CP Asymmetry in Charged Higgs Decays in MSSM

Mariana Frank and Ismail Turan

Department of Physics, Concordia University,
7141 Sherbrooke Street West, Montreal, Quebec, CANADA H4B 1R6

(Dated: March 20, 2007)

Abstract

We discuss and compare the charge-parity (CP) asymmetry in the charged Higgs boson decays $H \rightarrow \bar{u}_i d_j$ for the second and third generation quarks in the minimal supersymmetric standard model. As part of the analysis, we derive some general analytical formulas for the imaginary parts of two-point and three-point scalar one-loop integrals and use them for calculating vectorial and tensorial type integrals needed for the problem under consideration. We find that, even though each decay mode has a potential to yield a CP asymmetry larger than 10%, further analysis based on the number of required charged Higgs events at colliders favors the $\bar{t}b$, $\bar{c}b$, and $\bar{c}s$ channels, whose asymmetry could reach $10 \sim 15\%$ in certain parts of the parameter space.

PACS numbers: 11.30.Er,14.80.Cp,12.60.Jv

Keywords: Charged Higgs Decays, CP Violation, MSSM
I. INTRODUCTION

Discrete charge-parity (CP) symmetry violation is an interesting and puzzling phenomenon within the standard model (SM). While the SM has been successful in explaining all of the available experimental data, it fails to provide an explanation for the breaking of CP. Insight into understanding its nature and structure would shed light on diverse issues ranging from the origin of the mass to the evolution of our universe.

The SM presents an economical scenario for CP violation, described through only one weak phase in Cabibbo-Kobayashi-Maskawa (CKM) matrix. Even though the observed direct CP violation in K[1] and B[2] decays can be accommodated via the CKM matrix of the SM, this is not true for other phenomena, such as the matter-antimatter asymmetry present in the universe. In addition, the Standard Model fails to explain the origin of CP violation but merely parameterizes it. Thus the SM framework could be viewed as a low energy effective version of a more complete theory, and CP violation offers a motivation to go beyond the SM. In the models beyond the SM, the existence of new sources of CP violation other than the CKM phase, resolves some of the problems of the SM, but not all.

One of the leading candidates of physics beyond the SM is supersymmetry, in particular the minimal supersymmetric standard model (MSSM). Supersymmetry provides a compelling argument for the stabilization of the Higgs sector against quadratic divergencies and allows unification of gauge couplings at high energies, both unexplained by the SM. In the MSSM, enough baryon asymmetry can be generated at the electroweak scale at any temperature by means of the existence of an additional Higgs doublet. However, the MSSM has difficulty reconciling the smallness of the electric dipole moments with expectations of scalar fermion masses and the size of new CP violating phases introduced by soft supersymmetry breaking[3].

In MSSM, there are many parameters which can in principle be complex, even after making all allowed rotations to get rid of unphysical phases. This raises the interesting possibility that CP violation, or CP asymmetries, might arise in other sectors of the model than the quark sector, and that would provide a spectacular signal of physics beyond the standard model. In particular, it is possible that there might be a close relationship between the Higgs sector and CP violation. The structure and properties of the Higgs sector are under intense scrutiny at present. Though indications at LEP for a light Higgs boson of
mass around 115 GeV are encouraging, they await confirmation. It is fully expected that the upgraded Tevatron and the LHC would provide further information.

In its most general form, the MSSM predicts a plethora of new CP phases. These new sources of flavor and CP violation give rise to the enhancement of CP violation effects alluded to before, which could provide distinguishing signs for MSSM at present and future colliders. In this study, we concentrate on analysis of the CP asymmetry in charged Higgs decays $H \rightarrow \bar{u}_i d_j$ in the framework of the MSSM. Here $\bar{u}_i d_j = \bar{c}b, \bar{c}s, \bar{t}b, \bar{t}s$. The corresponding neutral Higgs CP asymmetry in $h \rightarrow d_i \bar{d}_j$ has been discussed in Ref. [4]. The CP asymmetry in the main decay mode $H \rightarrow \bar{t}b$ and other two-body non-quark charged Higgs decays have been considered in [5, 6]. Recently, these authors have discussed various CP asymmetries in $H \rightarrow \bar{t}b$ by including the decay products of the top quark and subsequently the W boson and showed that the decay rate CP asymmetry can go up to 25% [7]. In this work, we revisit the asymmetries in $H \rightarrow \bar{t}b$, but also discuss the other three quark decay modes and compare the size of the CP asymmetry in all the channels. We show that even though in some part of the parameter space, the $\bar{t}s$ channel has sizable CP asymmetry with respect to the $\bar{t}b$, $\bar{c}b$, or $\bar{c}s$ channel, this result has to be taken with caution since the former has very small branching ratios (Br’s) which makes harder to observe it. We introduce and discuss another important quantity $7, 8, (A_{CP}^2 \times Br)^{-1}$, for each decay mode, which gives the number of required charged Higgs bosons to be produced at colliders for observing an asymmetry for a given channel. Here A_{CP} represents the CP asymmetry. Based on this analysis, we conclude that $H \rightarrow \bar{c}b$, $H \rightarrow \bar{c}s$, and $H \rightarrow \bar{t}b$ are all optimal channels which could reveal a measurable CP asymmetry at the order of $10–15\%$. We also discuss the CP asymmetry induced by the phases of the flavor violating parameters $\delta_{U,D}^{23}$ alone and note that their contribution is small and thus unlikely to account for a measurable CP asymmetry in any of the decay modes considered in this study.

The outline of the paper is as follows. In the next section, we briefly review the MSSM, concentrating on the sources of CP violation. The processes and the method of calculation are presented in Section IIII and the numerical analysis of the decays under consideration in the Section IV. Finally, we conclude in Section V.
II. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL

The superpotential \(W \) of the MSSM Lagrangian and the relevant part of the soft breaking Lagrangian \(\mathcal{L}_{\text{soft}}^{\text{squark}} \) are respectively

\[
W = \mu H^1 H^2 + Y_{i}^{\hat{q}} H^1 L^i e_R + Y_{d}^{\hat{q}} H^1 Q_i d_R + Y^{ij}_u H^2 Q_i u^j_R \quad (2.1)
\]

\[
\mathcal{L}_{\text{soft}}^{\text{squark}} = -\tilde{Q}^{ij} (M_{2D})_{ij} \tilde{Q}^i - \tilde{u}^{ij} (M_{2U})_{ij} \tilde{u}^i - \tilde{d}^{ij} (M_{2D})_{ij} \tilde{d}^i + Y_{u}^{ij} \tilde{Q}_i H^2 \tilde{u}_j + Y_{d}^{ij} \tilde{A}_d \tilde{Q}_i H^1 \tilde{d}_j, \quad (2.2)
\]

where \(H^1 \) and \(H^2 \) are the Higgs doublets with vacuum expectation values \(v_1 \) and \(v_2 \) respectively, \(Q \) is the \(SU(2) \) scalar doublet, \(u, d \) are the up- and down-quark \(SU(2) \) singlets, respectively. \(\tilde{Q}, \tilde{u}, \tilde{d} \) represent scalar quarks, \(Y_{u,d} \) are the Yukawa couplings and \(i, j \) are generation indices. Here \(A^{ij} \) represent the trilinear scalar couplings.

The up(down)-squark mass matrices between second and third generations are taken as

\[
\mathcal{M}^2_{u(d)} = \begin{pmatrix}
M_{L_e}^{2} & (M_{U(D)}^{2})_{LL} & m_{c(s)}A_{c(s)} & (M_{U(D)}^{2})_{LR}
(M_{U(D)}^{2})_{LL} & M_{L_{t(b)}}^{2} & (M_{U(D)}^{2})_{RL} & m_{t(b)}A_{t(b)}
(m_{c(s)}A_{c(s)}) & (M_{U(D)}^{2})_{RL} & M_{R_{s(b)}}^{2} & (M_{U(D)}^{2})_{RR}
((M_{U(D)}^{2})_{LR}) & m_{t(b)}A_{t(b)} & (M_{U(D)}^{2})_{RR} & M_{R_{t(b)}}^{2}
\end{pmatrix} \quad (2.3)
\]

with

\[
M_{L_{q}}^{2} = M_{\tilde{q},q}^{2} + m_{q}^{2} + \cos 2\beta (T_{q} - Q_{q} s_{W}^{2}) M_{Z}^{2},
M_{R_{c(t)}}^{2} = M_{U_{c(t)}}^{2} + m_{c(t)}^{2} + \cos 2\beta Q_{t} s_{W}^{2} M_{Z}^{2},
M_{R_{s(b)}}^{2} = M_{D_{s(b)}}^{2} + m_{s(b)}^{2} + \cos 2\beta Q_{b} s_{W}^{2} M_{Z}^{2},
A_{c,t} = A_{c,t} - \mu \cot \beta, \quad A_{s,b} = A_{s,b} - \mu \tan \beta.
\]

For reasons we discuss further on, we assume \(\mu \) real and a common phase for \(A_{c,t} \) and \(A_{s,b} \).

Note that \(A_{s} \) has negligible effect since it is multiplied by the strange quark mass. \(\tan \beta \) is the ratio of the vacuum expectation values of the two neutral Higgs bosons.

We also define the flavor mixing parameters as

\[
(\delta^{ij}_{U(D)})_{AB} = \frac{(M_{U(D)}^{2})_{AB}^{2}}{M_{\text{SUSY}}^{2}}, \quad (A, B = L, R), \quad (2.5)
\]

where \(M_{\text{SUSY}} \) is the common scale for the parameters \(M_{\tilde{q},q}^{2} \) and \(M_{U(D),q}^{2} \). As mentioned before we allow \(\delta_{U(D)}^{ij} \)'s to be complex (to have CP violating phases).
We do not repeat listing the chargino and neutralino sectors of the MSSM here, as we don’t assume a new non-zero CP phase in either sector; for the details see Ref. [9]. As the gluino contribution is dominant for the charged Higgs decays, we give the relevant up-type quark-squark-gluino interaction \tilde{g}:

$$\mathcal{L}_{u\tilde{g}} = \sum_{i=1}^{3} \sqrt{2} g_s T^r_a \left[\bar{u}^s_i (\Gamma_U)^{ia} P_L \tilde{g} \tilde{u}^t_a - \bar{u}^s_i (\Gamma_U)^{(i+3)a} P_R \tilde{g} \tilde{u}^t_a + \text{H.c.} \right],$$

(2.6)

where T^r_a are the $SU(3)_c$ generators, $P_{L,R} \equiv (1 \mp \gamma_5)/2$, $i = 1, 2, 3$ is the generation index, $a = 1, \ldots, 6$ is the scalar quark index, and s, t are color indices. There is a similar interaction for the down case.

Considering the number of complex parameters in MSSM, further assumptions are needed for simplicity and predictability. In the gaugino sector, two of three gaugino masses could be complex, unless a degenerate spectrum at grand unified theory (GUT) scale is assumed. We assume all three gaugino mass terms real at any scale. The higgsino mass parameter μ is in principle complex. However, the phase of μ is strongly constrained by the electron dipole moment (EDM) measurements of neutron [10] and cannot exceed values of the order of 0.01-0.001. For the effects of CP violating SUSY phases on other EDMs and systems, see [11]. We simply neglect this phase and consider μ real. In the squark sector, there are trilinear soft couplings of quarks, $A_{u,d}$, which are complex. In addition to these, the misalignment between quarks and squarks arising through the diagonalization of their respective mass matrices leads to new sources of flavor violation, with parameters denoted as $\delta_{U,D}$. These are also generally complex, and could have large imaginary parts. We will assume non-zero flavor violation only between the second and third generations, because the ones involving the first generation are required to be small, based on experimental constraints in K and D physics [12]. Thus, we assume that there are non-zero phases from the trilinear couplings $A_{u,d}$ and intergenerational flavor mixing parameters $\delta_{U,D}^{23}$. For further simplification, we assume a common phase $\text{Arg}[A_u] = \text{Arg}[A_d] \equiv \text{Arg}[A]$.

Thus, the supersymmetric sources of CP violation of interest in charged Higgs decays come from the soft broken terms $M_{\tilde{Q}}^2, M_{\tilde{U}}^2$ and the trilinear scalar coupling A_u, and are introduced through the matrix Γ_U. In the following section, we analyze their effects on the calculation of the CP asymmetry.
III. CHARGED HIGGS DECAYS $H \rightarrow \bar{u}_id_j$

In this section we discuss the CP asymmetry in the charged Higgs boson decays $H \rightarrow \bar{u}_id_j$, which is defined as

$$A_{CP} = \frac{\Gamma(H^- \rightarrow \bar{u}_i d_j) - \Gamma(H^+ \rightarrow u_i \bar{d}_j)}{\Gamma(H^- \rightarrow \bar{u}_i d_j) + \Gamma(H^+ \rightarrow u_i \bar{d}_j)},$$

(3.1)

where Γ is the partial decay width of the decay mode considered. These decays are tree level processes and one could calculate the branching ratios, decays widths, etc. with tree-level approximation.

However, it is known that [13] the CP-odd observable A_{CP} requires a nontrivial phase from Feynman diagrams (called absorptive or strong phase), in addition to the weak phase mentioned in the previous section. This way, the imaginary part of the amplitude is non-zero, $\Im(\text{Amplitude}) \neq 0$. One way of introducing such a phase is through one-loop Feynman diagrams, where some of the intermediate particles go on-shell. Then, the numerator of Eq. (3.1) will be proportional to the interference term between tree level and one-loop contributions. The tree level and relevant one-loop contributions to the decays $H \rightarrow \bar{u}_i d_j$ are shown in Fig 1.

![Feynman diagrams](image)

FIG. 1: The tree and relevant one-loop diagrams contributing CP asymmetry for the decays $H \rightarrow \bar{u}_i d_j$.

1 This type of CP asymmetry is sometimes called *partial rate asymmetry*. For other types see [7, 13].
There are many more one-loop contributions to the decays, but based on various kinematical considerations only six of them are relevant to A_{CP} (four vertex type and two self-energy type diagrams)\(^2\). We consider cuts through chargino-neutralino internal lines, or through up squark-down squark lines. We will call them *internal-cut* states. They contribute to the CP asymmetry when \(m_H \geq m_{\tilde{\chi}^0} + m_{\tilde{\chi}^+}\) and \(m_H \geq m_{\tilde{\nu}} + m_{\tilde{d}}\) are satisfied, so that the chargino and the neutralino can go on-shell. This is the necessary condition to induce an absorptive part into the amplitude. The generic self-energy and vertex type diagrams with cuts are shown in Fig. 2 where the *internal-cut* states represent two possibilities in each case. Here we don’t count the flipping cases \((k_1 \leftrightarrow k_2)\), which are only relevant to the vertex type diagrams, in which case the third intermediate state is different. For the vertex-type diagrams, Fig. 2(b), there are two other possible cuts, through \(k_1 - k_3\) or \(k_2 - k_3\). The cut with \(k_1 - k_3\) is not kinematically allowed since it requires \(m_{d_j} \geq m_{\tilde{d}_a} + m_{\tilde{\chi}_a^0}\), \(m_{d_j} \geq m_{\tilde{d}_a} + m_{\tilde{\chi}_a^+}\), or \(m_{d_j} \geq m_{\tilde{d}_a} + m_{\tilde{g}}\). None of these conditions is possible.

![Diagram 2](image)

FIG. 2: The unitarity cuts for self energy (a) and vertex type (b) generic diagrams.

For the case with \(k_2 - k_3\) cut, based on the current experimental bounds on the mass of the lightest neutralino and the lightest up-type squarks, there could be some contributions to the decay mode \(H \rightarrow \tilde{t}d_j\) from the diagrams (2) and (4) of Fig. 1 in a very narrow kinematical range \((m_{\tilde{\nu}} + m_{\tilde{\chi}^0} \lesssim m_t)\). We simply neglect such contributions. There exists yet another way to produce the necessary absorptive cut, by taking the invariant mass squared for the final states, \((p_2 + p_3)^2\), to be greater than \((m_{\tilde{\chi}^0} + m_{\tilde{\chi}^+})^2\) which results in some cuts.

\(^2\) There exist additionally some SM vertex contributions with W boson, CP-even Higgs bosons, and quarks in the loop. We don’t get CP asymmetry contributions from such diagrams since we take μ real. For the case with complex μ, see §3.
in the phase space. This method was pursued in [14], in the analysis of the three-body semileptonic top quark decays.

One can show that the numerator of Eq. (3.1) is proportional to the imaginary part of the amplitude from loop diagrams arising from tree level-loop interference terms. As usual, we neglect possible loop-loop interference effects which are much smaller than tree-loop terms. In the next subsection, instead of giving rather lengthy analytical results for this imaginary part, we outline the method used to do the calculation using the cuts in Fig. 2. We present it in a generic way, valid for the four decay modes of the charged Higgs boson, \(H \to \bar{u}_i d_j \).

The Method: Calculation of the Imaginary Part

We calculate the absorptive part of the loop diagrams by applying the Cutkosky rules. In general, in the loop integration, we end up with a numerator with scalar, vectorial, or tensorial structures (and their pseudo counterparts), depending on the types of particles running in the loop. We first consider the scalar case and then outline the method for the vectorial and tensorial cases and present the results. We discuss self energy and vertex cases separately.

1. **Two-Point Function**:

 In Fig. 2-(a), if we assume that particles running in the loop are scalar, we get a \(B_0 \) type scalar two-point Passarino-Veltman function [15]. We use the convention that all external momenta are incoming and the diagram (a) of Fig. 2 can be expressed as

 \[
 B_0(p^2, m_1^2, m_2^2) = \frac{i}{\pi^2} \int d^4k \frac{1}{(k^2 - m_1^2)((p - k)^2 - m_2^2)},
 \]

 (3.2)

 where \(m_1 \) and \(m_2 \) are the masses of the particles in the loop. By applying the Cutkosky rules [16] for Fig. 2-(a) we have, for the discontinuity across this cut,

 \[
 \Delta B_0(p_1^2, m_1^2, m_2^2) = \frac{i}{\pi^2} \int d^4k \frac{2\pi \Theta(k_1^0) \delta(k_1^2 - m_1^2)}{2\pi \Theta(p_1^0 - k_1^0) \delta((p_1 - k_1)^2 - m_2^2)}
 \]

 \[
 = 2\pi i \frac{\lambda(p_1^2, m_1^2, m_2^2)}{p_1^2} \Theta(p_1^2 - (m_1 + m_2)^2),
 \]

 (3.3)

3 For example see [13] for the details.
where k^0_1 and p^0_1 are the energies of the corresponding particles. ΔB_0 represent the discontinuity of B^0 and is related to the imaginary part of the diagram up to a factor of $2i$ (see [17] for example). $\lambda(x, y, z)$ is the usual Källen function defined as $\lambda(x, y, z) = (x - y - z)^2 - 4yz$. The argument of the Heaviside function Θ in the final result ensures that both internal-cut states, particles 1 and and 2, go on-shell in the loop.

Now let’s assume that we have a vectorial term in the numerator. If we denote this integral as B^μ, then the discontinuity can be written

$$\Delta B^\mu(p^2_1, m^2_1, m^2_2) \equiv \Delta B_0(p^2_1, m^2_1, m^2_2) \otimes k^\mu$$

$$= \begin{cases} \frac{p^2_1 + m^2_1 - m^2_2}{2\sqrt{p^2_1}} \Delta B_0(p^2_1, m^2_1, m^2_2) & , \mu = 0 \\ 0 & , \mu = i \end{cases}$$

(3.4)

where “$\otimes k^\mu$” means that k^μ should be considered as a part of the integrand of ΔB_0 term.

In a similar manner, one can calculate a tensorial type of two-point integral. Since we will need terms only up to second rank tensors in our calculation, $\Delta B^{\mu\nu}$ is enough to calculate for the discontinuity in such cases, and the result can be expressed as

$$\Delta B^{\mu\nu}(p^2_1, m^2_1, m^2_2) \equiv \Delta B_0(p^2_1, m^2_1, m^2_2) \otimes (k^\mu k^\nu)$$

$$= k^{\mu\nu} \Delta B_0(p^2_1, m^2_1, m^2_2),$$

(3.5)

where

$$k^{\mu\nu} = \text{Diag}(\kappa^0, \frac{\kappa}{3}, \frac{\kappa}{3}, \frac{\kappa}{3}), \quad \kappa^0 = \frac{(p^2_1 + m^2_1 - m^2_2)^2}{4p^2_1}, \quad \kappa = \frac{\lambda(p^2_1, m^2_1, m^2_2)}{4p^2_1}.$$

(3.6)

Then the imaginary part of the self energy diagrams shown in the last two diagrams of Fig. [1] becomes the sum of the above terms

$$\text{Im(Self Energy)} = \frac{1}{2i} \sum_l \left(Y_l \Delta B_0 + Y^\mu_l \Delta B^\mu_l + Y^{\mu\nu}_l \Delta B^{\mu\nu}_l\right),$$

(3.7)

where Y_l’s include all other contributions arising from the Feynman rules and the index l runs over loop diagrams.

2. Three-Point Function:

The evaluation is similar to the two-point function case but the calculation is more cumbersome. We first give the result for the discontinuity in a three-point scalar integral, known
as $C_0(p_1^2, p_2^2, p_3^2, m_1^2, m_2^2, m_3^2)^4$. Here $m_{1,2,3}$ are the internal masses. Again using Cutkosky rules, we have\(^5\) for the discontinuity

$$
\Delta C_0 = \frac{i}{\pi^2} \int d^4k_1 \frac{2\pi \Theta(k_1^0) \delta(k_1^2 - m_1^2) 2\pi \Theta(-p_2^0 - p_3^0 - k_1^0) \delta((p_2 + p_3 + k_1)^2 - m_2^2)}{(p_3 + k_1)^2 - m_3^2} = \frac{-2\pi i}{\sqrt{\lambda(p_1^2, p_2^2, p_3^2)}} \log\left(\frac{\alpha + \beta}{\alpha + \beta}\right) \Theta(p_1^2 - (m_1 + m_2)^2),
$$

(3.8)

where

$$
\alpha = p_1^2 (p_2^2 + 2m_2^2 - (p_2^2 + p_3^2 + m_1^2 + m_2^2)) - (m_1^2 - m_2^2)(p_2^2 - p_3^2),
\beta = \sqrt{\lambda(p_1^2, m_1^2, m_2^2)} \lambda(p_1^2, p_2^2, p_3^2).
$$

(3.9)

The vectorial type integrals can be calculated as follows. The extra term k_1^μ can be converted into the external momenta p_i’s and their derivatives with the help of the propagator in the denominator [18]. For example,

$$
\frac{k_1^\mu}{(p_3 + k_1)^2 - m_3^2} = \frac{1}{2} \frac{\partial}{\partial p_{3\mu}} \left[\log((p_3 + k_1)^2 - m_3^2) \right] - \frac{p_3^\mu}{(p_3 + k_1)^2 - m_3^2}.
$$

(3.10)

For convenience, we define $(p_3 + k_1)^2 - m_3^2 \equiv D$, $f_0 \equiv 1/D$, $f_1 \equiv \log(D)$, and $f_2 \equiv D(\log(D) - 1)$. This way we can express the discontinuities in both the vectorial and the 2\(^{nd}\) rank tensorial type integrals in the following form

$$
\Delta C^\mu = -p_3^\mu \Delta C_0 + \frac{1}{2} \frac{\partial}{\partial p_{2\mu}} \Delta C_1,
\Delta C^{\mu\nu} = p_3^\mu p_3^\nu \Delta C_0 - \frac{1}{2} \left(g^{\mu\nu} + p_3^\nu \frac{\partial}{\partial p_{3\nu}} + p_3^\mu \frac{\partial}{\partial p_{3\mu}} \right) \Delta C_1 + \frac{1}{4} \frac{\partial}{\partial p_{2\mu}} \frac{\partial}{\partial p_{2\nu}} \Delta C_2,
\Delta C_1 = \Delta C_0 (f_0 \rightarrow f_1),
\Delta C_2 = \Delta C_0 (f_0 \rightarrow f_2).
$$

(3.11)

Then, computing ΔC_1 and ΔC_2 integrals in a straightforward manner, we find

$$
\Delta C_1 = -\frac{\alpha + \beta}{2p_1^2} \Delta C_0 + \frac{2\pi i}{p_1^2} \sqrt{\lambda(p_1^2, m_1^2, m_2^2)} \log\left(\frac{\alpha - \beta}{\alpha^2 e^{3/2}}\right) \Theta(p_1^2 - (m_1 + m_2)^2),
\Delta C_2 = \frac{(\alpha + \beta)^2}{8p_1^4} \Delta C_0 - \pi \frac{\alpha i}{p_1^2} \sqrt{\lambda(p_1^2, m_1^2, m_2^2)} \log\left(\frac{\alpha - \beta}{\alpha^2 e^{3/2}}\right) \Theta(p_1^2 - (m_1 + m_2)^2)
$$

(3.12)

\(^4\) For simplicity, we suppress the argument of C_0 in the rest of the paper.

\(^5\) Our result is consistent with the one given in [17].
Here \(e \) is the Napier’s constant. Next, we take the derivatives of \(\Delta C_1 \) and \(\Delta C_2 \) with respect to \(p_{2,3} \) and plug them into Eq. (3.11). After some lengthy algebra, we get

\[
\Delta C^\mu = \frac{2\pi i \Theta(p_1^2 - (m_1 + m_2)^2)}{\sqrt{\lambda(p_1^2, p_2^2, p_3^2)}} \left[\log \left(\frac{\alpha + \beta}{\alpha - \beta} \right) p_3^\mu - \left((u - \alpha v) \log \left(\frac{\alpha + \beta}{\alpha - \beta} \right) + 2\beta v \right) \frac{p_2^\mu}{2 p_1^2} \right],
\]

\[
\Delta C^{\mu\nu} = \frac{2\pi i \Theta(p_1^2 - (m_1 + m_2)^2)}{p_1^2 \sqrt{\lambda(p_1^2, p_2^2, p_3^2)}} \left(\frac{g^{\mu\nu}}{2} \Delta C_9 - \frac{p_2^\mu p_2^\nu}{4 p_1^4} \Delta C_{p2} + \frac{p_3^\mu p_3^\nu}{4 p_1^4} \Delta C_{p3} \right),
\]

\[
\Delta C_g = \frac{\alpha \beta v}{4 p_1^2} \left(\frac{1}{2} - \frac{(\alpha - \beta)v}{8 p_1^2} + \frac{\beta}{2 p_1^2} \right) \log \left(\frac{\alpha + \beta}{\alpha - \beta} \right) + \beta \left(1 + \frac{u}{2 p_1^2} \right) \log \left(\frac{\alpha - \beta}{2 p_1^2 e} \right),
\]

\[
\Delta C_{p2} = \left(\frac{\alpha^2 - \beta^2}{2} \left(v^2 - \frac{1}{\lambda(p_1^2, p_2^2, p_3^2)} \right) \right) + \left((\alpha v - u) \log \left(\frac{\alpha + \beta}{\alpha - \beta} \right) + 2\beta v(\alpha v - 2u) \right),
\]

\[
\Delta C_{p3} = 2\beta \left(v - \frac{2 p_1^2}{\lambda(p_1^2, p_2^2, p_3^2)} \right) + \left(p_1^2 \left(\frac{2\alpha}{\lambda(p_1^2, p_2^2, p_3^2)} - 3 \right) + u - \alpha v \right) \log \left(\frac{\alpha + \beta}{\alpha - \beta} \right),
\]

where \(u = p_1^2 + m_1^2 - m_2^2 \) and \(v = (p_1^2 - p_2^2 + p_3^2)/\lambda(p_1^2, p_2^2, p_3^2) \) and \(g^{\mu\nu} = (+, -, -, -) \) is the metric tensor.

It remains only to determine the coefficients, like the ones defined in Eq. (3.7), by comparing the actual matrix elements for the diagrams in Fig. 1. The diagrams in Fig. 1 and the corresponding matrix elements are generated with the software FeynArts [19] and then we do the rest of the calculation with our own code.

IV. NUMERICAL ANALYSIS

In this section, we present comparatively our numerical results for the decays \(H \rightarrow \bar{u}_i d_j \ (u_i = c, t, \ d_j = s, b) \)\(^6\). In the calculation of the CP asymmetry from the formula in Eq (3.11), we use the tree level values when evaluating the sum of the partial decay widths \((\Gamma) \) in the denominator, which simplifies the numerical calculations. In Fig. 3 we show the partial decay widths of the channels \(H \rightarrow \bar{c}b, \bar{c}s, \bar{t}b, \bar{t}s \) at tree level, together with their branching fractions \((Br) \) for small and intermediate \(\tan \beta \) values. We represent the other tree level decay channels as “the rest” and we use the FeynHiggs program [20] to calculate the partial decay widths of these channels. Basically, depending on the charged Higgs mass, “the rest” includes the lepton channels \(H \rightarrow e\nu_e, \mu\nu_\mu, \tau\nu_\tau \), the neutralino-chargino channels

\(^6\) The CP asymmetry in one of these decays, \(H \rightarrow \bar{t}b \) has been discussed in \(\exists \) under a different parameter set and assumptions. A good agreement is obtained once we switch our parameter values to their set.
FIG. 3: The partial decay widths and branching ratios of the charged Higgs boson decays \(H \rightarrow \bar{u}_i d_j \).

For the supersymmetric channels; \(M_1 = 95 \) GeV, \(M_2 = 200 \) GeV, \(\mu = 250 \) GeV, \(M_{SUSY} = 500 \) GeV, and \(A = 400 \) GeV.

\[H \rightarrow \chi_i^+ \chi_j^0, \ i = 1, 2, \ j = 1...4, \]
the Higgs-vector boson channels \(H \rightarrow h^0 W, H^0 W, A^0 W, \) and the sfermion channels \(H \rightarrow \tilde{f}_i \tilde{f}_j, i, j = 1...3. \) Inclusion of these channels is important as it affects the number of charged Higgs bosons required to observe the asymmetry, as discussed later in this section.

In the region \(m_{H^+} \geq m_t, \ H \rightarrow \tilde{t}b \) is the dominant mode. However, in the region \(m_{H^+} \leq 140 \) GeV, the leptonic decay \(H \rightarrow \tau \nu_\tau \) becomes the main decay channel, and in between these regions, including threshold effects, the below-threshold three body decay \(H \rightarrow h W^* \) has a branching ratio comparable to, or even dominating over other channels, its exact value depending on the mixing in the Higgs sector. Inclusion of threshold effects also opens other three body channels, like \(H \rightarrow A W^* \) and \(H \rightarrow b \bar{t}^* \) that have sizable branching
ratios in the intermediate mass range. We do not include the threshold effects, but see [21] for details. We note that for heavy charged Higgs, the neutralino-chargino channels are comparable with the \(\bar{t}b \) channel. However, it is important to observe that among these decays, \(H \to \bar{c}s \) and \(H \to \bar{c}b \) have non-negligible branching ratios. This is important for our analysis, since observability of CP asymmetry in a specific channel requires not only a sizable asymmetry but also an experimentally viable branching ratio. We must comment on the strange quark mass dependence: as seen from Fig. 3, while the partial decay widths for \(\bar{t}b \) and \(\bar{t}s \) channels are suppressed as \(\tan \beta \) gets larger, the opposite is true for the \(\bar{c}b \) channel. This is due to the fact that the couplings are proportional to \((m_u/\tan \beta + m_d \tan \beta) \). There is no suppression in the \(\bar{c}s \) curve since for intermediate \(\tan \beta \) values the term proportional to the strange quark mass is comparable to the one with charm quark mass and becomes dominant for larger \(\tan \beta \) values. So, one must keep the strange quark mass non-zero, at least for \(\bar{c}s \) decay. Of course, its effect in the \(\bar{t}s \) case is negligible.

For the numerical analysis, we fix some of parameters of the model globally because the CP asymmetry is not very sensitive to their variations. As mentioned before, we introduce a common phase and magnitude for the trilinear couplings \(A_u \) and \(A_d \) as \(\text{Arg}[A] \) and \(A \). The Higgs parameter \(\mu \) is taken real. We allow the gluino mass \(m_{\tilde{g}} \) to be light. We also use the parameterization for squark mass matrices where a common scale \(M_{\text{SUSY}} \) is chosen for the soft breaking parameters \(M^2_{Q,q} \) and \(M^2_{U(D),q} \). The flavor violating parameters (\(\delta \)'s) are set to zero everywhere except for the case where we test the sensitivity of \(A_{CP} \) to these parameters. There exist two other free parameters in the Higgs sector of the MSSM, taken in a popular framework to be \(\tan \beta \), and one of the Higgs boson masses, often taken as the \(CP \)-odd Higgs mass \(m_A \). Of course we could equally well assume any of the others as the free Higgs mass parameter. As it is more convenient for the present analysis, we choose \(m_{H^+} \) as the free Higgs mass here. Unless otherwise stated, we fix the following parameters globally

\[
M_{\text{SUSY}} = 500 \text{ GeV}, \quad \mu = 250 \text{ GeV}, \quad \tan \beta = 10, \quad M_2 = 200 \text{ GeV}, \quad m_{\tilde{g}} = 250 \text{ GeV}. \quad (4.1)
\]

In Fig. 4 we illustrate the dependence of the \(CP \) asymmetry \(A_{CP} \) on the phase \(\text{Arg}[A] \) for each decay for a variety of \(A \) values. As expected, the behaviour is periodic and the sensitivity to both \(\text{Arg}[A] \) and \(A \) is quite significant. It seems that each decay mode can have an asymmetry as large as \(10 - 15\% \). It is also seen that the asymmetry produced in \(H \to \bar{c}s \)
FIG. 4: The CP asymmetry for the charged Higgs decays $H \to \bar{u}_i d_j$ as a function of the phase $\text{Arg}[A]$ for the various values of A.

and $H \to \bar{t}s$ decay modes could be comparable, or even larger than $H \to \bar{c}b$ or $H \to \bar{t}b$. Of course this is not very unusual, since it is possible to get large asymmetries for decays with smaller branching ratios [13]. Therefore, determining the optimum channel among these decays requires further analysis, but qualitatively one can predict that $H \to \bar{c}b$ and $H \to \bar{t}b$ have similar asymmetries. The $\bar{c}b$ mode has non negligible branching ratios due to the fact that CKM supression is compensated by the large m_b mass appearing in the couplings. In the parameter space that we explore, the diagrams with chargino-neutralino/neutralino in the loop give negligible results compared to the gluino loop diagrams. So, the main contribution comes from gluino vertex diagram (diagram 5 of Fig. 1), while the self energy
diagram (diagram 7 of Fig. 1) is also important. We keep these contributions, but include and check the others wherever relevant.

Additionally, we want to test whether it is possible to account a sizable asymmetry in charged Higgs decays by introducing complex flavor mixing parameters between second and third generation quarks and keeping all the other parameters real. This is a secondary effect since, unlike the case with no-zero phase $\text{Arg}[A]$, getting the absorptive phase through such parameters requires not only a chirality flip in the squark propagators but also a mass...
The CP asymmetry for the charged Higgs decays $H \to \bar{u}_i d_j$ as a function of A for the various values of the phase $\text{Arg}[A]$.

insertion for flavor changing as well (this is a CP breaking and flavor violating effect). In Fig. 5 we show the asymmetry A_{CP} as a function of the phase $\text{Arg}[(\delta_{U}^{23})_{LL}]$ for various charged Higgs masses. The small graphs inside each graph represent the positive asymmetry A_{CP} in the logarithmic scale, so that one can distinguish the curves with different charged Higgs masses. With the exception of the $H \to \bar{c}b$ decay mode, which can have as large as 0.3% CP asymmetry for $m_{H^+} = 300$ GeV, the other decays yield negligible asymmetries. The absolute value of $(\delta_{U}^{23})_{LL}$ is set to 0.5, but A_{CP} is not very sensitive to the value of this parameter. We also checked the asymmetry induced by the phases of the other δ parameters.
in both the up and down sectors, but they all give negligible contributions. Therefore, it is unlikely that a measurable CP asymmetry in charged Higgs decays $H \to \bar{u}_i d_j$ is generated only by absorptive phase from $(\delta_{ij}^{23})_{LL}$.

In the next two figures, Figs. 6 and 7, we plot the CP asymmetry A_{CP}, for various $\text{Arg}[A]$, values, as a function of A and the gluino mass $m_{\tilde{g}}$, respectively. A_{CP} in both of the decays $H \to \bar{c}b$ and $H \to \bar{c}s$ in Fig. 6 can be as large as 14% at $\text{Arg}[A] = \pi/2$ for large A values, but $H \to \bar{t}b$ remains slightly smaller. The CP asymmetry in $H \to \bar{t}s$ becomes even bigger, but this has to be taken with some care. More than 10% asymmetry could be achieved for each decay mode for $A = 1200$ GeV and if the gluino is very light (~ 200 GeV), as shown in Fig. 7. We note that there exists similar dependence on the charged Higgs mass. The
FIG. 8: The scatter plot for the charged Higgs decays $H \rightarrow \bar{u}_i d_j$ in the $((A_{CP}^2 \times Br))^{-1} - A_{CP}$ plane. These are obtained by scanning the sensitive parameters $A \in (0, 1400) \text{ GeV}$, $\text{Arg}[A] \in (-\pi, \pi)$, $m_{\tilde{g}} \in (200, 1000) \text{ GeV}$, $m_{H^+} \in (200, 1000) \text{ GeV}$, and $\tan \beta \in (1, 50)$. The x-axes are in the logarithmic scale.

CP asymmetry also changes between $\pm 15\%$ as we vary $\tan \beta$. The dependence is significant especially for light charged Higgs masses and small $\tan \beta$ values.

In order to test the viability of these channels for the search of CP asymmetry, we scanned the parameter space spanned by the most sensitive decay channels and compared the number of events (which can taken as the required number of charged Higgs bosons) as function of $(A_{CP}^2 \times Br)^{-1}$. In Fig. 8 we show the scatter plots for the charged Higgs decays $H \rightarrow \bar{u}_i d_j$.
FIG. 9: The same as Fig. 8 but for non-zero $\text{Arg}[(\delta^{23}_{U})_{LL}]$ phase. A is set to 1200 GeV and taken real. The x-axes are in the logarithmic scale. In the $(A_{CP}^{2} \times Br)^{-1} - A_{CP}$ plane. These events are obtained by running the sensitive parameters randomly in the parameter ranges $A \in (0, 1400)$ GeV, $\text{Arg}[A] \in (-\pi, \pi)$, $m_{\tilde{g}} \in (200, 1000)$ GeV, $m_{H^{+}} \in (200, 1000)$ GeV, and $\tan \beta \in (1, 50)$. Note that the x-axes are in logarithmic scale. The branching ratios are calculated by evaluating all the other tree level charged Higgs decay widths with the FeynHiggs program. Again, the small graphs show the positive part of the asymmetry distribution in the logarithmic scale. From these scatter plots, one can make a few observations.
Each decay channel has a possibility to develop an asymmetry bigger than 10%. In the case of $H \to \bar{c}s$ and $H \to \bar{t}s$, there are quite number of events which yield asymmetries around 15%, which is as large an asymmetry as the other two channels can attain. But the number of charged Higgs bosons required to observe such an asymmetry is around $10^5 - 10^6$ for $\bar{t}s$ decay, which is 2 to 4 orders of magnitude more than the number needed to make such a measurement in the $H \to \bar{c}b$ or $H \to \bar{t}b$ channel, respectively. On the other hand, $H \to \bar{c}s$ yields a comparable asymmetry distribution with respect to $H \to \bar{c}b$, and also the required number of charged Higgs is similar for some part of the parameter space which maximizes the asymmetry. Clearly, the parameter set for the maximal scenario is different for each decay modes. Such a similarity between $\bar{c}s$ and $\bar{c}b$ channels is not surprising since the $\bar{c}s$ decay mode can have a branching ratio comparable to, or larger than, that of $\bar{c}b$ decay mode, depending on the value of $\tan \beta$. Of course, there could be some other experimental issues related to $\bar{c}s$ channel because the strange quark is light, and would be difficult to distinguish it from down quark, so one has to sum over both $\bar{c}s$ and $\bar{c}d$ channels.

So, we can conclude that, depending mainly on the $\tan \beta$ value, the asymmetry in both $\bar{c}b$ and $\bar{c}s$ can be competitive with the one from $\bar{t}b$ if there are enough charged Higgs bosons produced at the colliders. But one needs at least 10^2 times more statistics for $\bar{c}b$ and $\bar{c}s$ cases. From Fig. 8 the distribution of the events for $\bar{t}b$ modes, unlike the other channels, are not scattered much since in almost the entire parameter range considered in the scan, its branching ratio remains constant.

In the last figure, Fig. 9 we perform the same scan of the parameter space as before, but with a non-zero phase $\text{Arg}[(\delta_{U}^{23})_{LL}]$ in the up-type squark mixing matrix, while switching the phase of A off. So, instead of running the trilinear coupling A and its phase, we run $(\delta_{U}^{23})_{LL}$ and its phase in the range $(0, 0.5)$ and $(-\pi, \pi)$, respectively. It seems that the largest asymmetry comes from the $H \to \bar{c}b$ process which could be at most as large as $0.6 - 0.8\%$, but at least 10^6 number of Higgs produced are required to probe such asymmetry. Additionally, the asymmetry is still significantly smaller than the case where the absorptive phase originated from the trilinear couplings. For the other channels, not only are the asymmetries very small, but as a consequence the number of charged Higgs required to observe them is enormous.
V. SUMMARY AND CONCLUSION

In this study, we analyzed the possibility of obtaining measurable signals for CP asymmetry in the charged Higgs decays $H \rightarrow \bar{u}_i d_j$ for the second and third generation quarks in the MSSM. Above the top quark threshold, charged Higgs bosons decay mainly to $\bar{t}b$, but decays to $\bar{c}b$, $\bar{c}s$, and $\bar{t}s$ are also relevant. The CP asymmetry of the main decay mode $\bar{t}b$ and other non-quark charged Higgs decays have been considered previously [5, 6, 7]. Here we analyzed, discussed and compared all significant quark channels to pinpoint which one is more likely to produce a visible asymmetry at the colliders. A non-zero CP asymmetry requires an absorptive phase, for which we considered possible interference terms between tree-level and one-loop diagrams. Then we calculated the imaginary parts of one-loop scalar two- and three-point diagrams by first deriving first generic analytical formulas for the discontinuity in such diagrams with the help of Cutkosky rules. We then presented the results obtained for the vectorial and tensorial types of integrals. Within the MSSM framework, we investigated the effect on the asymmetry of two relevant absorptive phases; the common phase of the trilinear couplings A, and the phase from flavor the violating parameter $(\delta_{23}^{U})_{LL}$. We analyzed their effects separately and without considering any interference effects.

Consideration of non-zero values for Arg$[A]$ predicted asymmetries around $10 - 15\%$ for each decay mode. However, by including the requirement that $(A_{CP}^2 \times Br)^{-1}$ is proportional to the number of required Higgs bosons, our analysis indicates that only $H \rightarrow \bar{t}b$ and $H \rightarrow \bar{c}b, \bar{c}s$ decay processes would be likely to induce a measurable CP asymmetry, with the requirement that at least $10^2 - 10^4$ charged Higgs bosons be produced at the colliders. Unlike the phase Arg$[A]$, the phase $(\delta_{23}^{U})_{LL}$ cannot account a sizable CP asymmetry A_{CP}. In this case, only $H \rightarrow \bar{c}b$ can get an asymmetry around $0.6 - 0.8\%$, with the requirement that 10^6 charged Higgs bosons must be produced at the colliders, in order to translate into a measurable asymmetry. The fact that the arguments of A and $(\delta_{23}^{U})_{LL}$ give rise to CP asymmetries of different orders of magnitude justifies a posteriori neglecting interference effects.
VI. ACKNOWLEDGMENT

This work is supported in part by NSERC of Canada under the Grant No. SAP01105354.

mar, CERN-73-09; M. E. Peskin and D. V. Schroeder, An Introduction To Quantum Field
Theory, Addison-Wesley, USA (1995).

lik, S. Heinemeyer and G. Weiglein, In the Proceedings of 2005 International Linear Collider
Workshop (LCWS 2005), Stanford, California, 18-22 Mar 2005, pp 0106; M. Frank, T. Hahn,