The GBT Bi-directional Link and Data System

Paulo MOREIRA

CERN

A Versatile Bi-Directional Link System

A. Marchion, P. Moreira, G. Papalii and A. Rapossi
CERN PH-DIC

12th Workshop on Electronics for LHC and Future Experiments
25-29 September 2006, Valencia SPAIN

Outline

- Links in HEP
 - Is a different approach viable?
 - A Versatile Bi-Directional Link System
 - The concept
 - GBT ASIC
 - Link configuration
 - Bandwidth
 - Handling SFU
 - The GBT as a "Communications Controller"
 - Prototypes
 - Summary

Links in HEP

- Data transmission roles in HEP
- Data Acquisition (DAQ)
- Timing, Trigger (TT)
- Experiment Control (EC)
- LHC Emu
- A different architecture for each function
- A dedicated physical support for each architecture
- Experiments share a common development:
 - TTC system
 - DCS
 - But a lot of effort went into developing several similar systems for each of the four LHC experiments

Future HEP Links

- Can we develop a one-size-fit-all solution?
- Some support hardware?
- Some link architecture?
- As a "universal" link requires:
 - The experiments to agree on a common interface
 - A well-defined set of specifications (requirements):
 - TTC
 - TT
 - DCS
 - ASIC
 - OPTOELECTRONICS
 - The system has to be Versatile:
 - TT has to accommodate several topologies
 - But the physical support can be "shared"
 - Some electronics (ASIC)
 - A limited set of optoelectronic "flavours"
 - Same WOS

Versatile Bi-Directional Link System

- The objective is to build a system based on a single ASIC which can provide a complete link solution for:
 - Timing
 - Trigger
 - Experiment Control
 - Data Transmission
- What's the target?
- Implement versatile link topologies
 - Higher bandwidth:
 - Data, Timing, Trigger and Experiment Control
 - Bi-directional links
 - Some, Timing, Trigger and Experiment Control
- Robust handling of irradiation effects
- Versatility
- Common development
 - Better use of names/economical resources

Transceiver Module

Multi-protocol ASIC

Scalable

Configurable to multiple optical network (layer drivers)

QSF

GTS

This is a simple TLA containing the ASIC, optoelectronic components and optical and electrical connections.

Next page
GBT

- Such a Versatile system response:
 - Multi-protocol Transceivers
 - 3-to-1
 - 2-to-1
 - N-to-1

- Operation modes:
 - Trigger
 - TTC function
 - Link
 - General purpose
 - Simplex/Duplex

- Data transmission mode:
 - Continuous
 - Data is continuously transmitted
 - Packet
 - Data is transmitted in bursts of packets

GBT Operation Modes

- Continuous mode (think about a traditional optical link)
 - Each link is 100% occupied by a single transmitter.
 - The transmitter/receiver pairs are fully synchronous.
 - This is the case for:
 - A trigger source sending data to several trigger destinations
 - Synchronous point-to-point optical link

- Packet mode (think about a backbone bus)
 - Common Transmission medium is shared:
 - A transmitter can only send data if there is no receiver
 - Several devices can share the same medium and thus communicate with
 the same destination without collisions
 - This is the case for:
 - Trigger return link (Bus)
 - Asynchronous point-to-point data link

Link Configuration 1: Broadcast Network

- Down-path: Passive Optical Tree
 - Current TTC system architecture
 - One source to N destinations
 - For large N, an optical power source is required
 - Operation mode: continuous

Link Configuration 2: Broadcast Network with O/E/O Repetitions

- Down-path: Passive/Active Tree
 - Passive power splitting with electrical regeneration
 - One source to N destinations
 - Optical or electrical 3-to-1
 - Redundant optical power at each transmitter
 - Operation mode: continuous
 - Moderate increase in latency: one-to-one

Link Configuration 3: Point-to-Point

- Up/Down-path: Optical
 - Full bandwidth available for
 - data transmission
 - Simplex/Duplex operation
 - Operation mode: continuous
 - DAQ Link
 - Counting beam

Link Configuration 4: Bidirectional One-to-N / N-to-One

- Down-links: Passive Optical Tree
 - Passive optical tree in both directions
 - Down-link: 1-to-N
 - Up-link: 1-to-1
 - For moderate power optical source
 - Operation mode:
 - Down-link: continuous
 - Up-link: packet
 - Up-link under control of the master transmitter

94
Data Rate and User Bandwidth

- Data rate and word size will depend on the SLHC frequency.
- Not yet decided.
- Numbers below assume f_data = M x f_clock (not necessarily true).
- Transmission data rates must be multiples of the (5)SLHC bunch crossing frequency.
- A trigger system remains synchronized with the accelerator cycle.
- Fixed latency communication channels.
- 130 mm CMOS technology:
 - 2x 2.2 Gbit/s OC (-5 Gbit/s maybe feasible).
 - Transmission of 88 bits encoded at 40 MHz (the LHC rate).
 - Effective data bandwidth of 2.56 Gbit/s (for 3.2 Gbit/s raw).
- 90 mm CMOS technology:
 - New 6.4 Gbit/s OC (-10 Gbit/s maybe feasible).
 - Transmission of 128 bits properly encoded at 40 MHz (the LHC rate).
 - Transmission of 64 bits encoded at 80 MHz (the SLHC rate).
 - Effective data bandwidth of 5.12 Gbit/s (for 6.4 Gbit/s raw).

Line Codes and Error Correction

- High SEU rates are expected for SLHC.
- SEU errors at the optical receiver (PSN-Preamp) will be detected as corrupted data bits.
- Error correction followed by Line Coding will not work.
- The order of operations must be reversed.
- To deal with higher SEU rates in SLHC, the following scheme is proposed (illustrative example only):
 - 8-bit data is first scrambled for DC balance.
 - The scrambled data is Reed-Solomon encoded 16-bit FEC field.
 - An 8-bit redundant header is added to form a frame.
 - This results in an 88-bit frame.
 - A line rate of 40 MHz (=88 bit/1.25 MHz).
- To minimize the dead-time due to a loss of synchronization, the scrambler is designed as self-synchronizing.
- One LHC clock cycle is enough to synchronize the scrambler.
- The efficiency of the line encoding is 64/88 = 0.727.

(Further details were given by Guido Papek, this morning.)

The GBT as a TTC and Communications Controller

- Ethernet PHY
- Ethernet Master (1---vclone) (+)
- Ethernet Slave (4---vclone) (+)
- CTP Master (2---vclone) (+)
- CTP Slave (2---vclone) (+)
- Parallel port (54---96bit (+)
- Memory bus (16-bit, 16-bit)
- Phase programmable delays (+)
- Trigger simulator (4---vclone) (+)
- Commercial serial bus?
- Event Counter
- Burst Counter
- Receiver control
- Link Flow control
- Transmitter control
- IP Slave
- JTAG Port

GBT Block Diagram

- Configuration Generator
- Link Flow Generator
- Transmitter Interface
- JTAG Interface
- Event Counter
- Burst Counter
- Receiver Control
- Link Flow Control
- Transmitter Control
- IP Slave
- JTAG Port

Prototypes

- Three GBT building blocks were prototyped in 130 nm CMOS:
 - Laser driver (Gianni Zizza, INP-Paris) (presented this morning).
 - Encoder / decoder (Guido Papek, CERN).
 - Limiting Amplifier (Paulo Moreira, CERN).

Limiting Amplifier

- Specifications:
 - Data rate: 3.4 Gbit/s (Nyquist) 6.8 Gbit/s (even) 13.6 Gbit/s (odd)
 - Bandwidth: 2.53 GHz
 - Equivalent input noise: 1 mV
 - Maximum output signal (differentiated): 10 mV
 - Maximum output signal (differentiated): 600 mV
Summary

- We propose a Versatile Link solution for:
 - Timing Trigger Links
 - Data Acquisition Links
 - Experiment Control Links

- The system allows flexible link topologies:
 - Bi-directional
 - Uni-directional
 - Point-to-Point
 - Point-to-Multipoint

- Specifications and Interfaces are still evolving for which we need the feedback of the potential users

- Some universal building blocks have already been prototyped:
 - Laser driver
 - Encoder/Deserializer, Line code and FEC
 - Limiting Amplifier

- The Versatile Bi-Directional Link project has been proposed by the Microelectronics group as a CERN common development.