Periodically driven Quantum Ratchets: Symmetries and Resonances

S. Denisov1, L. Morales-Molina2, S. Flach2, and P. Hänggi1
1 Institut für Physik, Universität Augsburg, Universitätsstr.1, D-86135 Augsburg, Germany and 2 Max-Planck-Institut für Physik Komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany

(Dated: March 20, 2007)

We study the quantum version of a tilting and flashing Hamiltonian ratchets, consisting of a periodic potential and a time-periodic driving field. The system dynamics is governed by a Floquet evolution matrix bearing the symmetry of the corresponding Hamiltonian. The dc-current appears due to the desymmetrization of Floquet eigenstates, which become transporting when all the relevant symmetries are violated. Those eigenstates which mostly contribute to a directed transport reside in phase space regions corresponding to classical resonances. Quantum dynamics leads to the dependence of the average velocity on the initial phase of the ac-field. A resonant enhancement (or suppression) of the dc-current, due to avoided crossings between different Floquet states takes place upon tuning some control parameters. Our studies are predominantly aimed at experimental realizations of ac-driven quantum ratchets with cold atoms.

PACS numbers: 05.45.Mt, 05.60.-k, 32.80.Pj

I. INTRODUCTION

Ratchets are viewed as realizations of systems which produce a directed current from a fluctuating environment in the absence of gradients and net forces\cite{1, 2, 3, 4, 5}. Initially proposed as an abstract physical model for the understanding of a micromolecular machinery\cite{2}, ratchet systems have found diverse applications in many areas\cite{2, 3, 4, 5}, from mechanical devices\cite{6} up to the quantum systems\cite{7, 8, 9, 10, 11}. Among the areas with growing interest is the study of ratchet dynamics for cold atoms\cite{12}. Hamiltonian ratchets\cite{13, 14, 15, 16, 17} with the corresponding symmetry predictions\cite{13} have recently been successfully realized with cold Rubidium and Cesium atoms in optical lattices with a two-harmonics driving and a tunable weak dissipation\cite{18}. In these experiments, the mechanism of the Sisyphus cooling\cite{19} has been used in order to furnish initial conditions in form of an optical lattice: an ensemble of atoms localized in the wells of a periodic potential created by laser beams. In the momentum space this corresponds to a narrow distribution near the momentum $p = 0$. This is essential for the observation of the rectification effect, since the asymptotic current tends to zero for broad initial distributions in momentum space.

To describe the ratchet dynamics of the thermal cloud of cold atoms in optical lattices\cite{18}, a classical model has been used\cite{13, 14, 15}. However, as the cloud of atoms in a far detuned optical potential\cite{20} is cooled further down, one can obtain a system where quantum effects become relevant. Many studies of quantum ratchets are based on the kicked rotor model\cite{2, 16, 21, 22}, which is readily treated numerically. In reality kicks may heat the system and degrade quantum effects. It is perhaps for that reason, that other successful experiments\cite{18} use a time continuous drive, which is also the choice in the present work.

The paper is organized as follows. In Section II we introduce the model for the quantum tilting ratchet and discuss its properties. The dynamics of the system is studied within the Floquet theory. We use the Husimi representation in order to link eigenstates to manifolds in the classical phase space. In section III we study the relevant symmetries, whose violation leads to the directed current, and the desymmetrization mechanisms. Section IV is devoted to the dynamics of current rectification. We begin by discussing the dependence of the current on the initial condition. Then we investigate the appearance and controlling of quantum resonances that lead to a significant enhancement of directed transport. In Section V we introduce the realization of a quantum flashing ratchet system. Finally, in Section VI we summarize our results. Some of our important technical details are deferred to the Appendices A, B and C.

II. MODEL SET-UP

Let us start with a cloud of atoms, placed into a periodic potential (formed by an optical standing wave) and exposed to an external ac field. Assuming a low density, we neglect the interactions among the atoms. Hence, our problem can be described by the Schrödinger equation

$$i \hbar \frac{\partial}{\partial t} |\psi(t)\rangle = H(t, t_0)|\psi(t)\rangle,$$

(1)

where the Hamiltonian H is of the form\cite{18}

$$H(x, p, t) = \frac{p^2}{2} + (1 + \cos(x)) - xE(t - t_0).$$

(2)

Here $E(t)$ is an external periodic field of zero mean, $E(t - t_0 + T) = E(t - t_0)$, $\int_0^T E(t)dt = 0$, and t_0 is the initial time.

The Hamiltonian\cite{2} is periodic in time with period T. The solutions $|\psi_\alpha(t)\rangle = U(t, t_0)|\psi_\alpha(0)\rangle$ of the Schrödinger equation (1) can be characterized by the
eigenfunctions of $U(t_0 + T, t_0)$ which satisfy the Floquet theorem: $|\psi(t)\rangle = e^{-i\frac{\partial}{\partial \alpha}}|\phi_\alpha(t)\rangle$, $|\phi_\alpha(t + T)\rangle = |\phi_\alpha(t)\rangle$. The quasienergies E_α ($-\pi < E_\alpha < \pi$) and the Floquet eigenstates can be obtained as solutions of the eigenvalue problem of the Floquet operator

$$ U(T, t_0)|\phi_\alpha(t_0)\rangle = e^{-iE_\alpha T}|\phi_\alpha(t_0)\rangle. \quad (3) $$

The Floquet eigenstates provide a complete orthonormal basis and the stroboscopic quantum state can be expressed as

$$ |\psi(mT, t_0)\rangle = \sum_\alpha C_\alpha(t_0)e^{-imE_\alpha}|\phi_\alpha(t_0)\rangle, \quad (4) $$

where the coefficients $\{C_\alpha\}$ depend on t_0. For later convenience the integer $\alpha = 0, 1, 2, \ldots$ sorts the states $|\phi_\alpha\rangle$ such that the mean kinetic energy $\langle \tilde{p}^2 \rangle_\alpha \equiv \frac{1}{1/T}\int_0^T \langle \tilde{p}^2 \rangle dt_0$ monotonically increases.

By using the gauge transformation, $|\psi\rangle \to \exp(-\frac{i}{\hbar} \int_0^t E(t') dt')|\psi\rangle$ [24], we transform the original Hamiltonian [2] into a spatially periodic one (see Appendix A). Then the solution of the time-dependent Schrödinger equation for the new Hamiltonian may be written as

$$ |\psi(t)\rangle = e^{-\frac{i}{\hbar} \int_0^t \frac{1}{2} \{\hat{p} - \hat{A}(t', t_0)\}^2 + (1 + \cos x) x dt}|\psi(0)\rangle, \quad (5) $$

with the vector potential $A(t) = -\int_0^t E(t') dt'$. Due to discrete translational invariance and Bloch’s theorem all Floquet states are characterized by a quasimomentum κ with $|\phi_\alpha(x + 2\pi)\rangle = e^{i\hbar\kappa}|\phi_\alpha(x)\rangle$.

Here we choose $\kappa = 0$ which corresponds to initial states where atoms equally populate all (or many) wells of the spatial potential. The wave function is expanded in the plane wave eigenbasis of the momentum operator \hat{p}, $|n\rangle = \frac{1}{\sqrt{2\pi}} e^{inx}$, viz.

$$ |\psi(t)\rangle = \sum_{n=-N}^{N} c_n(t)|n\rangle. \quad (6) $$

A detailed discussion of the two numerical procedures used to integrate Eq. (1) is presented in the Appendix [13] and Section [13].

To examine the morphology of the quasienergy states we use the Husimi representation [25]

$$ \rho(x, p) = \frac{1}{2\pi} |\langle \psi | \Phi(x, p) \rangle|^2, \quad (7) $$

where

$$ \Phi(x, p) = \frac{1}{(2\pi\sigma^2)^{1/4}} \exp \left\{ -\frac{(x - x)^2}{4\sigma^2} + ipx \right\}, \quad (8) $$

with $\sigma = (\hbar/2)^{1/4}$. Here $\langle x \rangle$ and $\langle p \rangle$ stand for the average of the position and momentum respectively. The Husimi representation provides an insightful, coarse grained description in the phase-space [25].

III. RELEVANT SYMMETRIES AND THEIR VIOLATIONS

A. Classical limit

Let us briefly outline the classical case. In this limit the system is generically characterized by a nonintegrable dynamics with a mixed phase space containing both chaotic and regular areas in the three-dimensional phase space (x, p, t) [27]. Due to time and space periodicity of the classical equation of motion $\ddot{x} = -\frac{\partial}{\partial x} E(t)$, we can map the original three-dimensional phase space onto a two-dimensional cylinder, $T^2 = (x \ mod 1, p)$, by using the stroboscopic Poincaré section after each period $T = 2\pi/\omega$, cf. Figure 1(a). This provides a helpful visualization of the mixed phase space structure. A stochastic layer, located near the line $p = 0$, originates from the destroyed separatrix of the undriven system, $E(t) = 0$. The chaotic layer is confined by transporting KAM tori, which originate from perturbed trajectories of particles with large kinetic energies, $\langle \tilde{p}^2 \rangle$. The stochastic layer is not uniform and contains different regular invariant manifolds - regular islands, unstable periodic orbits and cantori [27].

There are two symmetries which need to be broken to fulfill the necessary conditions for the appearance of a dc-current $J = \lim_{t \to -\infty} \frac{\dot{x}}{\dot{t}} = \langle \dot{x} \rangle$, [13]. If $E(t)$ is shift symmetric, i. e. $E(t) = -E(t+T/2)$, the symmetry

$$ S_a : (x, p, t) \to (x+\pi, -p, t+T/2), \quad (9) $$

is realized. Furthermore, if $E(t)$ is symmetric, i. e. $E(t+t_s) = E(-t+t_s)$ at some appropriate point t_s, the symmetry

$$ S_b : (x, p, t) \to (x, -p, -t+2t_s), \quad (10) $$

is held. Any trajectory, when transformed using one of the abovementioned symmetry operations, yields again a trajectory of the system but with opposite velocity. Assuming that ergodicity holds in the chaotic layer (which means that all its average characteristics are independent on the initial conditions, and that symmetry-related trajectories have the same statistical weight, we conclude that the asymptotic velocity within the chaotic layer is zero. So, whenever S_a and/or S_b are realized, directed transport is forbidden inside the chaotic layer [13].

The two frequency driving,

$$ E(t, t_0) = E_1 \cos(\omega(t-t_0)) + E_2 \cos[2\omega(t-t_0) + \theta], \quad (11) $$

ensures that for $E_1, E_2 \neq 0$ S_a is always violated. In addition S_b is violated for $\theta \neq 0, \pm \pi$. The appearance of a nonzero dc-current $J_{ch} = \lim_{t \to -\infty} 1/t\int_0^t \tilde{p}(t')dt'$ in this case is due to a desymmetrization of the chaotic layer structure (Fig 11). It induces a desymmetrization of the events of directed motion to the right and left [28]. Due
to ergodicity inside the layer, the asymptotic current is independent of the initial time t_0, for initial conditions located inside the chaotic layer. With the specific choice of the driving (11) it follows $J_{ch}(\theta) = -J_{ch}(-\theta)$ and $J_{ch}(\theta) = -J_{ch}(\theta + \pi)$ (13). From perturbation theory it follows $J_{ch} \sim E^2_1 E_2 \sin \theta$ (13, 14). An efficient sum rule allows to compute the average current J_{ch} by proper integration over the chaotic layer (10).

B. Quantum case

If the Hamiltonian is invariant under the shift symmetry S_α (23), then the Floquet operator possesses the property, see Eq.(179) in Ref.[23]:

$$U(T, t_0) = U^\Phi (T/2, t_0)^T U (T/2, t_0).$$

(12)

Here U^Φ performs a transposition along the codiagonal of U. With (11) S_α is always violated.

Likewise, one can show that, if the Hamiltonian is invariant under the time reversal symmetry S_b (10), then the Floquet matrix has the property (24)

$$U(T, t_0) = U(T, t_0)^\Phi.$$
(13)

That symmetry will be recovered for $\theta = 0, \pi$. More details about the derivation of the previous properties of the operator evolution are explained in the Appendix [C].

We introduce the quantum asymptotic current as the mean momentum expectation value

$$J(t_0) = \langle \hat{p} \rangle_t = \lim_{t \to \infty} 1/t \int_{t_0}^t dt' \langle \psi(t', t_0) | \hat{p} | \psi(t', t_0) \rangle,$$
(14)

where $\hat{p} = (\psi | \hat{p} | \psi)$ is the mean instantaneous momentum. Expanding the wave function in the Floquet basis the current becomes

$$J(t_0) = \sum_\alpha \langle p | \alpha \rangle C_\alpha(t_0)^2,$$
(15)

where $\langle p | \alpha \rangle$ is the mean momentum of the Floquet state $| \phi_\alpha \rangle$ (see Appendix [D] for more details). Thus, we have to study the properties of Floquet states.

In general, the Floquet bands of the system (1-2) depend on the control parameters like amplitudes, frequencies and phase shifts of the components of the force $E(t)$. We vary the parameter θ while keeping the other fixed. In Fig.2 we present the quasienergy bands as a function of θ. There are two remarkable features. First, the spectrum exhibits two symmetries, $E_\alpha(\theta) = E_\alpha(-\theta)$ and $E_\alpha(\theta) = E_\alpha(\theta + \pi)$, which are consequences of the choice (11). Second, while some bands show strong dispersion upon the variation of θ, reaching the maximal dispersion at $\theta = \pm \pi/2$, others have a rather flat dependence. In Fig.1(b-d) we present Husimi functions (25) for several Floquet states depicted by symbols in Fig.2. The Planck constant $\hbar = 0.2$ is in a range, where it is possible to establish a correspondence between different Floquet states and the invariant manifolds of the mixed phase space for the classical limit. The states (b-d) are located in various regular phase space regions.

On the other hand, from Fig.2 we observe repulsion between some bands whereas other apparently cross each others. These crossings are in fact avoided crossings which lead to interesting effects.

For the symmetric case $\theta = 0, \pm \pi$ the Floquet matrix has an irreducible representation using even and odd basis states $| n \rangle_{s,a} = (| n \rangle \pm | -n \rangle) / \sqrt{2 - \delta_{n,0}}$. All the Floquet states appear as quasi-degenerate doublets and $\langle p | \alpha \rangle = 0$ for all α (see Figs.23). We especially note that this is true for states with arbitrarily large kinetic energy, for which the corresponding quasienergies become

![Fig. 1: (a) Poincaré section for the classical limit; (b-d) Husimi representations for different Floquet eigenstates for the Hamiltonian (2) with $\hbar = 0.2$ (momentum is in units of the recoil momentum, $p_r = \hbar k_L$, with $k_L = 1$). The parameters are $E_1 = E_2 = 2$, $\omega = 2$, $\theta = -\pi/2$ and $t_0 = 0$.](image1)

![Fig. 2: A part of the quasienergy spectrum as a function of the parameter θ. The symbols indicate the corresponding Floquet states shown in Fig.1(b-d). The empty red circle indicates the existence of an avoided crossing between two eigenstates. The empty square encloses the region of spectrum that appears enlarged in Fig.3.](image2)
almost pairwise degenerated. Consequently, following the Eq.(15), $J = 0$ in this case.

For $\theta \neq 0, \pm \pi$ the Floquet states become asymmetric and the quasidegeneracies are removed (Fig.3). Floquet states acquire a non-zero mean momentum, thus becoming transporting. On the other hand, in the symmetric case it is possible to have coherent tunneling oscillations between disconnected regular islands, in the non-symmetric case a possible dynamical tunneling is suppressed [30]. Thus, a wave packet initially located on a Floquet state with an asymmetric distribution of momentum (similar to the state shown in Fig.3(a)) will undergo a permanent directional transport.

This phenomenon of desymmetrization results in a non-trivial dependence of the momentum upon θ. We can gain some understanding of this effect by modeling the evolution of two eigenstates, which form a parity-related pair at the point $\theta = 0$, by neglecting their coupling with the rest of the states.

To this end, we take two eigenstates, Φ_a and Φ_b, which can be expanded in the plane wave basis $\pm |n\rangle$. The corresponding propagator for such a reduced system is

$$U_{ab} = \left(\begin{array}{cc} 1 - \varepsilon & \Delta \\ \Delta & 1 + \varepsilon \end{array} \right),$$

where the non-diagonal term Δ refers to the interaction between the states. In general, this quantity depends upon the momentum and driving field’s characteristics, i.e. $\Delta = \Delta(p, E_1, E_2, \theta)$. On the other hand, the parameter ε breaks the parity symmetry, and yields $\varepsilon \sim nE_1^2E_2\sin\theta$ at a first-order of a perturbation theory. It is known that, in the absence of driving, $E(t) = 0$, the asymptotic dependence of the splitting value on n is $\Delta \sim n^{-\alpha}$, i.e. a superexponential decay [31].

The eigenstates in a plane-wave basis are

$$\Phi_s = \frac{1}{L(\gamma)} \left[1 \cdot |n\rangle + \left(\gamma + \sqrt{1 + \gamma^2} \right) \cdot | - n\rangle \right],$$

$$\Phi_a = \frac{1}{L(\gamma)} \left[\left(\gamma + \sqrt{1 + \gamma^2} \right) \cdot |n\rangle - 1 \cdot | - n\rangle \right],$$

where $\gamma = \varepsilon/\Delta$ and $L(\gamma) = \sqrt{1 + \left(\gamma + \sqrt{1 + \gamma^2} \right)^2}$. The symmetric case, $\theta = 0$, corresponds to the limit $\gamma \to 0$. The eigenstate’s momenta are

$$p_s \approx -\gamma n, \quad p_a \approx \gamma n,$$

(19)

At the opposite limit, $\gamma \to \infty$, we have

$$p_s \approx -n \left(1 + \frac{1}{4\gamma^2} \right), \quad p_a \approx n \left(1 + \frac{1}{4\gamma^2} \right).$$

(20)

For large n, Δ is small, but for $\varepsilon = 0$ (symmetric case) it follows $\gamma = 0$, and the eigenstates carry zero momentum. Deviating from $\theta = 0$, the moments quickly reach values $\pm n$. That happens for $E_1^2E_2\sin\theta \gg n^{-\alpha-1}$, which will hold for any nonzero E_1, E_2, θ, provided n is large enough.

Leaving the region corresponding to the chaotic layer, the splitting between the doublets drops quite suddenly to zero. This explains the momentum asymmetry in Fig.3 for values of θ slightly deviated from $\theta = 0$.

IV. AVERAGE CURRENT AND RESONANCES IN CURRENT RECTIFICATION

The asymptotic current [14] depends on the initial conditions, and, following Eq.(13), only those Floquet states which overlap with the initial wave function, $\psi(t_0)$, contribute to its subsequent time evolution. From now on, we restrict our analysis to the initial condition in the form of a plane wave with wavevector $n = 0$, i.e.

$$\psi(t_0) = \langle 0 | = \sqrt{2\pi}.\] This initial condition spreads over Floquet states with low kinetic energies, namely over those eigenstates for which the Husimi representations lie in the chaotic layer’s region (Fig.4).

In the previous section we have discussed the mechanism of the desymmetrization when we tuned the system away from the symmetry point $\theta = 0$. In order to estimate a dc-current value we need a qualitative information about mean momentum values acquired by Floquet states. As a suitable quantity to study this issue, we use the cumulative average momentum, $P_\alpha = \sum_{s \leq \alpha} \langle p \rangle_s$. Fig.4 depicts the cumulative average momentum, obtained from the recursive relation

$$P_{\alpha+2} = P_\alpha + \langle p \rangle_{\alpha+1} + \langle p \rangle_{\alpha+2},$$

with $P_0 = \langle p \rangle_0$ [20]. The

![FIG. 3: Right panel: Quasienergy spectrum in the vicinity of two quasidenerated Floquet states. The symmetry is restored at the points $\theta = 0, \pm \pi$ where the splitting is rather small. Left panels: Husimi function for different θ a) $\theta = -0.05$; b) $\theta = 0$.](image-url)
asymmetry stems mainly from Floquet states located in the chaotic layer region of the classical phase space. The dependence has several peaks. The Floquet states with higher values of the mean momentum, which yields strong dc-currents, are located at kinetic energy's regions that correspond to classical transporting resonance islands (see bottom part of the Fig.4). A more detailed analysis by using the Husimi distribution confirms this finding. There are infinitely many high-order resonance islands in the phase space of the Hamiltonian system (2) whose sizes shrink quickly as the resonance’s order increases with $\langle p^2 \rangle \to \infty$. The desymmetrization effect is observable only when a resonance island can host more than one Floquet state. With increasing $\langle p^2 \rangle$, P_α approaches zero in full accordance with the fact that total current over the whole momentum space should be zero.

The asymptotic current for a fixed initial condition $|\psi(t_0)\rangle$ depends in general on the initial time t_0. Note that this is possible also in the classical case, since the initial distribution may overlap with different regular transporting manifolds. However, if we start with a cloud of particles located exactly inside the chaotic layer, the classical asymptotic current will be independent of t_0 for any choice of the distribution function over the chaotic manifold. This is not true for the quantum case where the current may even change its sign with the variation of t_0. It is a consequence of the linear character of the Schrödinger equation.

FIG. 4: Top: The line corresponds to the cumulative momentum, P_α (see text). All the momenta are scaled in units of the recoil momentum p_r. Inset: The bars depict the weights of the respective Floquet states that overlap with the initial state $|0\rangle$. The bars have been multiplied by a factor of 10. Bottom: The plot of the average kinetic energy, complementary to the Poincaré section on Fig.1(a). Starting from an initial point $(x(t_0), p(t_0))$, we calculate the kinetic energy averaged over one period, $E_{kin}(mT) = \frac{1}{T} \int_{t_0}^{t_0+T} p^2(t) dt$, and consequently plot points $(x(mT), E_{kin}(mT))$. The parameters are the same as in Fig.1.

The typical dependence of the average current J on θ is shown on Fig.5. The curve presents a smooth profile with several peaks.

By comparing Fig.4 with the quasienergy spectrum Fig.2 one can associate peaks with single sharp avoided crossings (resonances) between two Floquet eigenstates. The Husimi function gives us additional insights for the appearance of these peaks (see insets in Fig.5). It shows two states that are located in the chaotic layer, one of them near $p = 0$, while the other is off the line $p = 0$ with a strong asymmetry in momentum, corresponding to a regular transporting manifold. Off resonance the initial zero-plane wave state mainly overlaps with the first eigenstate, which yields some nonzero current due to desymmetrization. At resonance this eigenstate mixes with the "transporting" one, resulting in a strong enhancement of the current which is reflected in the presence of peaks.

From an experimental point of view a too narrow resonance may become undetectable due to resolution limitations. We thus studied how to vary the width of the resonance without much affecting its amplitude. It turns out to be possible by tuning another control parameter.
e.g. the amplitude E_2. We decrease this field amplitude in order to disentangle the two Floquet states and remove the avoided crossing. That will happen for some value of E_2 at $\theta = \pm \pi/2$. The details of the quasienergy spectrum versus θ in the resonance region for $E_2 = 1$ (top right) and $E_2 = 1.2$ (bottom left). The parameters are $E_1 = 3.26$ and $\omega = 3$. (b) Husimi function for the upper eigenstate that appears in (a) (top right inset) with $\theta = -\pi/2$.

As we already know, in resonance Floquet states mix. Here the new eigenstate contain contributions both from the original chaotic state as well as from the regular transporting island state (see Fig.6). The Husimi distribution of this mixed state shows strong asymmetry as expected. The states from the chaotic sea and the regular transporting island are connected by a narrow isthmus. Therefore, it is possible to leak from the nontransporting to the transporting island, which, in principle, should reduce significantly the observation time for the detection of resonances. It was shown in [28], for the classical limit, that for a maximum desymmetrization of the phase space, particles may stick to a regular island leading to a ballistic flight. Hence, based on the classical analog, we can say that our hybrid state serves as a quantum ballistic channel.

FIG. 6: (a) The average current J (in units of the recoil momentum) vs θ for different amplitude values of the second harmonic, E_2: 0.95 (pointed line), 1 (dashed line) and 1.2 (solid line). Insets: relevant details of the quasienergy spectrum versus θ in the resonance region for $E_2 = 1$ (top right) and $E_2 = 1.2$ (bottom left). The parameters are $E_1 = 3.26$ and $\omega = 3$. (b) Husimi function for the upper eigenstate that appears in (a) (top right inset) with $\theta = -\pi/2$.

On the other hand, as already mentioned, the asymptotic current depends on the initial time t_0. The observed resonance structures, due to resonant interaction between Floquet states (avoided crossings of quasienergies), are independent of the initial time t_0. In Fig.7 we plot the nonaveraged current as a function of both θ and t_0. While the smooth background is barely resolvable with the naked eye, the resonances are clearly seen, and their position is not depending on t_0, while their amplitude does. That implies that one can further maximize the resonant current by choosing properly the initial values for t_0.

So far, we have considered only the frequencies, $\omega = 2, 3$ (Figs.1-7). To gain a better understanding of the resonances, we compute the dependence of the current as a function of the frequency of the driving force (see Fig.8). This figure shows the appearance of peaks, whose amplitudes increase as the frequency decreases. However, for larger frequencies, peaks show up for specific frequencies, a result which depends on the drive amplitudes. Interestingly, one can notice the inversion of current.

In order to increase the current, we reduce the frequency of the ac-force $E(t)$. The asymptotic current for $\omega = 1$ is shown in the inset of Fig.8. We again observe a clear broad resonance, but the maximum current value increases by an order of magnitude up to 0.5 in units of recoil momenta.

Real experiments are always limited by a finite observation time. Therefore, the rate of convergence to the asymptotic current value, Eq.(12), becomes a crucial issue. To give a more realistic approach of our above results to experiments, we perform numerical computations using the running average momentum (current) definition,

$$P = \frac{1}{t} \int_0^t \vec{p} dt. \quad (21)$$

The time evolution for the instantaneous momentum $P(t)$ is shown in Fig.9. Top of Fig.9 shows that off reso-
FIG. 8: The average of current J versus frequency ω of the driving force for $\theta = -\pi/2$. Inset: The average of current J versus θ for $\omega = 1$. The plot of the current is depicted for the interval $(-\pi/2, 0)$, since the current is antisymmetric with respect to a reflection at the origin. The other parameters are $E_1 = 3$, $E_2 = 1.5$.

nance the momentum rapidly evolves towards an asymptotic value, while in resonance the momentum performs long term oscillations which slowly approach the asymptotic value as the time increases. To speed up the convergence of the momentum towards the asymptotic value, we reduce the frequency. Fig. 9 shows large currents close to the recoil momentum with relaxation times of the order of 100 to 200 periods for $\omega = 1$. The above results were obtained for $\hbar = 0.2$. We have repeated the calculations using $\hbar \sim 1$ and observed similar results.

V. QUANTUM HAMILTONIAN RATCHETS WITH FLASHING POTENTIALS

Recent experiments have shown the possibility to achieve an optical lattice with variable asymmetry \cite{33}. The Hamiltonian in this case is given by

$$H(x, p, t) = \frac{p^2}{2} + U(x)E(t - t_0), \quad (22)$$

where $U(x + L) = U(x)$ and $E(t + T) = E(t)$.

Here, we take, as in \cite{33}, the potential

$$U(x) = K \left[\cos(x) + s \cos(2x + \theta_p) \right], \quad (23)$$

where θ is the parameter which makes the potential asymmetric for values different from $0, \pm \pi$. The relevant symmetries for the classical limit of the Hamiltonian \cite{22} are

$$S_1 : (x, p, t) \rightarrow (-x + 2x_s, -p, t) \quad (24)$$

if $U(x + x_s) = U(-x + x_s)$ for some x_s,

$$S_2 : (x, p, t) \rightarrow (x, -p, -t + 2t_s) \quad (25)$$

if $E(t + t_s) = E(-t + t_s)$ for some t_s,

$$S_3 : (x, p, t) \rightarrow (-x + 2x_s, -p, t + T/2) \quad (26)$$

if $E(t) = -E(t + T/2)$ and $U(x + x_s) = -U(-x + x_s), \quad (26)$

$$S_4 : (x, p, t) \rightarrow (x + L/2, -p, -t + 2t_s) \quad (27)$$

if $E(t + t_s) = -E(-t + t_s)$ and $U(x) = -U(x + L/2). \quad (27)$

FIG. 9: Momentum evolution of state $|0\rangle$ in units of periods. Top panel: On resonance cases $\theta = -\pi/2$ for different t_0. Off resonance case $\theta = -\pi/2$. The parameters are $\omega = 3$, $E_1 = 3.26$, $E_2 = 1$. Bottom panel: Case $\omega = 1$ with parameters $E_1 = 3$, $E_2 = 1.5$.

S1 : (x, p, t) → (-x + 2x_s, -p, t) \quad (24)

if U(x + x_s) = U(-x + x_s) for some x_s,

S2 : (x, p, t) → (x, -p, -t + 2t_s) \quad (25)

if E(t + t_s) = E(-t + t_s) for some t_s,

S3 : (x, p, t) → (-x + 2x_s, -p, t + T/2) \quad (26)

if E(t) = -E(t + T/2) and U(x + x_s) = -U(-x + x_s), \quad (26)

S4 : (x, p, t) → (x + L/2, -p, -t + 2t_s) \quad (27)

if E(t + t_s) = -E(-t + t_s) and U(x) = -U(x + L/2). \quad (27)
It is easy to see that a two-harmonic potential Eq. (23) is insufficient to break the time-reversal symmetry S_2 [25]. Thus an asymmetric ac-modulated function $E(t)$ is needed to desymmetrize the system. We use the two-harmonic function [11], which ensures that for $\theta_p \neq 0, \pm \pi$ and $\theta \neq 0, \pm \pi$ all the relevant symmetries, Eqs. (24,25,26,27), are violated. As stated before the quantum system inherits the same symmetries as the classical limit. Therefore a current should appear as the asymmetries are broken.

Fig. 10 shows the average current J versus θ for the asymmetric potential, $\theta_p = -\pi/2$, at strong quantum limit $\hbar = 1$. Since the current dependence possesses the two-harmonic function $\tilde{E}(t)$, which ensures that for $\theta_p \neq 0, \pm \pi$ and $\theta \neq 0, \pm \pi$ all the relevant symmetries, Eqs. (24,25,26,27), are violated. As stated before the quantum system inherits the same symmetries as the classical limit. Therefore a current should appear as the asymmetries are broken.

Fig. 10 shows the average current J versus θ for the asymmetric potential, $\theta_p = -\pi/2$, at strong quantum limit $\hbar = 1$. Since the current dependence possesses the two-harmonic function $\tilde{E}(t)$, which ensures that for $\theta_p \neq 0, \pm \pi$ and $\theta \neq 0, \pm \pi$ all the relevant symmetries, Eqs. (24,25,26,27), are violated. As stated before the quantum system inherits the same symmetries as the classical limit. Therefore a current should appear as the asymmetries are broken.

VI. CONCLUDING REMARKS

In summary, we have investigated the mechanisms of the emergence of an average current in ac-driven quantum systems. The key mechanism of the current rectification is the desymmetrization of Floquet states. A peculiarity of the quantum ratchet is its strong dependence of the current on the chosen initial time t_0 of the applied field. We identified quantum resonances induced by avoided crossings between Floquet states which enhance the current drastically. Optimizing the drive frequency, amplitude and initial phase, resonant currents easily reach the recoil momentum value and should be experimentally observable using driven cold atoms in optical lattices [18, 33].

Acknowledgments

This work has been supported by the DFG-grant HA1517/31-1 (P. H. and S. F.).

APPENDIX A: GAUGE TRANSFORMATION: SOME RELEVANT QUANTITIES

We introduce the transformation

$$|\tilde{\psi}\rangle = \exp \left[\frac{i}{\hbar}xA(t) \right] |\psi\rangle$$

with $A(t) = -\int_0^t E(t')dt'$. Substituting into Eq. (11) we can rewrite the Schrödinger equation as

$$i\hbar \frac{\partial}{\partial t} |\tilde{\psi}(t)\rangle = \hat{H}(t)|\tilde{\psi}(t)\rangle,$$

where $\hat{H}(t) = \frac{\hat{p}}{\hbar} + \frac{A(t)}{\hbar} - \frac{A(t)}{\hbar}^2 + [1 + \cos(x)]$.

To compute the momentum we start from the definition

$$\langle p \rangle = \langle \hat{p} \rangle = \int_{-\infty}^{\infty} \psi^* \frac{\partial}{\partial x} \psi dx = p(t) + A(t)$$

where $\langle \hat{p} \rangle = \langle p \rangle$.

The kinetic energy T is given by

$$T(t) = \langle \psi | -\hbar^2 \frac{\partial^2}{\partial x^2} | \psi \rangle = \langle \psi | xA(t) | \psi \rangle - \hbar^2 \frac{\partial^2}{\partial x^2} \langle \psi | \exp \left[-\frac{i}{\hbar}xA(t) \right] \psi \rangle.$$ (A3)

After straightforward calculations

$$T(t) = \overline{T}(t) - 2A(t)\overline{T}(t) + A(t)^2.$$ (A4)

The average kinetic energy reads

$$\langle T \rangle = \langle \overline{T} \rangle - 2\langle A(t)\overline{T}(t) \rangle + \langle A(t)^2 \rangle.$$ (A5)

Recalling the Husimi distribution,

$$\rho(\langle x \rangle, \langle p \rangle) = \frac{1}{2\pi} |\langle \psi | \Phi_{(x,\langle p \rangle)} \rangle|^2,$$ (A6)

we can recast it in the new frame of variables as,

$$\tilde{\rho}(\langle x \rangle, \langle p \rangle) = \frac{1}{2\pi} \left| \int_{-\infty}^{\infty} e^{-i\frac{\pi}{2} A(t)} \psi^* (x, t) e^{i(x-p)^2/4\sigma^2} dx \right|^2 \int_{-\infty}^{\infty} \psi^* (x, t) e^{i(x-p)^2/4\sigma^2} dx \right|^2 \rho \left\{ \langle x \rangle, \langle p \rangle - \frac{A(t)}{\hbar} \right\}.$$ (A7)
Finally, after reversing the operations, we find
\[
\rho((x),\langle p\rangle) = \hat{\rho}\left\{ \langle x\rangle, \langle p\rangle + \frac{A(t)}{\hbar} \right\}. \tag{A8}
\]

APPENDIX B: NUMERICAL INTEGRATION SCHEMES

In order to find the numerical solution for the time-dependent Schrödinger equation we have used two different methods of integration. The first method has been described in [34]. It starts by using the expansion Eq. (6) and approximating
\[
\hat{A}(t) = \frac{\Delta t}{\hbar} A(t) \sum_k \delta(t - k\Delta t), \tag{B1}
\]
for the time dependence of the vector potential \(A(t) = -\int_{t_0}^t E(t')dt' \), with \(\Delta t = 2\pi/(\omega N_t) \), where \(N_t \) is the number of integration steps per period.

The integration is carried out computing the coefficients \(c_n(t_k + \Delta t) / (t_k + \Delta t) \) by successive multiplication of the vector \(c_n(t_k) \) by a unitary matrix
\[
c(t_k + \Delta t) = U Q V^{-1} c(t_k) \tag{B2}
\]
where \(U \) and \(V \) are diagonal matrices with
\[
U_{n,n} = \exp \left\{ -i\Delta t \left[n^2 - 2n \frac{A(t)}{\hbar} + \frac{A(t)^2}{\hbar^2} \right] \right\} \quad \tag{B3}
\]
and \(V_{n,n} = \exp(-i\Delta t\tilde{v}_n) \).

\(\tilde{v}_n \) are the eigenvalues of the matrix representation \(M \) of the operator \((1/\hbar) \cos(\hat{x}) \). \(Q \) is an orthogonal (unitary) matrix that transforms \(M \) into diagonal form \((M = Q \tilde{V} Q^{-1}) \). \(\tilde{V} \) is a diagonal matrix with elements \(\tilde{v}_n \).

The symmetric matrix \(M \) has the structure \(M_{n,m} = (\delta_{m,n+1} + \delta_{m,n-1})/(2\hbar) \). This method permits to decrease the number of steps per period [35]. Nevertheless, it involves several matrix products and therefore its efficiency is degraded.

To check our results we use a second integration method which is more efficient [29]. We expand again over plane waves but this time we write down the expansion coefficients as a product of two time dependent functions, viz.
\[
|\psi(t)\rangle = \sum_{n=-N}^N a_n(t)\phi_n(t)|n\rangle. \tag{B4}
\]
Assuming that \(\phi_n \) is a solution of the problem
\[
ith\partial_t \phi_n(t) = \frac{\hbar^2}{2} \left[n - \frac{A(t)}{\hbar} \right]^2 \phi_n, \tag{B5}
\]
we obtain for \(\phi_n(t) \) the solution
\[
\phi_n(t) = \exp \left\{ -i\frac{\hbar}{2} \left[n^2 t - \frac{2n}{\hbar} \int_0^t A(t')dt' \right. \right. \nonumber \\
+ \left. \left. \frac{1}{\hbar^2} \int_0^t A(t')dt'' \right] \right\}. \tag{B6}
\]

Then inserting Eq. (B4) into Eq. (A1) we obtain the set of equations for the amplitudes \(a_n(t) \)
\[
\dot{a}_n = -\frac{1}{2\hbar} \left[\frac{\partial_{n+1}}{\phi_n} a_{n+1} + \frac{\partial_n}{\phi_n} a_{n-1} \right]. \tag{B7}
\]

To obtain the propagator \(U(T,0) \), we start with the initial states \(a_k = \delta_{n,k} \), where \(-N \leq n,k \leq N \) and integrate over one time period \(T \). Here the column of the matrix for the propagator is given by \(a_n(T)\phi_n(T) \). For the computation we have neglected the contribution originating from \(\tilde{A}^2(t) \) and the constant term \(1/\hbar \) in the potential since they only yield global phase factors.

APPENDIX C: SYMMETRIES OF THE FLOQUET OPERATOR

Let us first analyze the time reversal symmetry:
\[
S_b : t \to -t, \quad x \to -x.
\]
In the momentum representation basis, \(|n\rangle \), this transformation implies several operations including complex conjugation, and inversions \(n \to -n \).

In that case the Floquet operator possesses the property
\[
U(T,t_0) \equiv U(T,t_0)^\Phi,
\]
whose matrix elements obey
\[
u_{n,m} = u_{-n,-m}.
\]
The latter relation holds whenever the transformation is done around the symmetric points, namely \(t_0 = t_s \).

Let us analyze the symmetry
\[
S_u : t \to t + T/2, \quad x \to -x.
\]
This corresponds to the transformation
\[
t \to t + T/2, \quad n \to -n.
\]
For the Floquet operator we get
\[
U(T,0) \equiv U(T, T/2) U(T/2,0) \equiv U(T/2,0)^{\Phi T} U(T/2,0). \tag{C1}
\]
This implies that
\[
U \to U^{\Phi T},
\]
or, equivalently,
\[
u_{n,m} = u_{-n,-m}.
\]
APPENDIX D: ASYMPTOTIC CURRENT

The asymptotic current can be defined as follows

\[J = \lim_{\mu \to \infty} \frac{1}{\mu} \sum_{m=1}^{\mu} \langle \psi(mT) | \hat{p} | \psi(mT) \rangle_T = \lim_{\mu \to \infty} \frac{1}{\mu} \sum_{m=1}^{\mu} \langle (p(mT)) \rangle_T. \]

(D1)

The wave function can be expanded over Floquet states

\[|\psi(t)\rangle = \sum_{\alpha} C_{\alpha} |\phi_{\alpha}\rangle. \]

(D2)

Similarly, one can expand the Floquet states over the plane wave function

\[|\phi_{\alpha}(t)\rangle = \sum_{n} b_{\alpha,n} |n\rangle. \]

(D3)

Starting from an initial plane wave \(|0\rangle \), the coefficients become \(C_\alpha = b_{\alpha,0} \). In such a case we get

\[\langle p(mT) \rangle = \sum_{\alpha,\alpha'} b_{\alpha,0} b_{\alpha',0} e^{-im(E_\alpha - E_{\alpha'})} \langle \phi_{\alpha'} | \hat{p} | \phi_{\alpha} \rangle. \]

(D4)

It was shown for chaotic systems \[36\] that, as the time goes on, nonlinear interference terms accumulate large and larger phases, namely \(m(E_\alpha - E_{\alpha'}) \). Finally, for long enough times, contributions to the directed transport are only given by diagonal terms,

\[J = \langle \sum_{\alpha} |b_{\alpha,0}|^2 \langle \phi_{\alpha} | \hat{p} | \phi_{\alpha} \rangle \rangle_T. \]

(D5)

[24] When calculating Husimi distributions, average kinetic energies, etc., we used the inverse gauge transformation, in order to return to the original wave function.
[26] We introduced a summation by pairs in order to avoid an "oscillating" behaviour of \(P_\alpha \) for large values of \(\alpha \) (see Eq. (20)).