)\) and \(s^\mu \cdot \Pr[S > s] \to c > 0\), as \(s\) goes to infinity,

\[
\text{Var } r_c = \beta_c^2 \cdot \text{Var } r_m + \left[\frac{\pi e E[\Delta_{ii}^2]}{2 \Gamma\left(\frac{\mu}{2}\right) \sin\left(\frac{\mu\pi}{2}\right)} \right]^{2/\mu} \frac{1}{E[S^2]} \cdot \frac{1}{N^{2-2/\mu}} \cdot \xi_N + o_p \left(\frac{1}{N^{1-2/\mu}} \right) ,
\]

where \(\xi_N\) is a sequence of positive random variables with stable limit law \(S(\mu/2, 1)\).

\[12\] The term within the parentheses converges in law either to zero, if \(E[S] < \infty\), or to some non degenerated distribution, if \(S\) is regularly varying with tail index less than one.
4. provided that S is regularly varying with tail index $\mu = 1$ and $s^\mu \cdot \Pr [S > s] \to c > 0$, as s goes to infinity,

$$\text{Var } r_e = \beta_e^2 \cdot \text{Var } r_m + \frac{\pi E[\Delta^{1/2}]^2}{2} \frac{E[\gamma]^2}{E[|\gamma|]^2} \frac{1}{(\ln N)^2} \cdot \xi_N + o_p\left(1/\ln^2 N\right),$$

where ξ_N is a sequence of positive random variables with stable limit law $S(1/2, 1)$,

5. provided that S is regularly varying with tail index $\mu \in (0, 1)$ and $s^\mu \cdot \Pr [S > s] \to c > 0$, as s goes to infinity,

$$\text{Var } r_e = \beta_e^2 \cdot \text{Var } r_m + E\left[\Delta^{\mu/2}\right]^{2/\mu} \frac{E[\gamma]^2}{E[|\gamma|]^2} \frac{4}{\pi^{1/\mu}} \left[\frac{1 + \mu}{\pi} \right]^{2/\mu} \frac{\xi_N}{\zeta_N} + o_p(1),$$

where ξ_N and ζ_N are two sequences of strongly correlated positive random variables that converge in law to $S(\mu/2, 1)$ and $S(\mu, \beta_i)$ with $\beta_i = \frac{E[\gamma^p 1_{\gamma < 0}] - E[|\gamma|^p 1_{\gamma < 0}]}{E[|\gamma|]}$ respectively.

Focusing on the case where μ is equal (or close) to one, as in real markets, proposition 2 tells us that the asymptotic behavior of the variance of the equally-weighted portfolio is given by

$$\text{Var } r_e = \beta_e^2 \cdot \text{Var } r_m + \frac{\pi E[\gamma]^2}{2} \frac{E[\Delta^{1/2}]^2}{E[|\gamma|]^2} \left(\ln N\right)^2 \cdot \xi_N + o_p\left(1/\ln N\right)\right).$$

(33)

where ξ_N is a sequence of positive random variables with stable limit law $S(1/2, 1)$ whose density is given by (10). Expression (33) implies that the variance of the equally-weighted portfolio, while asymptotically proportional to the variance of the market portfolio, receives a significant contribution due to the internal consistent condition together with the Zipf distribution of company sizes. This additional contribution decays to zero extremely slowly with the number N of companies in the economy. For instance, (i) assuming that the variance Δ_{ii} of the residuals η_i is the same for all of them and, a priori, of the same order as the variance of the market return: $\Delta_{ii} \sim \text{Var } r_m$, (ii) considering that the ratio $E[\gamma^2]/E[|\gamma|]$ is of the order of one and (iii) accounting for the fact that the median value of the Lévy law is approximately equal to 2.198, the additional term is typically of the order of $\frac{\pi}{\ln N} \cdot \text{Var } r_m$. So, assuming that β_e is about one and considering a market where 7000 to 8000 assets are traded, the typical amplitude of the additional term represents 5% of the total variance of the equally-weighted portfolio. More precisely, in one case out of two, the contribution of the additional term is larger than 5% of the total variance. Figure 2 presents the probability to reach or exceed a given level for the contribution of the residual variance to the total variance, in an economy with 7000-8000 traded assets. In one case out at four ($p = 0.25$), the contribution of the residual variance to the total variance is larger than 15%; in one case out ten ($p = 0.1$), it represents more than 50%.

[Insert Figure 2 about here]

2.4 Relation with the concentration of the market portfolio

The variance of the term $\gamma_N \cdot f$ given by (32) cannot be easily related to observable market variables since it is a mixture of the firm sizes (which are observable) and of the not directly accessible underlying variables γ_i’s and Δ_{ii}’s which describe the correlation structure of the disturbances ε in the model (11). Nevertheless, as a consequence of the assumption that the γ_i’s and Δ_{ii}’s have finite expectations, the behavior of the term $\frac{\sum_{i=1}^N s_i^2 \Delta_{ii}}{e_{i=1}^N |\Delta_{ii}|}$ is the same

\(^{13}\)see footnote [3]

\(^{14}\)These figures are compatible with the number of stocks currently listed on the Amex, the Nasdaq and the Nyse.
as that of \(\frac{\sum_{i=1}^{N} s_{i}^2}{(\sum_{i=1}^{N} s_{i})^2} \) which is nothing but the Herfindahl index \(H_N \) of the market portfolio since
\[
H_N \equiv \sum_{i=1}^{N} w_{i}^2 = \frac{\sum_{i=1}^{N} S_i^2}{(\sum_{i=1}^{N} S_i)^2}.
\] (34)

In fact, propositions 1 and 2 are closely related. Loosely speaking, these two propositions can be summarized as follows
\[
\text{Var } r_e \overset{\text{law}}{\simeq} \beta_e^2 \cdot \text{Var } r_m + K_{\mu} \cdot H_N,
\] (35)

where
\[
K_{\mu} = \begin{cases}
E[\Delta], & \mu \geq 2, \\
E\left[\Delta^{\mu/2}\right]^{2/\mu}, & 1 < \mu < 2, \\
E\left[\Delta^{\mu/2}\right]^{2/\mu} \cdot \frac{E[\gamma]^2}{\mu^2/\mu}, & \mu \leq 1.
\end{cases}
\] (36)

Expression (35) has a simple intuitive meaning based upon the standard interpretation of the Herfindahl index as the average of the effective numbers of assets of a portfolio, if this portfolio was well-diversified (in fact, equally-weighted). Indeed, considering an equally-weighted portfolio made of \(n \) assets, its Herfindahl index is \(H = 1/n \). Conversely, given a portfolio whose Herfindahl index is \(H \), its effective number of assets, defined as the number of \(\text{ assets of an equally-weighted portfolio with the same value } H \) of the Herfindahl index, is \(n_{\text{eff}} = 1/H \). Therefore, considering that the real market is not made of \(N \) (\(\simeq 7000 - 8000 \)) assets but actually of \(N_{\text{eff}} = 1/H_N \) (\(\simeq 20 - 25 \)) effective assets, equation (35) expresses the variance of the equally-weighted portfolio as the sum of two terms: the first one gives the variance of the portfolio resulting from the exposition to the market risk \(\beta_e^2 \cdot \text{Var } r_m \) while the second one represents the residual variance of the \(N_{\text{eff}} \) assets. Thus, when the market portfolio is well-diversified, \(H_N \) goes to zero, or equivalently, the number of effective assets goes to infinity so that, by virtue of the law of large numbers, the residual variance \(K_{\mu}/N_{\text{eff}} \) goes to zero. In contrast, when the market portfolio is concentrated on a few assets, \(H_N \) does not go to zero, the number of effective assets remains finite in the limit of an infinite economy and the residual variance does not go to zero.

For illustration purpose, we discuss in turn three cases. First, both propositions 1 and 2 show that the concentration index \(H_N \) and the variance of \(f \) are of the order of \(1/N \), like the last two terms in the r.h.s. of expression (30), provided that the variance of the distribution of firm sizes is finite. As a consequence, for such distributions of firm sizes, the market portfolio is well diversified insofar as the concentration index is of the same order as the inverse of the number of assets in the portfolio. As a consequence, there is no additional non-diversifiable risk and, in the limit of a large market, we have
\[
\text{Var } r_e = \beta_e^2 \cdot \text{Var } r_m + O_p(N^{-1}).
\] (37)

Let us consider the example of a distribution of firm sizes given by a Gamma law \(\Gamma(r, \lambda) \). In such a case, it is well-known that the joint distribution of \(\{w_{i,m}\}_{i=1}^{N-1} \) is a multivariate Beta law with parameter \(r \) (Mosimann 1962), which yields
\[
E[H_N] = \frac{r + 1}{r \cdot N + 1},
\] (38)
in accordance with the fact that \(H_n = \frac{1}{N} + o_p(1/N) \).

Second, if the distribution of firm sizes admits only a finite mean value and, in addition, is regularly varying at infinity with a tail index \(\mu \in (1, 2) \), the propositions 1 and 2 state that both the concentration index and the variance of \(f \) are of the order of \(1/N^{2(1-1/\mu)} \). As a consequence, the contribution to the total risk due to the second term in the r.h.s. of (30) decays to zero much slower than the decay \(\sim 1/N \) of the two last terms. Then
\[
\text{Var } r_e = \beta_e^2 \cdot \text{Var } r_m + \frac{C}{N^{2(1-1/\mu)}} + O_p(N^{-1}), \text{ for some } C > 0.
\] (39)
As an example, if the tail index of the distribution of firm sizes is \(\mu = 3/2 \), the ratio of the second term in the r.h.s. of (10) over the last two terms is of the order of \(N^{1/3} \). Therefore, assuming that the prefactors of these contributions have the same magnitude, the second term is typically 10, 21 and 46 times larger than the last two terms, if one thousand, ten thousands and one hundred thousand companies are traded on the market.

Finally, if the distribution of firm sizes does not even admit a finite mean value but is still regularly varying at infinity with a tail index \(\mu \in (0, 1) \), propositions 1 and 2 show that the Herfindahl index and the variance of \(f \) converge to non-degenerated random variables which are the ratio of two positive and dependent stable random variables:

\[
H_N = H + o_p(1), \quad \text{with} \quad H = \lim_{N \to \infty} \frac{S_1^2 + \cdots + S_N^2}{(S_1 + \cdots + S_N)^2}, \tag{40}
\]

\[
\text{Var } f = \sigma_f^2 + o_p(1), \quad \text{with} \quad \sigma_f^2 = \lim_{N \to \infty} \frac{\Delta_{11} \cdot S_1^2 + \cdots + \Delta_{11} \cdot S_N^2}{(\gamma_1 \cdot S_1 + \cdots + \gamma_N \cdot S_N)^2}, \tag{41}
\]

so that

\[
\text{Var } r_e = \beta_e^2 \cdot \text{Var } r_m + \text{E } [\gamma]^2 \cdot \sigma_f^2 + o_p(1). \tag{42}
\]

The first term in the r.h.s. of (42) is the non-diversifiable market risk which is remunerated by the market according to the CAPM formula. The second term clearly exemplifies the fact that due to (i) the dependence between the \(\varepsilon \) resulting from the internal consistency condition and (ii) the Pareto form of the distribution of the size of companies, full diversification cannot occur even in the limit of a market with an infinite number of assets. Consider the example where the distribution of firm sizes is the Lévy law defined by equation (10). Using its properties of stability under convolution, the distribution of the market weights \(w_{m,i} \) can be easily obtained. For instance, the density of the marginal law of \(w_i \) is given by

\[
g_N(w) = \frac{N - 1}{\pi} \cdot \frac{w^{-1/2} (1 - w)^{1/2}}{1 + [(N - 1)^2 - 1] w}, \tag{43}
\]

so that \(\text{E } [H_N] = \frac{1}{2} \cdot \frac{N + 1}{N} \), in agreement with the fifth statement of proposition 1 and (40).

2.5 Generalization to arbitrary well-diversified portfolios

The detailed results obtained until now in section 2 refer to one particular portfolio, the equally-weighted portfolio. This portfolio is interesting because it is often taken as a reference and as a starting point to more elaborate allocations by analysts and practitioners. However, from the previous sections, it seems natural to conjecture that the results summarized in proposition 2 also hold (with suitable adaptation) for the entire class of well-diversified portfolios as suggested by equation (28). By \textit{well-diversified} portfolio is meant a portfolio of \(N \) assets whose concentration index goes to zero in the limit of large \(N \). In the particular case where we consider a portfolio \(p \), with weight on asset \(i \) given by \(w_{p,i} = \alpha_i / N \), where the \(\alpha_i \)'s have to sum up to \(N \) in order to ensure that the sum of the fractions of wealth invested in each asset is equal to one and such that \(\frac{1}{N} \sum_{i=1}^{N} \alpha_i^2 \) is uniformly bounded from above by some finite constant, the Herfindahl index of \(p \) behaves as

\[
H_{p,N} \sim \frac{C}{N}, \quad \text{as } N \to \infty, \tag{44}
\]

where \(C \) is a positive and finite constant. Then, the variance of portfolio \(p \) reads

\[
\text{Var } r_p = \beta_p^2 \cdot \text{Var } r_m + \text{E } [\gamma]^2 \cdot \frac{\sum_{i=1}^{N} S_i^2 \Delta_{ii}}{\left(\sum_{i=1}^{N} S_i \gamma_i \right)^2} + o_p(1), \tag{45}
\]

by virtue of the law of large numbers.

This expression shows that the term \(\frac{\sum_{i=1}^{N} S_i^2 \Delta_{ii}}{\left(\sum_{i=1}^{N} S_i \gamma_i \right)^2} \) (or equivalently the concentration index \(H_N \) of the market portfolio) still controls the decay (or the absence of decay) of the contribution to the variance in addition to the variance associated with the correlation of the
portfolio \(p \) with the market portfolio. Therefore, we conclude that proposition 2 holds for the entire class of portfolios whose Herfindahl index decays to zero as \(C/N \), for large \(N \). In fact, the result holds for this class of long portfolios, \(i.e. \) such that the weights \(\alpha_i/N \) sum up to one. In the case of an arbitrage portfolio, namely a portfolio whose weights \(\alpha_i/N \) sum up to zero, no additional term appears in the variance (45).

Finally, when the concentration index of the portfolio under consideration goes to zero, but at rate slower from \(1/N \), obtaining a detailed result for the variance of the portfolio’s return involves more complex formulas. For the present work, equation (29) is sufficient to state that, in general, well-diversified portfolios, of which the equally-weighted portfolio is just an example, have generally a non-diversified risk which does not vanish in the limit of large economies, if the distribution of firm capitalizations is sufficiently heavy-tailed. Therefore, holding a portfolio with asymptotically vanishing Herfindahl index does not necessarily diversify away the non-systematic risk.

3 Discussion

3.1 Analysis of synthetic markets generated numerically

In order to assess the impact of the internal consistency factor in real stock markets of finite size, we present in table 1 the results of numerical simulations of synthetic markets with respectively \(N = 1000 \) and \(N = 10000 \) traded assets. We construct the synthetic markets according to model (19) so that the only explicit explaining factor is the market factor and the size distribution of the capitalization of firms is the Pareto distribution

\[
\Pr [S \geq s] = \frac{1}{s^\mu} \cdot 1_{s \geq 1}.
\]

We investigate various synthetic markets characterized by different tail index \(\mu \), from \(\mu = 1/2 \) (deep in the heavy-tailed regime), \(\mu = 1 \) (borderline case often referred to as the Zipf law when expressed with sizes plotted as a function of ranks) to \(\mu = 2 \) (for which the central limit theorem holds and standard results are expected). It is important to stress that the results presented in table 1 are insensitive to the shape of the bulk of the distribution of firm sizes, and only the tail \(\Pr [S \geq s] \sim s^{-\mu} \), for large \(s \), matters.

The three values of the tail index \(\mu \) equal to 2, 1 and 1/2 correspond to the three major behaviors of the residual variance of a “well-diversified” portfolio, namely the part of the total variance related to the disturbance term \(\varepsilon \) only, given by proposition 2:

- for \(\mu = 2 \), the residual variance goes to zero as \(1/N \), so that the market return should be the only relevant explaining factor if the the number of traded assets is large enough;
- for \(\mu = 1 \), the residual variance goes very slowly to zero, so that one can expect a significant contribution to the total risk and a strong impact of the internal consistency factor \(f \) for large (but finite) market sizes;
- for \(\mu = 1/2 \), the residual variance does not go to zero and one can expect that the contribution of the residual variance to the total risk remains a finite contribution as the size of the market increases without bounds.

For each value \(\mu = 2 \), \(\mu = 1 \) and \(\mu = 1/2 \), we generate 100 synthetic markets of each size \(N = 1000 \) and \(N = 10000 \) (hence a total of \(3 \times 2 \times 100 \) synthetic markets). For each market, we construct 20 equally weighted portfolios (randomly drawn from each market) and we regress their returns on the returns of the market portfolio \((r_m) \), on the returns of the market portfolio and of the internal consistency factor \((r_m, f) \), on the returns of the market portfolio and of the (overall) equally weighted portfolio \((r_m, r_e) \), on the returns of the market portfolio and of an arbitrary under-diversified portfolio \((r_m, r_u) \) and on the returns of the market portfolio and of an arbitrary well-diversified arbitrage portfolio \((r_m, r_a) \). Using the 100 market simulations for each case \((\mu, N) \), Table 1 summarizes the mean, minimum and maximum values of the coefficient of determination \(R^2 \) of these five regressions of the 20 equally weighted portfolios.

[Insert Table 1 about here]
For \(\mu = 2 \), as was expected, the market return is the only relevant factor: it accounts on average for about 95% and 99% (for \(N = 1000 \) and \(N = 10000 \) assets, respectively) of the total variance of the 20 equally-weighted portfolios under considerations. The fact, that the explained variance increases from 95% to 99% when going from \(N = 1000 \) to \(N = 10000 \) assets, results from the standard diversification effect: for \(N = 1000 \), each of the 20 equally-weighted portfolios are made of only \(1000/20 = 50 \) assets compared with \(10000/20 = 500 \) assets for \(N = 10000 \). As a confirmation, the minimum and maximum values of the \(R^2 \) remains very close to their respective mean values.

For \(\mu = 1 \), the market factor explains a much smaller part of the total variance compared with the previous case (80% and 88%, respectively for \(N = 1000 \) and \(N = 10000 \) assets). As expected, this effect is stronger for the markets with the smallest number \(N = 1000 \) of traded assets. In addition, the minimum \(R^2 \) (1% and 20%, resp.) departs strongly from its mean value. Besides, the regression on the market factor and the internal consistency factor \(f \) (which is readily accessible in the case of a numerical simulation) provides a level of explanation (95% and 99%, respectively) comparable to that of the case \(\mu = 2 \) for which full diversification of the residual risk occurs. Moreover, the equally-weighted portfolio provides the same level of explanation as \(f \) itself. This is particularly interesting insofar as \(f \) is not observable in a real market while the return on the equally-weighted portfolio can always be calculated, or at least proxied. We find more generally that any well-diversified portfolio provides overall the same explaining power. This result is simply related to the fact that the internal consistency factor \(f \) is responsible for the lack of diversification of “well-diversified” portfolios (when \(\mu \leq 1 \)) so that the return on any “well-diversified” portfolio \(p \) reads \(r_p \approx \alpha_p + \beta_p \cdot r_m + E[\gamma] \cdot f \). This suggests that the equally-weighted portfolio or any well-diversified portfolio, in so far as it is strongly sensitive to the internal consistency factor \(f \), may act as a good proxy for this factor.

In contrast, the regression on any under-diversified portfolio, while improving on the regression performed just using the market portfolio, remains of lower quality: the gain in \(R^2 \) is only 5-6% on average with respect to the regression on the sole market portfolio, while the gain in \(R^2 \) lies in the range 10-15% when using the equally-weighted portfolio. Finally, table I shows that the introduction of an arbitrage portfolio does not improve the regression. This is due to the fact that arbitrage portfolios are not asymptotically sensitive to the internal consistency factor \(f \) in the large \(N \) limit, as recalled in section II-2.5.

The same conclusions hold qualitatively for synthetic markets generated with \(\mu = 1/2 \), with the important quantitative change that the explanatory power of the market factor does not increase with the market size \(N \). This expresses the predicted property that the internal consistency factor \(f \) should have an asymptotically finite contribution to the residual variance as the size of the market increases without bounds.

Finally, our numerical tests confirm that the distributional properties of the \(\gamma \)'s (the factors loading of the residuals on the internal consistency factor \(f \)) have no significant impact on the results of the simulation, provided that \(E[|\gamma|] < \infty \).

3.2 Consequences for the Arbitrage Pricing Theory and the standard pricing anomalies

In his article establishing the arbitrage pricing theory, Ross (1976, p. 347) explicitly assumes that the disturbance terms in the factor model (11) are “mutually stochastically uncorrelated,” which is inconsistent with the constraint (15) if we assume that the factors (or at least some of them) can be replicated by assets portfolios. Indeed, the derivation of the APT results from the construction of a well-diversified arbitrage portfolio (step 1 in Ross (1976, p. 342)) chosen so as to have no systematic risk (step 2). The fact that this arbitrage portfolio is well-diversified is important because it is at the basis of the argument for the diversification of the specific risk of the arbitrage portfolio in the limit of a large number of assets (law of large numbers), which conditions the results of steps 3 and 4 in Ross (1976). Unfortunately, as shown in section II-E, if one of the factors can be replicated by a portfolio whose weights are distributed according to a sufficiently fat-tailed distribution, the specific risk of this portfolio cannot be diversified away even if it is a well-diversified portfolio, as defined in section II-E. In that case, the conclusion resulting from steps 3 and 4 in Ross (1976) breaks down.
Alternatively, we can say that the residual risks exhibit too strong correlations. This problem has been tackled by many authors. In particular, Chamberlain (1983) and Chamberlain and Rothschild (1983) have developed the appropriate formalism to deal with it, while Stambaugh (1982) and Ingersoll (1984) have provided sharp pricing bounds in the presence of correlation between the error terms. Basically, when all the eigenvalues of their covariance matrix remain under the bound, the factors associated with these eigenvalues must be split off from the residuals.

Then, for the one factor model (19), the following result holds:

\[\mathbb{E}[r_i - r_0] = \beta_i \cdot \mathbb{E}[r_m - r_0] + (\gamma_i - \gamma_m \cdot \beta_i) \cdot \mathbb{E}[\tilde{r}_{icc} - r_0], \]

where \(r_0 \) denotes the risk-free interest rate and \(\mathbb{E}[r_{icc}] \geq r_0 \) is the expected return on any portfolio \(\tilde{w}_{icc} \) such that \(\tilde{w}_{icc} \cdot \beta = 0 \), with unit exposure to the factor \(f \) – i.e., such that \(\tilde{w}_{icc} \cdot \gamma = 1 \) and which is well-diversified in the sense that the variance \(\text{Var}(\tilde{w}_{icc} \cdot \tilde{\eta}) \) goes to zero as the number \(N \) of assets goes to infinity. \(\gamma_m = \tilde{w}_{m} \cdot \gamma \) is the gamma of the market portfolio. The index \(icc \) refers to the “internal consistency condition.”

The proof of this result proceeds as follows. Starting from the model (19) and following the demonstration of theorems I and II in Ross (1976), we get the asymptotic result

\[\mathbb{E}[r] = \rho \mathbf{1} + \lambda_1 \beta + \lambda_2 \gamma, \]

where \(\rho, \lambda_1 \) and \(\lambda_2 \) are three non-negative constants. Their values are determined by expressing the expected return on the market portfolio \(\tilde{w}_m \), on the portfolio \(\tilde{w}_{icc} \) and on any well-diversified portfolio without any systematic risk. This leads to identifying \(\rho \) with \(r_0 \), \(\lambda_2 \) with \(\mathbb{E}[r_{icc} - r_0] \) and \(\lambda_1 \) with \(-\gamma_m \cdot \mathbb{E}[r_{icc} - r_0] - r_0 \). The quantity \(\gamma_m = \tilde{w}_m \cdot \gamma \) never vanishes, due to the internal consistency constraint of the model.

Two comments are in order. Firstly, expression (47) looks like a standard APT decomposition of the risk premia of the expected return of a given asset \(i \) weighted by their factor loading, except for one important feature: the risk premium due to the internal consistency factor has its amplitude controlled by the factor loading \(\gamma_i \) (as usual) corrected by the unusual term \(-\gamma_m \beta_i\). In a standard factor decomposition, it is always convenient to impose \(\gamma_m = \tilde{w}_m \cdot \gamma = 0 \) so that the contribution to the total risk premium due to any factor is proportional to its corresponding factor loading \(\gamma_i \). In the factor decomposition including the internal consistency factor, this is intrinsically impossible, as we have stressed above. In this sense, expression (47) is not the result of a standard factor decomposition. It is however the correct decomposition for a one factor model in the presence of the internal consistency condition, which may lead to the creation of the new internal consistency factor. The later should in fact be referred to as an endogenous factor. This decomposition leading to (47) is the correct one in particular to highlight the crucial consequence of the internal consistency condition in the contribution of the endogenous factor to the total risk premium of a given asset. As we shall see, the fact that the factor loading \(\beta_i \) of the market portfolio contributes to the amplitude of the risk premium due to the endogenous factor provides an interesting interpretation of the book-to-market effect.
Secondly, in the case where the market portfolio is well-diversified, the contribution of the additional risk factor f vanishes asymptotically so that the risk premium associated with this risk factor goes to zero in the limit of an infinitely large market.

3.3 Empirical consequences

The pricing formula given by proposition 3 offers an interesting new insight into the valuation of asset prices. However, the direct assessment of the risk premium associated with the internal consistency risk factor ICC is not possible because we do not have a priori access to it, so that the practical implementation of this theoretical framework seems problematic. Nonetheless, if we recall that the risk premium associated with the additional term $(\gamma_i - \gamma_m \cdot \beta_i) \cdot \mathbb{E}[r_{icc} - r_0]$ is due to the lack of diversification of the so-called “specific risk,” and that well-diversified portfolios such that the equally-weighted portfolio are particularly sensitive to this risk, it seems natural to consider the return on this portfolio in order to probe the market price of the non-diversified risk. Besides, the numerical simulations presented in section 3.1 testify to the relevance of this choice. However, insofar as the equally-weighted portfolio is (by construction) strongly correlated with the market portfolio, it can be desirable to consider instead the arbitrage portfolio made of a long position in the equally-weighted portfolio and of a short position in the market portfolio. This arbitrage portfolio constitutes our proxy for the ICC risk factor and we denote by $r_{icc}(t)$ the time series of its returns. Therefore, this reasoning applied to proposition 3 leads us to estimate the following regression model

$$r_{i,t} - r_0 = \alpha_i + \beta_i \cdot [r_m(t) - r_0] + \beta_{ICC}^i \cdot r_{icc}(t) + \varepsilon_i(t).$$ \hspace{1cm} (49)

In order to assessing the explaining power of the new factor, we also include in the regression model the two factors SMB and HML of Fama and French (see Fama and French (1993) for the description of the construction of these two portfolios). We use the monthly excess returns of twenty-five equally-weighted portfolios sorted by the quintiles of the distribution of sizes and book-to-market values and the returns of ten value-weighted and equally-weighted industry portfolios.15 Tables 2 to 7 present our results for the period from Jan. 1927 to Dec. 2005.

15We have used the monthly data available on Professor French’s website:

- http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/25_Portfolios_5x5.zip for the 25 portfolios sorted by size and book-to-market,
- http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/10_Industry_Portfolios.zip for the ten industry portfolios and
- http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F_Research_Data_Factors.zip for the market factor, the risk-free interest rate and the two factors SMB and HML.
However, these conclusions must be tempered in view of the results summarized in table [3] which gives the R^2 of the various regressions of the multi-linear times series of the monthly excess returns of these 25 equally-weighted portfolios on the market portfolio (Rm), on the market portfolio and the factor ICC (ICC), on the market portfolio and the size factor (SMB), on the market portfolio and the book to market factor (HML), on the market portfolio and the two Fama&French factors (HML + SMB), on the market portfolio, the factor ICC and the size factor (ICC + SMB), on the market portfolio, the factor ICC and the book to market factor (ICC + HML) and, finally on all four factors (market, ICC, SMB and HML). The numbers in boldface represent the maximum value of the R^2 within the group of regression with two factors (columns ICC, SMB and HML) and with three factors (columns HML + SMB, ICC + SMB and ICC + HML) while the numbers within parenthesis provide the 95% confidence interval of the R^2 obtained by bootstrap (Efron and Tibshirani 1993).

Several comments are in order. First, for the two-factor models – namely the regression models which include the market factor and one of the factors ICC, SMB or HML – the internal consistency factor ICC provides the best explanation in 11 cases out of 25. Second, for the groups of portfolios within the first three quintiles of the distribution of sizes, i.e., Small, 2 and 3, the factor ICC provides the largest improvement in 10 cases out of 15. Beside, the improvement provided by the factor ICC is particularly important for the group of the five portfolios built on the first quintile of the distribution of size (group “Small”) with respect to both the size and the book-to-market factors. Third, based upon the 95% confidence intervals (figures within parenthesis) obtained by bootstrap, this improvement is statistically significant with respect to the regression on the sole market factor and also with respect to the regression on the market portfolio and either the size or the book-to-market factor in the group “Small”. In contrast, for portfolios belonging to the two last quintiles of the distribution of size, i.e., portfolios of the group 4 and Big, the factor HML provides the largest improvement 9 times out of 10 and is statistically significant, with respect to the regression on the sole market factor, for 8 of these portfolios.

For the three-factor models, the pair (SMB,HML) provides the best improvement in 13 cases out of 25, before the pair (ICC,HML) which is the best 8 times out of 25, while the pair (SMB,ICC) wins the “horse race” only 4 times out of 25. However, these improvement are statically significant with respect to the best two-factor model (which is most often the market + factor ICC) in only 5 cases out of 25, namely for the portfolios 2-4, 2-High; 3-4, 3-High; and 4-Low. Therefore, the usefulness of a three-factor model is clearly questionable.

To sum up our tests performed on the 25 equally-weighted portfolios ordered by quintiles in size and book-to-market, we have found that, on average, the factor ICC alone provides the best significant improvement with respect to the market factor, and also provides a significant improvement with respect to the market factor and either the size or the book-to-market factor. Overall, the addition of one or two of the Fama and French factors turns out to provide only a marginal improvement. The confidence intervals on the R^2 obtained by bootstrap suggests that a two-factor model (market portfolio + factor ICC) has almost the same explanatory power than the three-factor Fama-French model, while being more parsimonious and based on solid economic foundation. Beside, the significance of the intercepts α’s remains comparable (see the last two lines of Table 5). In all cases, the GRS test (Gibbons et al. 1989) underlines that the intercept is significantly different from zero. In this respect, the factor ICC does not really improve on the two factors of Fama and French but, clearly, the GRS statistics reaches its minimum when the size factor is replaced by the ICC factor. Therefore, based on the results on the “Small” group of portfolios, on the GRS test and on our theoretical approach, we can finally conclude to the superiority of the factor ICC with respect to the size factor SMB. On the hand, the explaining power of the book-to-market factor HML seems undisputable even if it is weakened in the presence of ICC.

[Insert Tables 4 and 5 about here]

16 Note that, a priori, the quoted R^2 of the linear models are not directly comparable since they involve different numbers of parameters. In principle, it is thus necessary to use the adjusted-R^2 instead of the raw R^2. However, the large number of data points (948) makes the difference between these two quantities irrelevant at the level of precision of the first decimal place.
The following tables provide the same statistics for value-weighted and equally-weighted industry portfolios which confirm the previous conclusions. Table 4 presents the parameter estimates of the multi-linear time series regression of the excess monthly returns of 10 value-weighted industry portfolios regressed, as in table 2, on the excess return on the market portfolio, on the two Fama-French factors and on the factor ICC. In the presence of the risk factor ICC, the factor SMB turns out to be not significant for most portfolios (7 cases out of 10). Conversely, in the presence the factor SMB, the factor ICC has no explanatory power in only 4 cases out of 10. This clearly confirms that, overall, ICC is a superior substitute to SMB. For the HML factor, the table shows that this factor is always significant, even in the presence of the factor ICC. Again, these observations must be tempered by the results of table 5 which provides the R^2 of the various multi-linear time series regressions of the monthly excess returns of these 10 value-weighted industry portfolios on the same set of factors as in table 3. It is striking to observe that, on the basis of the 95% confidence intervals obtained by bootstrap, none of the factors ICC, SMB and HML or any combination thereof, is able to provide a significant improvement with respect to the regression on the sole market factor (with the exception of the portfolio “Others”). Concerning the factor ICC, this observation is not a big surprise since it is expected to provide a strong explanatory power for well-diversified portfolios. But, by construction, value-weighted portfolios are not diversified, hence the lack of explanatory power of the factor ICC. Moreover, if the number of assets in each industry is large enough, we should expect that the contribution of the residual risk to the total risk goes to zero, as it goes to zero for the market portfolio.

[Insert Tables 6 and 7 about here]

The situation is totally different when one considers the same set of industry portfolios but constructed on an equally-weighted basis. In this case, each industry portfolio is “well-diversified,” in the sense that the weight of each asset in a given industry portfolio is inversely proportional to the number of assets in this portfolio. Tables 6 and 7 summarize the values of the parameter estimates and of the R^2, respectively, of the multi-linear time series regressions of the excess monthly returns on 10 equally-weighted industry portfolios regressed, as previously, on the excess return on the market portfolio, on the two Fama-French factors and on the factor ICC, on the one hand, and on the same set of factors as in tables 3 and 5 on the other hand. As in the case of the 25 equally-weighted portfolios sorted by size and book-to-market, the addition of the internal consistency factor ICC to the market factor provides overall the best improvement in terms of the R^2 of two-factor models. In addition, no three- or four-factor model provides a statistically significant improvement while the GRS test does not reject the hypothesis of a zero-intercept for the model “Market factor + ICC factor” at the 2% level.

This confirms that the two-factor model constructed with the market portfolio and with the internal consistency factor ICC has overall the same explanatory power as the three-factor Fama-French model.

3.4 Relation between the internal consistency factor ICC and the two Fama and French factors SMB and HML

As illustrated above, the additional internal consistency factor allows us to explain several well-known pricing anomalies, with a power comparable to the HML + SMB Fama-French factors. We now discuss why this can be expected on the basis of our theoretical results. Specifically, starting from our theoretical framework, we address the question of why should the two additional factors of Fama and French have an explaining power, that is, what could be the origins of the size and book-to-market effects.

The size effect. The size effect is well-known to generally explain the part of the cross-section of expected returns left unexplained by any misspecified asset pricing model (Berk 1995), which raises the question of its relevance as the signature of a genuine risk factor. Our theoretical model provides an answer to this question by rationalizing the role of the size effect as providing a proxy for the diversification factor f (or ICC). Indeed, since the
arbitrage portfolio which proxies the ICC factor is long in the equally-weighted portfolio and short in the market portfolio, it is therefore long on the small caps and short on the large caps, just like the SMB portfolio. There is thus no qualitative difference between the Fama and French’s factor SMB and our proxy of the ICC factor. This is confirmed by the large value of the linear correlation between the two portfolios proxying the SMB and ICC factors equal to 86% over the time interval studied here. As an illustration, the return on each factors is depicted on the left panel of figure 3 while the right panel represents the value of $1 invested in the market portfolio in Jan. 1927 and the value of a leveraged position of $1 invested in SMB and ICC in Jan. 1927.

The book-to-market effect. As illustrated by Stattman (1980) and Rosenberg et al. (1985) in the early eighties and as emphasized more recently by Fama and French (1992, 1993), stocks with a high book-to-market value tend to overperform stocks with a low book-to-market value. Several economic explanations have been proposed to justify this phenomenon. Among others, Fama and French have proposed that value stocks are companies that are in financial distress while Campbell and Vuolteenaho (2004) have suggested that growth stocks might have speculative investment opportunities that will be profitable only if equity financing is available on sufficiently good terms.

The pricing formula provided by proposition 3 offers a straightforward justification of the book-to-market effect. Indeed, there is good empirical evidence that high book-to-market stocks have significantly lower beta’s with respect to the market portfolio compared with low book-to-market stocks. For instance, using a large sample of firms from 1977 to 2004, Bernardo et al. (2007) find that the difference between the beta’s of growth opportunities and the beta’s of assets-in-place is positive and statistically significant, at the 95% level, in 34 out of 37 industry classifications. Bernardo et al. suggest that this results from the fact that, since firms with more growth opportunities have cash flows with longer duration, their values are more sensitive to changes in interest rates and thus should have higher beta’s. Then, \(ceteris paribus \), the additional term \((\gamma_i - \gamma_m \cdot \bar{\beta}_i) \cdot E[r_{icc} - r_0] \) introduced by the internal consistency constraint leads to a higher expected rate of return for a stock with a low beta if the term \(\gamma_m \) is positive.

4 Conclusion

Starting from a factorial model in which the only a priori systematic risk is the market portfolio, we have shown that there is a new source of significant systematic risk, which has been totally neglected up to now but which ought to be priced by the market. This occurs when (i) the internal consistency condition holds (which simply means that the market portfolio is constituted of the assets whose returns it is supposed to explain) and (ii) the distribution of the capitalization of firms is sufficiently fat-tailed, as is the case of real economies. The corresponding new internal consistent factors do not disappear for arbitrary large economies because the contribution, to the risk of arbitrary well-diversified portfolios due to the largest firms, remains finite for arbitrary large economies when the distribution of the capitalization of firms is sufficiently heavy-tailed. For this reason, this endogenous factor can be considered as related to the existence of a diversification/concentration premium resulting from the concern of investors with respect to the level of diversification of their portfolio in so far as holding the market portfolio alone does not allow for a good diversification.

Applied to the Arbitrage Pricing Theory, we have shown that the original derivation of Ross’ results still holds, provided that we explicitly include the additional diversification factor in the analysis. As a consequence, this factor is shown to provide possible theoretical economic explanations of some of the empirical factors reported in the literature. In particular, it allows understanding the superior performance of Fama and French three-factor model in explaining the cross section of stock returns. Indeed, the diversification factor provides a rationalization of the SMB factor as a proxy of this factor. Beside, being consistent with the fact that high book-to-market stocks have significantly lower beta’s with respect to
the market portfolio compared with low book-to-market stocks, the Value/Growth effect is related to the increasing sensitivity of value stocks to the diversification factor. Finally, on the basis of only two factors (the market portfolio and the equally-weighted portfolio), our model turns out to be at least as successful as the Fama and French three-factor model in explaining the cross-section of monthly returns on US stock over the time period for Jan. 1927 to Dec 2005.
References

Mosimann, James E., 1962, On the compound multinomial distribution, the β-distribution and the correlations among proportions, *Biometrika* 49, 65-82.

Table 1
Numerical simulations

Average, minimum and maximum value of the R^2 of the regression of the return of 20 equally weighted portfolios (randomly drawn from a market of $N = 1000$ and $N = 10000$ assets according to the model (19)) on the market portfolio (r_m), on the market portfolio and the internal consistency factor (r_m, f), on the market portfolio and the (overall) equally weighted portfolio (r_m, r_e), on the market portfolio and an under-diversified portfolio (r_m, r_u) and on the market portfolio and a well-diversified arbitrage portfolios (r_m, r_a). Different market situations are considered with distributions of firm sizes with tail index μ which varies from 0.5 to 2.

<table>
<thead>
<tr>
<th>μ = 2</th>
<th>(r_m)</th>
<th>(r_m, f)</th>
<th>(r_m, r_e)</th>
<th>(r_m, r_u)</th>
<th>(r_m, r_a)</th>
<th>(r_m)</th>
<th>(r_m, f)</th>
<th>(r_m, r_e)</th>
<th>(r_m, r_u)</th>
<th>(r_m, r_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>94%</td>
<td>94%</td>
<td>95%</td>
<td>94%</td>
<td>94%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>Min</td>
<td>90%</td>
<td>93%</td>
<td>93%</td>
<td>90%</td>
<td>90%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>Max</td>
<td>96%</td>
<td>96%</td>
<td>96%</td>
<td>96%</td>
<td>96%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>μ = 1</th>
<th>(r_m)</th>
<th>(r_m, f)</th>
<th>(r_m, r_e)</th>
<th>(r_m, r_u)</th>
<th>(r_m, r_a)</th>
<th>(r_m)</th>
<th>(r_m, f)</th>
<th>(r_m, r_e)</th>
<th>(r_m, r_u)</th>
<th>(r_m, r_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>80%</td>
<td>95%</td>
<td>95%</td>
<td>86%</td>
<td>82%</td>
<td>88%</td>
<td>99%</td>
<td>99%</td>
<td>93%</td>
<td>89%</td>
</tr>
<tr>
<td>Min</td>
<td>1%</td>
<td>91%</td>
<td>91%</td>
<td>42%</td>
<td>17%</td>
<td>20%</td>
<td>99%</td>
<td>99%</td>
<td>66%</td>
<td>20%</td>
</tr>
<tr>
<td>Max</td>
<td>95%</td>
<td>100%</td>
<td>100%</td>
<td>95%</td>
<td>95%</td>
<td>99%</td>
<td>100%</td>
<td>100%</td>
<td>99%</td>
<td>99%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>μ = 1/2</th>
<th>(r_m)</th>
<th>(r_m, f)</th>
<th>(r_m, r_e)</th>
<th>(r_m, r_u)</th>
<th>(r_m, r_a)</th>
<th>(r_m)</th>
<th>(r_m, f)</th>
<th>(r_m, r_e)</th>
<th>(r_m, r_u)</th>
<th>(r_m, r_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>56%</td>
<td>97%</td>
<td>97%</td>
<td>79%</td>
<td>64%</td>
<td>56%</td>
<td>100%</td>
<td>100%</td>
<td>83%</td>
<td>63%</td>
</tr>
<tr>
<td>Min</td>
<td>2%</td>
<td>89%</td>
<td>89%</td>
<td>34%</td>
<td>15%</td>
<td>1%</td>
<td>96%</td>
<td>97%</td>
<td>15%</td>
<td>3%</td>
</tr>
<tr>
<td>Max</td>
<td>100%</td>
</tr>
</tbody>
</table>
Table 2
Multi-factor time series regressions for monthly excess returns on 25 equally-weighted portfolios sorted by size and book-to-market (beta):
Jan. 1927 - Dec. 2005, 948 months

Parameter estimates of the linear regression of the excess returns on 25 equally-weighed portfolios (sorted by quintiles of the distribution of size – Small, 2, 3, 4 and Big – and by quintiles of the distribution of Book equity to Market equity ratio – Low, 2, 3, 4 and High) regressed on the excess return on the market portfolio, on the two Fama-French factors SMB and HML and on the proxy for the additional risk factor due to the internal consistency constraint given by the difference between the return on the equally-weighted portfolio and the return on the market portfolio:

\[r_{i,t} - r_0 = \alpha_i + \beta_i \cdot [r_m(t) - r_0] + \beta_{i\text{ICC}} \cdot r_{icc}(t) + \beta_{i\text{SMB}} \cdot r_{smb}(t) + \beta_{i\text{HML}} \cdot r_{hml}(t) + \varepsilon_i(t). \]

In the four columns labeled β, β_{SMB}, β_{HML} and β_{ICC} the figures decorated by one star (resp. two stars) show the cases which reject the null hypothesis that the factor under consideration is not significant in the presence of the others at the 5% (resp. the 1%) level. For instance, for the portfolio Big-High, the factor SMB is not significant (neither at the 5% nor the 1% level) in the presence of both the market factor, the factor HML and the proxy for the factor ICC. Similarly, the factor ICC is not significant in the presence of the market factor, the SMB and HML factors while, in contrast, the factor HML is still significant at the 1% level in the presence of the market factor, the the SMB and ICC factors.

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>β</th>
<th>β_{SMB}</th>
<th>β_{HML}</th>
<th>β_{ICC}</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>-0.0076</td>
<td>1.24**</td>
<td>-0.49**</td>
<td>-0.24**</td>
<td>2.33**</td>
<td>75%</td>
</tr>
<tr>
<td>2</td>
<td>-0.0032</td>
<td>1.05**</td>
<td>0.78**</td>
<td>0.16**</td>
<td>1.17**</td>
<td>81%</td>
</tr>
<tr>
<td>Small</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.0007</td>
<td>1.01**</td>
<td>0.37**</td>
<td>0.21**</td>
<td>1.06**</td>
<td>89%</td>
</tr>
<tr>
<td>4</td>
<td>0.0017</td>
<td>0.94**</td>
<td>0.47**</td>
<td>0.36**</td>
<td>1.05**</td>
<td>94%</td>
</tr>
<tr>
<td>High</td>
<td>0.0037</td>
<td>0.93**</td>
<td>0.45**</td>
<td>0.65**</td>
<td>1.32**</td>
<td>92%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>-0.0032</td>
<td>1.11**</td>
<td>0.70**</td>
<td>-0.38**</td>
<td>0.56**</td>
<td>90%</td>
</tr>
<tr>
<td>2</td>
<td>-0.0009</td>
<td>1.11**</td>
<td>0.69**</td>
<td>0.14**</td>
<td>0.34**</td>
<td>94%</td>
</tr>
<tr>
<td>3</td>
<td>0.0011</td>
<td>0.98**</td>
<td>0.75**</td>
<td>0.33**</td>
<td>0.20**</td>
<td>93%</td>
</tr>
<tr>
<td>4</td>
<td>0.0008</td>
<td>1.00**</td>
<td>0.74**</td>
<td>0.56**</td>
<td>0.11**</td>
<td>95%</td>
</tr>
<tr>
<td>High</td>
<td>-0.0004</td>
<td>1.07**</td>
<td>0.79**</td>
<td>0.83**</td>
<td>0.19**</td>
<td>96%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>-0.0021</td>
<td>1.16**</td>
<td>0.29**</td>
<td>-0.38**</td>
<td>0.61**</td>
<td>92%</td>
</tr>
<tr>
<td>2</td>
<td>0.0010</td>
<td>1.03**</td>
<td>0.44**</td>
<td>0.03</td>
<td>0.11*</td>
<td>92%</td>
</tr>
<tr>
<td>3</td>
<td>0.0005</td>
<td>1.04**</td>
<td>0.38**</td>
<td>0.32**</td>
<td>0.08**</td>
<td>93%</td>
</tr>
<tr>
<td>4</td>
<td>0.0011</td>
<td>0.97**</td>
<td>0.51**</td>
<td>0.52**</td>
<td>-0.01**</td>
<td>93%</td>
</tr>
<tr>
<td>High</td>
<td>-0.0007</td>
<td>1.18**</td>
<td>0.31**</td>
<td>0.87**</td>
<td>0.28**</td>
<td>94%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>0.0004</td>
<td>1.08**</td>
<td>0.07</td>
<td>-0.44**</td>
<td>0.26**</td>
<td>93%</td>
</tr>
<tr>
<td>2</td>
<td>-0.0004</td>
<td>1.04**</td>
<td>0.14**</td>
<td>0.10**</td>
<td>0.11*</td>
<td>91%</td>
</tr>
<tr>
<td>3</td>
<td>0.0010</td>
<td>1.02**</td>
<td>0.17**</td>
<td>0.29**</td>
<td>0.09</td>
<td>92%</td>
</tr>
<tr>
<td>4</td>
<td>0.0002</td>
<td>1.08**</td>
<td>0.08</td>
<td>0.57**</td>
<td>0.16**</td>
<td>93%</td>
</tr>
<tr>
<td>High</td>
<td>-0.0024</td>
<td>1.27**</td>
<td>0.17**</td>
<td>0.98**</td>
<td>0.28**</td>
<td>93%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>0.0002</td>
<td>1.06**</td>
<td>-0.24**</td>
<td>-0.35**</td>
<td>0.21**</td>
<td>96%</td>
</tr>
<tr>
<td>2</td>
<td>0.0003</td>
<td>1.04**</td>
<td>-0.19**</td>
<td>0.07**</td>
<td>0.13**</td>
<td>94%</td>
</tr>
<tr>
<td>Big</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-0.0001</td>
<td>1.04**</td>
<td>-0.20**</td>
<td>0.32**</td>
<td>0.11**</td>
<td>93%</td>
</tr>
<tr>
<td>4</td>
<td>-0.0015</td>
<td>1.10**</td>
<td>-0.30**</td>
<td>0.66**</td>
<td>0.26**</td>
<td>92%</td>
</tr>
<tr>
<td>High</td>
<td>-0.0012</td>
<td>1.10**</td>
<td>-0.26**</td>
<td>0.82**</td>
<td>0.27**</td>
<td>86%</td>
</tr>
</tbody>
</table>
Table 3

R^2 of the linear regression of the excess returns of 25 equally-weighted portfolios (sorted by quintiles of the distribution of size – Small, 2, 3, 4 and Big – and by quintiles of the distribution of Book equity to Market equity ratio – Low, 2, 3, 4 and High) on the market portfolio (Rm), on the market portfolio and the factor ICC (ICC), on the market portfolio and the size factor (SMB), on the market portfolio and the book to market factor (HML), on the market portfolio and the two Fama&French factors (HML + SMB), on the market portfolio, the factor ICC and the size factor (ICC + SMB), on the market portfolio, the factor ICC and the book to market factor (ICC + HML) and, finally on all these four factors (Market, ICC, SMB and HML). Figures in boldface represent the maximum value of the R^2 within the group of regression with two factors (columns ICC, SMB and HML) and with three factors (columns HML + SMB, ICC + SMB and ICC + HML). The two last rows reports Gibbons et al. (1989) test statistics and p-values.

<table>
<thead>
<tr>
<th></th>
<th>Rm</th>
<th>ICC</th>
<th>SMB</th>
<th>HML</th>
<th>ICC + SMB</th>
<th>ICC + HML</th>
<th>All four factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.0%</td>
<td>74.8%</td>
<td>66.7%</td>
<td>54.3%</td>
<td>68.6%</td>
<td>74.9%</td>
<td>74.8%</td>
<td>75.2%</td>
</tr>
<tr>
<td>(43.1%, 60.6%)</td>
<td>(68.5%, 80.3%)</td>
<td>(60.1%, 74.5%)</td>
<td>(44.3%, 64.3%)</td>
<td>(62.1%, 75.8%)</td>
<td>(68.7%, 80.9%)</td>
<td>(69.3%, 80.6%)</td>
<td>(69.6%, 81.0%)</td>
</tr>
<tr>
<td>51.8%</td>
<td>79.9%</td>
<td>76.4%</td>
<td>54.9%</td>
<td>78.9%</td>
<td>80.7%</td>
<td>79.9%</td>
<td>80.9%</td>
</tr>
<tr>
<td>(43.4%, 61.5%)</td>
<td>(73.0%, 86.0%)</td>
<td>(71.9%, 81.3%)</td>
<td>(45.7%, 66.6%)</td>
<td>(73.3%, 84.3%)</td>
<td>(75.1%, 86.1%)</td>
<td>(74.0%, 86.2%)</td>
<td>(75.5%, 86.5%)</td>
</tr>
<tr>
<td>Small</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.8%</td>
<td>89.0%</td>
<td>82.9%</td>
<td>68.5%</td>
<td>87.0%</td>
<td>89.1%</td>
<td>89.1%</td>
<td>89.4%</td>
</tr>
<tr>
<td>(57.2%, 70.3%)</td>
<td>(85.8%, 91.8%)</td>
<td>(80.6%, 85.6%)</td>
<td>(60.7%, 76.5%)</td>
<td>(83.9%, 96.0%)</td>
<td>(86.4%, 91.9%)</td>
<td>(85.8%, 92.5%)</td>
<td>(86.0%, 92.6%)</td>
</tr>
<tr>
<td>61.7%</td>
<td>92.5%</td>
<td>84.4%</td>
<td>69.4%</td>
<td>91.3%</td>
<td>92.6%</td>
<td>93.2%</td>
<td>93.7%</td>
</tr>
<tr>
<td>(58.8%, 69.8%)</td>
<td>(90.9%, 94.2%)</td>
<td>(81.6%, 87.6%)</td>
<td>(62.1%, 77.2%)</td>
<td>(89.3%, 93.2%)</td>
<td>(91.0%, 94.3%)</td>
<td>(91.7%, 95.0%)</td>
<td>(92.5%, 95.3%)</td>
</tr>
<tr>
<td>53.9%</td>
<td>89.5%</td>
<td>77.2%</td>
<td>67.5%</td>
<td>89.6%</td>
<td>89.7%</td>
<td>92.1%</td>
<td>92.5%</td>
</tr>
<tr>
<td>(46.3%, 62.6%)</td>
<td>(86.0%, 92.5%)</td>
<td>(71.2%, 82.5%)</td>
<td>(60.9%, 74.3%)</td>
<td>(85.9%, 92.4%)</td>
<td>(86.1%, 92.7%)</td>
<td>(89.5%, 94.4%)</td>
<td>(89.9%, 94.8%)</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.3%</td>
<td>84.2%</td>
<td>88.9%</td>
<td>70.8%</td>
<td>89.6%</td>
<td>88.9%</td>
<td>89.0%</td>
<td>90.4%</td>
</tr>
<tr>
<td>(66.1%, 75.4%)</td>
<td>(81.6%, 87.7%)</td>
<td>(86.1%, 91.5%)</td>
<td>(66.5%, 76.3%)</td>
<td>(87.7%, 92.1%)</td>
<td>(86.4%, 91.5%)</td>
<td>(86.7%, 91.5%)</td>
<td>(88.5%, 92.6%)</td>
</tr>
<tr>
<td>78.0%</td>
<td>92.2%</td>
<td>92.3%</td>
<td>79.3%</td>
<td>93.4%</td>
<td>93.5%</td>
<td>92.3%</td>
<td>93.7%</td>
</tr>
<tr>
<td>(71.3%, 84.1%)</td>
<td>(90.3%, 94.1%)</td>
<td>(90.8%, 94.6%)</td>
<td>(73.2%, 85.0%)</td>
<td>(92.1%, 94.9%)</td>
<td>(92.3%, 95.0%)</td>
<td>(90.5%, 94.2%)</td>
<td>(92.5%, 95.2%)</td>
</tr>
<tr>
<td>74.6%</td>
<td>90.8%</td>
<td>89.6%</td>
<td>78.4%</td>
<td>92.9%</td>
<td>91.6%</td>
<td>91.1%</td>
<td>93.0%</td>
</tr>
<tr>
<td>(65.9%, 83.0%)</td>
<td>(88.3%, 93.8%)</td>
<td>(86.9%, 92.8%)</td>
<td>(71.0%, 85.9%)</td>
<td>(91.2%, 95.3%)</td>
<td>(89.5%, 94.2%)</td>
<td>(88.8%, 94.1%)</td>
<td>(91.4%, 95.4%)</td>
</tr>
<tr>
<td>75.8%</td>
<td>91.0%</td>
<td>87.7%</td>
<td>83.6%</td>
<td>94.9%</td>
<td>91.1%</td>
<td>93.2%</td>
<td>95.0%</td>
</tr>
<tr>
<td>(69.2%, 81.8%)</td>
<td>(88.4%, 93.1%)</td>
<td>(84.7%, 90.7%)</td>
<td>(78.5%, 88.5%)</td>
<td>(93.7%, 96.2%)</td>
<td>(88.6%, 93.2%)</td>
<td>(91.4%, 94.8%)</td>
<td>(93.8%, 96.2%)</td>
</tr>
<tr>
<td>71.3%</td>
<td>89.3%</td>
<td>83.4%</td>
<td>84.4%</td>
<td>95.8%</td>
<td>89.4%</td>
<td>94.3%</td>
<td>95.9%</td>
</tr>
<tr>
<td>(65.5%, 76.6%)</td>
<td>(85.7%, 92.0%)</td>
<td>(79.3%, 87.5%)</td>
<td>(80.4%, 88.0%)</td>
<td>(94.0%, 97.0%)</td>
<td>(85.8%, 92.0%)</td>
<td>(92.2%, 95.8%)</td>
<td>(94.2%, 97.1%)</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th></th>
<th>Rm</th>
<th>ICC</th>
<th>SMB</th>
<th>HML</th>
<th>HML</th>
<th>ICC</th>
<th>ICC</th>
<th>ICC</th>
<th>All four factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>80.3%</td>
<td>88.6%</td>
<td>90.7%</td>
<td>80.8%</td>
<td>91.4%</td>
<td>90.8%</td>
<td>92.2%</td>
<td>92.5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(76.5%,85.5%)</td>
<td>(87.8%,93.6%)</td>
<td>(76.5%,85.5%)</td>
<td>(88.9%,93.5%)</td>
<td>(88.4%,93.1%)</td>
<td>(88.6%,93.7%)</td>
<td>(90.9%,94.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>85.6%</td>
<td>90.9%</td>
<td>91.8%</td>
<td>85.7%</td>
<td>92.0%</td>
<td>92.0%</td>
<td>91.1%</td>
<td>92.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(82.7%,88.3%)</td>
<td>(89.1%,92.9%)</td>
<td>(89.7%,93.8%)</td>
<td>(82.9%,88.6%)</td>
<td>(90.1%,93.9%)</td>
<td>(90.1%,93.9%)</td>
<td>(89.2%,93.9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>85.4%</td>
<td>91.4%</td>
<td>89.9%</td>
<td>88.8%</td>
<td>93.0%</td>
<td>91.4%</td>
<td>92.4%</td>
<td>93.1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(81.9%,88.4%)</td>
<td>(89.2%,93.2%)</td>
<td>(87.3%,92.1%)</td>
<td>(86.3%,90.9%)</td>
<td>(89.7%,93.8%)</td>
<td>(89.7%,93.8%)</td>
<td>(89.8%,93.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>80.4%</td>
<td>88.7%</td>
<td>86.0%</td>
<td>87.8%</td>
<td>90.6%</td>
<td>87.2%</td>
<td>91.9%</td>
<td>93.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(75.2%,84.9%)</td>
<td>(85.0%,91.6%)</td>
<td>(82.2%,89.4%)</td>
<td>(84.3%,91.1%)</td>
<td>(85.1%,91.7%)</td>
<td>(85.6%,91.7%)</td>
<td>(86.0%,91.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>75.6%</td>
<td>85.9%</td>
<td>79.9%</td>
<td>90.5%</td>
<td>94.3%</td>
<td>87.2%</td>
<td>94.2%</td>
<td>94.4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(70.8%,79.7%)</td>
<td>(82.5%,88.9%)</td>
<td>(75.8%,83.9%)</td>
<td>(87.1%,93.1%)</td>
<td>(83.7%,90.3%)</td>
<td>(83.7%,90.3%)</td>
<td>(90.2%,95.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>86.4%</td>
<td>87.0%</td>
<td>88.4%</td>
<td>90.2%</td>
<td>92.3%</td>
<td>89.0%</td>
<td>92.6%</td>
<td>92.6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(84.0%,88.7%)</td>
<td>(84.8%,89.3%)</td>
<td>(86.2%,90.4%)</td>
<td>(88.3%,91.8%)</td>
<td>(89.0%,93.7%)</td>
<td>(90.4%,93.9%)</td>
<td>(91.4%,93.9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>89.4%</td>
<td>91.3%</td>
<td>90.8%</td>
<td>90.0%</td>
<td>91.4%</td>
<td>91.3%</td>
<td>91.4%</td>
<td>91.5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(87.1%,91.5%)</td>
<td>(89.0%,93.3%)</td>
<td>(88.2%,93.1%)</td>
<td>(88.0%,91.9%)</td>
<td>(89.3%,93.5%)</td>
<td>(89.1%,93.4%)</td>
<td>(89.3%,93.4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>87.3%</td>
<td>90.3%</td>
<td>88.9%</td>
<td>90.5%</td>
<td>92.0%</td>
<td>90.5%</td>
<td>91.9%</td>
<td>92.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(84.5%,89.8%)</td>
<td>(87.5%,92.5%)</td>
<td>(86.2%,91.5%)</td>
<td>(88.3%,92.6%)</td>
<td>(89.8%,94.0%)</td>
<td>(87.8%,92.7%)</td>
<td>(89.7%,93.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>82.5%</td>
<td>86.6%</td>
<td>83.5%</td>
<td>91.8%</td>
<td>92.7%</td>
<td>88.1%</td>
<td>92.8%</td>
<td>92.8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(78.6%,85.7%)</td>
<td>(82.6%,88.9%)</td>
<td>(79.9%,97.1%)</td>
<td>(89.7%,93.9%)</td>
<td>(81.1%,94.1%)</td>
<td>(84.1%,94.6%)</td>
<td>(89.3%,94.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>74.4%</td>
<td>82.1%</td>
<td>76.6%</td>
<td>90.7%</td>
<td>92.5%</td>
<td>84.5%</td>
<td>92.6%</td>
<td>92.7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(69.6%,78.9%)</td>
<td>(77.6%,85.9%)</td>
<td>(72.0%,81.1%)</td>
<td>(87.6%,93.2%)</td>
<td>(89.9%,94.5%)</td>
<td>(79.7%,88.7%)</td>
<td>(90.0%,94.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>92.0%</td>
<td>92.5%</td>
<td>92.2%</td>
<td>95.1%</td>
<td>95.2%</td>
<td>92.7%</td>
<td>95.1%</td>
<td>95.5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(90.5%,93.3%)</td>
<td>(91.0%,93.8%)</td>
<td>(90.7%,93.5%)</td>
<td>(94.0%,96.1%)</td>
<td>(94.2%,96.2%)</td>
<td>(91.1%,94.1%)</td>
<td>(94.0%,96.1%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>93.3%</td>
<td>93.3%</td>
<td>93.5%</td>
<td>93.7%</td>
<td>93.9%</td>
<td>93.9%</td>
<td>93.7%</td>
<td>94.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(91.0%,94.9%)</td>
<td>(91.0%,95.0%)</td>
<td>(91.5%,95.0%)</td>
<td>(91.6%,95.3%)</td>
<td>(92.0%,95.4%)</td>
<td>(92.1%,95.4%)</td>
<td>(91.8%,95.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Big</td>
<td>88.2%</td>
<td>88.3%</td>
<td>88.4%</td>
<td>92.3%</td>
<td>92.7%</td>
<td>90.6%</td>
<td>92.5%</td>
<td>92.7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(80.0%,90.6%)</td>
<td>(85.1%,90.9%)</td>
<td>(85.6%,90.9%)</td>
<td>(90.0%,94.2%)</td>
<td>(87.0%,93.0%)</td>
<td>(90.3%,94.3%)</td>
<td>(90.5%,94.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>79.0%</td>
<td>80.5%</td>
<td>79.1%</td>
<td>91.9%</td>
<td>92.0%</td>
<td>86.0%</td>
<td>91.9%</td>
<td>92.2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(74.3%,82.9%)</td>
<td>(75.8%,84.5%)</td>
<td>(74.7%,83.0%)</td>
<td>(89.7%,94.6%)</td>
<td>(89.7%,94.1%)</td>
<td>(81.5%,89.6%)</td>
<td>(89.2%,94.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>70.1%</td>
<td>72.6%</td>
<td>70.1%</td>
<td>86.2%</td>
<td>86.2%</td>
<td>78.5%</td>
<td>86.3%</td>
<td>86.5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(64.1%,75.2%)</td>
<td>(66.9%,77.2%)</td>
<td>(64.4%,75.3%)</td>
<td>(82.4%,89.9%)</td>
<td>(82.5%,89.9%)</td>
<td>(72.7%,83.3%)</td>
<td>(82.5%,89.9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>76.1%</td>
<td>87.3%</td>
<td>84.7%</td>
<td>82.2%</td>
<td>90.6%</td>
<td>88.6%</td>
<td>90.8%</td>
<td>91.4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(72.6%,79.7%)</td>
<td>(85.4%,89.4%)</td>
<td>(82.4%,87.2%)</td>
<td>(79.4%,85.3%)</td>
<td>(80.4%,92.2%)</td>
<td>(86.7%,90.6%)</td>
<td>(89.5%,92.4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRS</td>
<td>4.37</td>
<td>4.11</td>
<td>4.41</td>
<td>4.02</td>
<td>4.07</td>
<td>4.19</td>
<td>3.92</td>
<td>4.06</td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>
Table 4
Multi-factor time series regressions for monthly excess returns on 10 value-weighted industry portfolios (beta): Jan. 1927 - Dec. 2005, 948 months

Parameter estimates of the linear regression of the excess returns of ten value-weighted industry portfolios regressed on the excess return on the market portfolio, on the two Fama-French factors SMB and HML and on the proxy for the additional risk factor due to the internal consistency constraint given by the difference between the return on the equally-weighted portfolio and the return on the market portfolio:

\[r_{i,t} - r_0 = \alpha_i + \beta_i \cdot [r_m(t) - r_0] + \beta_i^{ICC} \cdot r_{icc}(t) + \beta_i^{SMB} \cdot r_{smb}(t) + \beta_i^{HML} \cdot r_{hml}(t) + \epsilon_i(t). \]

In the four columns labeled β, β^{SMB}, β^{HML} and β^{ICC}, the figures decorated by one star (resp. two stars) show the cases which reject the null hypothesis that the factor under consideration is not significant in the presence of the others at the 5% (resp. 1%) level. For instance, for the Shops, the Health and the Utilities industries, the factor SMB is not significant (neither at the 5% nor the 1% level) in the presence of both the market factor, the factor HML and the proxy for the factor ICC. Similarly, for the same industry portfolio, the factor ICC is not significant in the presence of the market factor and the SMB and HML factors.

<table>
<thead>
<tr>
<th>Industry</th>
<th>α</th>
<th>β</th>
<th>β^{SMB}</th>
<th>β^{HML}</th>
<th>β^{ICC}</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer Non Durs</td>
<td>0.0019</td>
<td>0.78**</td>
<td>0.08</td>
<td>-0.15**</td>
<td>78%</td>
<td></td>
</tr>
<tr>
<td>Consumer Durables</td>
<td>-0.0006</td>
<td>1.11**</td>
<td>-0.12</td>
<td>0.11*</td>
<td>75%</td>
<td></td>
</tr>
<tr>
<td>Manufacturing</td>
<td>-0.0006</td>
<td>1.10**</td>
<td>0.11**</td>
<td>-0.11*</td>
<td>92%</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>0.0018</td>
<td>0.86**</td>
<td>-0.10</td>
<td>0.30**</td>
<td>64%</td>
<td></td>
</tr>
<tr>
<td>Business Equipment</td>
<td>0.0012</td>
<td>1.27**</td>
<td>-0.21**</td>
<td>-0.45**</td>
<td>84%</td>
<td></td>
</tr>
<tr>
<td>Telecom</td>
<td>0.0015</td>
<td>0.69**</td>
<td>-0.27**</td>
<td>-0.15**</td>
<td>63%</td>
<td></td>
</tr>
<tr>
<td>Shops</td>
<td>0.0010</td>
<td>0.96**</td>
<td>0.03</td>
<td>-0.14**</td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>Health</td>
<td>0.0030</td>
<td>0.91**</td>
<td>-0.01</td>
<td>-0.15**</td>
<td>68%</td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>-0.0001</td>
<td>0.79**</td>
<td>-0.05</td>
<td>0.35**</td>
<td>63%</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>-0.0016</td>
<td>1.06**</td>
<td>-0.07</td>
<td>0.30**</td>
<td>92%</td>
<td></td>
</tr>
</tbody>
</table>
Table 5
Multi-factor time series regressions for monthly excess returns on 10 value-weighted industry portfolios (R^2): Jan. 1927 - Dec. 2005, 948 months

R^2 of the linear regressions of the excess returns of ten value-weighted industry portfolios regressed on the (excess return) on the market portfolio (Rm), on the market portfolio and the factor ICC (ICC), on the market portfolio and the size factor (SMB), on the market portfolio and the book to market factor (HML), on the market portfolio and the two Fama&French factors (HML + SMB), on the market portfolio, the factor ICC and the size factor (ICC + SMB), on the market portfolio, the factor ICC and the book to market factor (ICC + HML) and, finally on the four factors (market, ICC, SMB, HML). Figures in boldface represent the maximum value of the R^2 within the group of regressions with two factors (columns ICC, SMB and HML) and with three factors (columns HML + SMB, ICC + SMB and ICC + HML). The two last rows reports Gibbons et al. (1989) test statistics and p-values.

<table>
<thead>
<tr>
<th>Industry</th>
<th>Rm</th>
<th>ICC</th>
<th>SMB</th>
<th>HML</th>
<th>HML + SMB</th>
<th>ICC + SMB</th>
<th>ICC + HML</th>
<th>All four factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer Non Durables</td>
<td>77.4%</td>
<td>77.6%</td>
<td>77.5%</td>
<td>77.5%</td>
<td>77.5%</td>
<td>77.6%</td>
<td>77.7%</td>
<td>77.7%</td>
</tr>
<tr>
<td></td>
<td>(72.6%,81.4%)</td>
<td>(72.8%,81.7%)</td>
<td>(72.8%,81.6%)</td>
<td>(72.8%,81.6%)</td>
<td>(73.0%,81.7%)</td>
<td>(72.9%,81.7%)</td>
<td>(73.0%,81.7%)</td>
<td>(73.1%,81.9%)</td>
</tr>
<tr>
<td>Consumer Durables</td>
<td>74.0%</td>
<td>74.6%</td>
<td>74.2%</td>
<td>74.8%</td>
<td>74.9%</td>
<td>75.0%</td>
<td>75.1%</td>
<td>92.4%</td>
</tr>
<tr>
<td></td>
<td>(69.0%,78.4%)</td>
<td>(69.8%,78.9%)</td>
<td>(69.2%,78.5%)</td>
<td>(69.9%,79.2%)</td>
<td>(70.1%,79.3%)</td>
<td>(70.2%,79.4%)</td>
<td>(70.3%,79.4%)</td>
<td>(70.4%,79.5%)</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>91.6%</td>
<td>91.7%</td>
<td>91.6%</td>
<td>92.3%</td>
<td>91.7%</td>
<td>91.7%</td>
<td>92.3%</td>
<td>92.4%</td>
</tr>
<tr>
<td></td>
<td>(89.6%,93.2%)</td>
<td>(89.7%,93.4%)</td>
<td>(89.6%,93.3%)</td>
<td>(90.5%,93.8%)</td>
<td>(89.8%,93.5%)</td>
<td>(90.7%,94.2%)</td>
<td>(90.5%,93.8%)</td>
<td>(90.6%,93.9%)</td>
</tr>
<tr>
<td>Energy</td>
<td>60.1%</td>
<td>60.4%</td>
<td>61.4%</td>
<td>62.2%</td>
<td>63.6%</td>
<td>61.9%</td>
<td>63.7%</td>
<td>63.7%</td>
</tr>
<tr>
<td></td>
<td>(53.9%,65.0%)</td>
<td>(54.2%,65.8%)</td>
<td>(55.5%,66.7%)</td>
<td>(56.0%,67.2%)</td>
<td>(58.2%,68.6%)</td>
<td>(56.0%,67.2%)</td>
<td>(58.2%,68.6%)</td>
<td>(58.3%,68.7%)</td>
</tr>
<tr>
<td>Business Equipment</td>
<td>81.3%</td>
<td>81.3%</td>
<td>81.4%</td>
<td>83.6%</td>
<td>83.8%</td>
<td>81.6%</td>
<td>84.0%</td>
<td>84.2%</td>
</tr>
<tr>
<td></td>
<td>(77.3%,84.6%)</td>
<td>(77.3%,84.6%)</td>
<td>(77.9%,84.7%)</td>
<td>(80.7%,86.2%)</td>
<td>(80.9%,86.4%)</td>
<td>(78.1%,84.9%)</td>
<td>(81.3%,86.5%)</td>
<td>(81.6%,86.8%)</td>
</tr>
<tr>
<td>Telecom</td>
<td>61.4%</td>
<td>62.0%</td>
<td>62.2%</td>
<td>62.0%</td>
<td>62.7%</td>
<td>62.2%</td>
<td>62.3%</td>
<td>63.0%</td>
</tr>
<tr>
<td></td>
<td>(56.0%,66.5%)</td>
<td>(57.2%,67.0%)</td>
<td>(57.3%,67.2%)</td>
<td>(56.9%,67.0%)</td>
<td>(58.1%,67.6%)</td>
<td>(57.5%,67.3%)</td>
<td>(57.6%,67.2%)</td>
<td>(58.3%,67.9%)</td>
</tr>
<tr>
<td>Shops</td>
<td>78.9%</td>
<td>78.9%</td>
<td>79.1%</td>
<td>79.4%</td>
<td>79.5%</td>
<td>79.2%</td>
<td>79.6%</td>
<td>79.6%</td>
</tr>
<tr>
<td></td>
<td>(74.5%,82.7%)</td>
<td>(74.6%,82.7%)</td>
<td>(74.8%,83.1%)</td>
<td>(75.3%,83.1%)</td>
<td>(75.5%,83.4%)</td>
<td>(75.6%,83.3%)</td>
<td>(75.5%,83.3%)</td>
<td>(75.6%,83.4%)</td>
</tr>
<tr>
<td>Health</td>
<td>66.0%</td>
<td>67.0%</td>
<td>66.4%</td>
<td>67.3%</td>
<td>67.7%</td>
<td>67.2%</td>
<td>67.7%</td>
<td>67.7%</td>
</tr>
<tr>
<td></td>
<td>(59.1%,71.3%)</td>
<td>(60.8%,72.4%)</td>
<td>(59.8%,71.7%)</td>
<td>(60.1%,72.5%)</td>
<td>(61.6%,72.9%)</td>
<td>(61.5%,72.7%)</td>
<td>(61.8%,73.1%)</td>
<td>(62.2%,73.2%)</td>
</tr>
<tr>
<td>Utilities</td>
<td>58.5%</td>
<td>58.5%</td>
<td>59.1%</td>
<td>62.2%</td>
<td>62.9%</td>
<td>60.1%</td>
<td>62.9%</td>
<td>62.9%</td>
</tr>
<tr>
<td></td>
<td>(51.0%,65.3%)</td>
<td>(51.0%,65.5%)</td>
<td>(51.8%,65.6%)</td>
<td>(55.3%,68.7%)</td>
<td>(56.1%,69.1%)</td>
<td>(52.9%,68.8%)</td>
<td>(56.4%,69.2%)</td>
<td>(56.5%,69.2%)</td>
</tr>
<tr>
<td>Others</td>
<td>88.4%</td>
<td>89.2%</td>
<td>88.4%</td>
<td>91.7%</td>
<td>91.7%</td>
<td>90.2%</td>
<td>91.8%</td>
<td>91.8%</td>
</tr>
<tr>
<td></td>
<td>(86.5%,90.2%)</td>
<td>(87.2%,91.1%)</td>
<td>(86.5%,90.4%)</td>
<td>(89.9%,93.6%)</td>
<td>(89.9%,93.6%)</td>
<td>(88.4%,92.2%)</td>
<td>(90.0%,93.6%)</td>
<td>(90.0%,93.7%)</td>
</tr>
<tr>
<td>Average</td>
<td>73.7%</td>
<td>74.1%</td>
<td>74.1%</td>
<td>75.2%</td>
<td>75.6%</td>
<td>74.6%</td>
<td>75.6%</td>
<td>75.7%</td>
</tr>
<tr>
<td></td>
<td>(70.2%,76.8%)</td>
<td>(70.8%,77.2%)</td>
<td>(70.8%,77.2%)</td>
<td>(72.1%,78.2%)</td>
<td>(72.7%,78.6%)</td>
<td>(71.4%,78.8%)</td>
<td>(72.6%,78.6%)</td>
<td>(72.6%,78.7%)</td>
</tr>
<tr>
<td>GRS</td>
<td>2.67</td>
<td>3.23</td>
<td>3.16</td>
<td>3.32</td>
<td>3.69</td>
<td>3.09</td>
<td>3.63</td>
<td>3.65</td>
</tr>
<tr>
<td>p-value</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Table 6
Multi-factor time series regressions for monthly excess returns on 10 equally-weighted industry portfolios (beta): Jan. 1927 - Dec. 2005, 948 months

Parameter estimates of the linear regression of the excess returns of ten equally-weighed industry portfolios regressed on the excess return on the market portfolio, on the two Fama-French factors SMB and HML and on the proxy for the additional risk factor due to the internal consistency constraint given by the difference between the return on the equally-weighted portfolio and the return on the market portfolio:

\[r_{i,t} - r_0 = \alpha_i + \beta_i \cdot [r_m(t) - r_0] + \beta_{iCC} \cdot r_{icc}(t) + \beta_{iSMB} \cdot r_{smb}(t) + \beta_{iHML} \cdot r_{hml}(t) + \varepsilon_i(t). \]

In the four columns labeled \(\beta \), \(\beta_{SMB} \), \(\beta_{HML} \) and \(\beta_{ICC} \), the figures decorated by one star (resp. two stars) show the cases which reject the null hypothesis that the factor under consideration is not significant in the presence of the others at the 5% (resp. the 1%) level.

<table>
<thead>
<tr>
<th>Industry</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\beta_{SMB})</th>
<th>(\beta_{HML})</th>
<th>(\beta_{ICC})</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer Non Durables</td>
<td>-0.0003</td>
<td>0.84**</td>
<td>0.08*</td>
<td>0.10**</td>
<td>0.77**</td>
<td>94%</td>
</tr>
<tr>
<td>Consumer Durables</td>
<td>-0.0024</td>
<td>1.12**</td>
<td>0.21**</td>
<td>0.07*</td>
<td>0.97**</td>
<td>92%</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>-0.0004</td>
<td>1.07**</td>
<td>0.12**</td>
<td>0.17**</td>
<td>0.76**</td>
<td>97%</td>
</tr>
<tr>
<td>Energy</td>
<td>0.0019</td>
<td>0.95**</td>
<td>0.13</td>
<td>0.34**</td>
<td>0.55**</td>
<td>69%</td>
</tr>
<tr>
<td>Business Equipment</td>
<td>0.0016</td>
<td>1.22**</td>
<td>-0.29**</td>
<td>-0.65**</td>
<td>1.52**</td>
<td>92%</td>
</tr>
<tr>
<td>Telecom</td>
<td>0.0030</td>
<td>0.92**</td>
<td>-0.30**</td>
<td>-0.54**</td>
<td>0.98**</td>
<td>73%</td>
</tr>
<tr>
<td>Shops</td>
<td>0.0000</td>
<td>0.91**</td>
<td>0.11*</td>
<td>-0.11**</td>
<td>0.93**</td>
<td>90%</td>
</tr>
<tr>
<td>Health</td>
<td>0.0037</td>
<td>0.91**</td>
<td>-0.04</td>
<td>-0.54**</td>
<td>0.92**</td>
<td>80%</td>
</tr>
<tr>
<td>Utilities</td>
<td>0.0006</td>
<td>0.85**</td>
<td>0.21*</td>
<td>0.55**</td>
<td>-0.06</td>
<td>66%</td>
</tr>
<tr>
<td>Others</td>
<td>-0.0008</td>
<td>0.95**</td>
<td>0.07</td>
<td>0.39**</td>
<td>0.93**</td>
<td>95%</td>
</tr>
</tbody>
</table>
Table 7

Multi-factor time series regressions for monthly excess returns on 10 equally-weighted industry portfolios (R^2): Jan. 1927 - Dec. 2005, 948 months

R^2 of the linear regression of the excess returns of ten equally-weighed industry portfolios regressed on the (excess return) on the market portfolio (Rm), on the market portfolio and the factor ICC (ICC), on the market portfolio and the size factor (SMB), on the market portfolio and the book to market factor (HML), on the market portfolio and the two Fama&French factors (HML + SMB), on the market portfolio, the factor ICC and the size factor (ICC + SMB), on the market portfolio, the factor ICC and the book to market factor (ICC + HML) and, finally on the four factors (market, ICC, SMB and HML). Figures in boldface represent the maximum value of the R^2 within the group of regression with two factors (columns ICC, SMB and HML) and with three factors (columns HML + SMB, ICC + SMB and ICC + HML). The two last rows reports Gibbons et al. (1989) test statistics and p-values.

<table>
<thead>
<tr>
<th>Industry</th>
<th>Rm</th>
<th>ICC</th>
<th>SMB</th>
<th>HML</th>
<th>HML + SMB</th>
<th>ICC + SMB</th>
<th>ICC + HML</th>
<th>All four factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer Non Durables</td>
<td>75.9% (70.9%, 80.5%)</td>
<td>94.1% (92.4%, 95.5%)</td>
<td>88.4% (85.2%, 91.2%)</td>
<td>79.7% (74.9%, 83.9%)</td>
<td>91.8% (89.5%, 93.9%)</td>
<td>94.1% (92.5%, 95.5%)</td>
<td>94.3% (92.7%, 95.7%)</td>
<td></td>
</tr>
<tr>
<td>Consumer Durables</td>
<td>74.4% (69.2%, 79.2%)</td>
<td>92.3% (90.2%, 94.2%)</td>
<td>87.9% (84.8%, 91.1%)</td>
<td>76.9% (72.2%, 81.9%)</td>
<td>90.2% (87.6%, 92.6%)</td>
<td>92.4% (90.3%, 94.3%)</td>
<td>92.3% (90.2%, 94.2%)</td>
<td></td>
</tr>
<tr>
<td>Manufacturing</td>
<td>82.2% (78.3%, 86.0%)</td>
<td>96.7% (95.7%, 97.6%)</td>
<td>92.0% (89.9%, 93.9%)</td>
<td>85.9% (82.5%, 88.9%)</td>
<td>95.4% (93.9%, 96.6%)</td>
<td>96.8% (95.7%, 97.6%)</td>
<td>97.0% (96.1%, 97.8%)</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>58.3% (51.7%, 64.3%)</td>
<td>67.8% (61.9%, 73.7%)</td>
<td>63.7% (57.6%, 69.9%)</td>
<td>63.4% (58.0%, 66.0%)</td>
<td>68.5% (63.0%, 74.1%)</td>
<td>68.1% (62.3%, 74.0%)</td>
<td>69.3% (64.0%, 74.8%)</td>
<td></td>
</tr>
<tr>
<td>Business Equipment</td>
<td>74.5% (68.7%, 79.9%)</td>
<td>87.4% (85.0%, 89.8%)</td>
<td>86.2% (82.5%, 89.4%)</td>
<td>74.8% (69.3%, 80.1%)</td>
<td>86.6% (83.2%, 89.7%)</td>
<td>88.0% (85.9%, 90.4%)</td>
<td>91.6% (90.1%, 93.0%)</td>
<td></td>
</tr>
<tr>
<td>Telecom</td>
<td>62.7% (55.4%, 69.2%)</td>
<td>68.2% (64.0%, 72.8%)</td>
<td>68.1% (61.4%, 74.0%)</td>
<td>63.9% (56.5%, 70.5%)</td>
<td>69.4% (63.4%, 75.1%)</td>
<td>68.6% (64.2%, 74.2%)</td>
<td>72.6% (69.0%, 77.0%)</td>
<td></td>
</tr>
<tr>
<td>Shops</td>
<td>71.8% (66.7%, 77.0%)</td>
<td>90.1% (86.2%, 93.1%)</td>
<td>86.7% (82.8%, 90.5%)</td>
<td>72.8% (67.7%, 78.2%)</td>
<td>87.6% (83.6%, 91.2%)</td>
<td>90.3% (86.6%, 94.4%)</td>
<td>90.4% (87.1%, 93.3%)</td>
<td></td>
</tr>
<tr>
<td>Health</td>
<td>65.1% (58.2%, 71.3%)</td>
<td>74.5% (69.5%, 79.0%)</td>
<td>75.9% (72.0%, 79.7%)</td>
<td>66.4% (60.0%, 72.5%)</td>
<td>77.4% (73.7%, 81.0%)</td>
<td>76.2% (72.8%, 79.9%)</td>
<td>80.5% (77.3%, 83.7%)</td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td>58.3% (51.0%, 65.3%)</td>
<td>60.8% (52.8%, 68.8%)</td>
<td>58.9% (51.6%, 66.6%)</td>
<td>65.9% (56.2%, 72.8%)</td>
<td>66.5% (58.3%, 74.0%)</td>
<td>61.7% (53.8%, 69.5%)</td>
<td>66.3% (58.3%, 73.6%)</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>71.9% (66.1%, 77.2%)</td>
<td>92.8% (90.5%, 94.8%)</td>
<td>83.6% (79.3%, 87.5%)</td>
<td>81.6% (77.5%, 85.3%)</td>
<td>92.7% (90.1%, 94.9%)</td>
<td>93.4% (91.1%, 95.3%)</td>
<td>95.2% (93.4%, 96.6%)</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>69.5% (65.0%, 73.9%)</td>
<td>82.4% (79.9%, 85.1%)</td>
<td>79.1% (76.0%, 82.3%)</td>
<td>73.1% (69.0%, 77.1%)</td>
<td>82.6% (79.9%, 85.4%)</td>
<td>82.9% (80.5%, 85.6%)</td>
<td>84.9% (82.9%, 87.2%)</td>
<td></td>
</tr>
<tr>
<td>GRS</td>
<td>2.53 (0.01)</td>
<td>2.21 (0.02)</td>
<td>2.69 (0.00)</td>
<td>2.72 (0.00)</td>
<td>2.61 (0.00)</td>
<td>2.24 (0.00)</td>
<td>2.70 (0.00)</td>
<td>2.70 (0.00)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Figure 1. Concentration of the market portfolio. The upper panel shows the weight of the largest firms in the market portfolio as a function of the tail index μ of the Pareto distribution of firm sizes. The lower panel shows the Herfindahl index of the market portfolio as a function of the tail index μ of the Pareto distribution of firm sizes. In both cases, the continuous line provides the values in the limit of an infinite economy while the dotted and dash-dotted curves refers to the cases of an economy with one thousand and ten thousand firms respectively.
Figure 2. Contribution of the residual variance to the total variance. The figure shows the probability p to reach or exceed a given contribution level, in percentage, of the residual variance to the total variance of the return on the equally weighted portfolio in a market with 7000-8000 traded assets and with a distribution of firm sizes given by Zipf’s law ($\mu = 1$).
Figure 3. **Comparison of ICC and SMB.** The upper panel shows the return of the factor SMB versus the return of the factor ICC. The straight line shows the regression line with equation $y = -0.0008 + 0.8292 \cdot x$. The lower panel depicts the value of 1 invested in the market portfolio in Jan. 1927 (grey curve; green online) and the value of a leveraged position of 1 invested in SMB (dark grey curve; blue online) and ICC (black curve; red online) in Jan. 1927. For the two arbitrage portfolios SMB and ICC, the initial endowment of 1 can be thought of as a reserve to ensure against risk losses, from which the returns can be discounted to provide the shown wealth curves.