THEORY OF
PLATES AND SHELLS

S. TIMOSHENKO
Professor Emeritus of Engineering Mechanics
Stanford University

S. WOINOWSKY-KRIEGER
Professor of Engineering Mechanics
Laval University

SECOND EDITION

McGRAW-HILL BOOK COMPANY
Auckland Bogotá Guatemala Hamburg Lisbon
London Madrid Mexico New Delhi Panama Paris San Juan
São Paulo Singapore Sydney Tokyo
CONTENTS

Preface ... v
Notation ... xiii
Introduction .. 1

Chapter 1. Bending of Long Rectangular Plates to a Cylindrical Surface 4
1. Differential Equation for Cylindrical Bending of Plates 4
2. Cylindrical Bending of Uniformly Loaded Rectangular Plates with Simply Supported Edges 6
3. Cylindrical Bending of Uniformly Loaded Rectangular Plates with Built-in Edges 13
5. The Effect on Stresses and Deflections of Small Displacements of Longitudinal Edges in the Plane of the Plate 20
6. An Approximate Method of Calculating the Parameter \(u \) 24
7. Long Uniformly Loaded Rectangular Plates Having a Small Initial Cylindrical Curvature 27
8. Cylindrical Bending of a Plate on an Elastic Foundation 30

Chapter 2. Pure Bending of Plates 33
9. Slope and Curvature of Slightly Bent Plates 33
10. Relations between Bending Moments and Curvature in Pure Bending of Plates 37
11. Particular Cases of Pure Bending 42
12. Strain Energy in Pure Bending of Plates 46
13. Limitations on the Application of the Derived Formulas 47
14. Thermal Stresses in Plates with Clamped Edges 49

Chapter 3. Symmetrical Bending of Circular Plates 51
15. Differential Equation for Symmetrical Bending of Laterally Loaded Circular Plates 51
16. Uniformly Loaded Circular Plates 54
17. Circular Plate with a Circular Hole at the Center 58
18. Circular Plate Concentrically Loaded 63
19. Circular Plate Loaded at the Center 67
20. Corrections to the Elementary Theory of Symmetrical Bending of Circular Plates 72

Chapter 4. Small Deflections of Laterally Loaded Plates 79
21. The Differential Equation of the Deflection Surface 79
22. Boundary Conditions .. 83
23. Alternate Method of Derivation of the Boundary Conditions 88
24. Reduction of the Problem of Bending of a Plate to That of Deflection of a Membrane .. 92
25. Effect of Elastic Constants on the Magnitude of Bending Moments 97
26. Exact Theory of Plates .. 98

Chapter 5. Simply Supported Rectangular Plates 105
27. Simply Supported Rectangular Plates under Sinusoidal Load 105
28. Navier Solution for Simply Supported Rectangular Plates 108
29. Further Applications of the Navier Solution 111
30. Alternate Solution for Simply Supported and Uniformly Loaded Rectangular Plates .. 113
31. Simply Supported Rectangular Plates under Hydrostatic Pressure 124
32. Simply Supported Rectangular Plate under a Load in the Form of a Triangular Prism .. 130
33. Partially Loaded Simply Supported Rectangular Plate 135
34. Concentrated Load on a Simply Supported Rectangular Plate 141
35. Bending Moments in a Simply Supported Rectangular Plate with a Concentrated Load .. 143
36. Rectangular Plates of Infinite Length with Simply Supported Edges 149
37. Bending Moments in Simply Supported Rectangular Plates under a Load Uniformly Distributed over the Area of a Rectangle 158
38. Thermal Stresses in Simply Supported Rectangular Plates 162
39. The Effect of Transverse Shear Deformation on the Bending of Thin Plates .. 165
40. Rectangular Plates of Variable Thickness 173

Chapter 6. Rectangular Plates with Various Edge Conditions 180
41. Bending of Rectangular Plates by Moments Distributed along the Edges 180
42. Rectangular Plates with Two Opposite Edges Simply Supported and the Other Two Edges Clamped 185
43. Rectangular Plates with Three Edges Simply Supported and One Edge Built In .. 192
44. Rectangular Plates with All Edges Built In 197
45. Rectangular Plates with One Edge or Two Adjacent Edges Simply Supported and the Other Edges Built In 205
46. Rectangular Plates with Two Opposite Edges Simply Supported, the Third Edge Free, and the Fourth Edge Built In or Simply Supported .. 208
47. Rectangular Plates with Three Edges Built In and the Fourth Edge Free. .. 211
48. Rectangular Plates with Two Opposite Edges Simply Supported and the Other Two Edges Free or Supported Elastically .. 214
49. Rectangular Plates Having Four Edges Supported Elastically or Resting on Corner Points with All Edges Free 218
50. Semi-infinite Rectangular Plates under Uniform Pressure 221
51. Semi-infinite Rectangular Plates under Concentrated Loads 225

Chapter 7. Continuous Rectangular Plates 229
52. Simply Supported Continuous Plates 229
53. Approximate Design of Continuous Plates with Equal Spans 233
54. Bending of Plates Supported by Rows of Equidistant Columns (Flat Slabs) .. 245
55. Flat Slab Having Nine Panels and Slab with Two Edges Free .. 253
56. Effect of a Rigid Connection with Column on Moments of the Flat Slab .. 257
Chapter 8. Plates on Elastic Foundation .. 259

57. Bending Symmetrical with Respect to a Center 259
58. Application of Bessel Functions to the Problem of the Circular Plate 265
59. Rectangular and Continuous Plates on Elastic Foundation 269
60. Plate Carrying Rows of Equidistant Columns 276
61. Bending of Plates Resting on a Semi-infinite Elastic Solid 278

Chapter 9. Plates of Various Shapes ... 282

62. Equations of Bending of Plates in Polar Coordinates 282
63. Circular Plates under a Linearly Varying Load 285
64. Circular Plates under a Concentrated Load 290
65. Circular Plates Supported at Several Points along the Boundary 293
66. Plates in the Form of a Sector .. 295
67. Circular Plates of Nonuniform Thickness 298
68. Annular Plates with Linearly Varying Thickness 303
69. Circular Plates with Linearly Varying Thickness 305
70. Nonlinear Problems in Bending of Circular Plates 308
71. Elliptical Plates ... 310
72. Triangular Plates .. 313
73. Skewed Plates ... 318
74. Stress Distribution around Holes .. 319

Chapter 10. Special and Approximate Methods in Theory of Plates 325

75. Singularities in Bending of Plates .. 325
76. The Use of Influence Surfaces in the Design of Plates 328
77. Influence Functions and Characteristic Functions 334
78. The Use of Infinite Integrals and Transforms 336
79. Complex Variable Method .. 340
80. Application of the Strain Energy Method in Calculating Deflections ... 342
81. Alternative Procedure in Applying the Strain Energy Method 347
82. Various Approximate Methods .. 348
83. Application of Finite Differences Equations to the Bending of Simply Supported Plates ... 351
84. Experimental Methods ... 362

Chapter 11. Bending of Anisotropic Plates ... 364

85. Differential Equation of the Bent Plate ... 364
86. Determination of Rigidity in Various Specific Cases 366
87. Application of the Theory to the Calculation of Gridworks 369
88. Bending of Rectangular Plates ... 371
89. Bending of Circular and Elliptic Plates .. 376

Chapter 12. Bending of Plates under the Combined Action of Lateral Loads and Forces in the Middle Plane of the Plate 378

90. Differential Equation of the Deflection Surface 378
91. Rectangular Plate with Simply Supported Edges under the Combined Action of Uniform Lateral Load and Uniform Tension 380
92. Application of the Energy Method .. 382
93. Simply Supported Rectangular Plates under the Combined Action of Lateral Loads and of Forces in the Middle Plane of the Plate 387
94. Circular Plates under Combined Action of Lateral Load and Tension or Compression ... 391
95. Bending of Plates with a Small Initial Curvature 393
Chapter 13. Large Deflections of Plates

96. Bending of Circular Plates by Moments Uniformly Distributed along the Edge

97. Approximate Formulas for Uniformly Loaded Circular Plates with Large Deflections

98. Exact Solution for a Uniformly Loaded Circular Plate with a Clamped Edge

99. A Simply Supported Circular Plate under Uniform Load

100. Circular Plates Loaded at the Center

101. General Equations for Large Deflections of Plates

102. Large Deflections of Uniformly Loaded Rectangular Plates

103. Large Deflections of Rectangular Plates with Simply Supported Edges

Chapter 14. Deformation of Shells without Bending

104. Definitions and Notation

105. Shells in the Form of a Surface of Revolution and Loaded Symmetrically with Respect to Their Axis

106. Particular Cases of Shells in the Form of Surfaces of Revolution

107. Shells of Constant Strength

108. Displacements in Symmetrically Loaded Shells Having the Form of a Surface of Revolution

109. Shells in the Form of a Surface of Revolution under Unsymmetrical Loading

110. Stresses Produced by Wind Pressure

111. Spherical Shell Supported at Isolated Points

112. Membrane Theory of Cylindrical Shells

113. The Use of a Stress Function in Calculating Membrane Forces of Shells

Chapter 15. General Theory of Cylindrical Shells

114. A Circular Cylindrical Shell Loaded Symmetrically with Respect to Its Axis

115. Particular Cases of Symmetrical Deformation of Cylindrical Shells

116. Pressure Vessels

117. Cylindrical Tanks with Uniform Wall Thickness

118. Cylindrical Tanks with Nonuniform Wall Thickness

119. Thermal Stresses in Cylindrical Shells

120. Inextensional Deformation of a Cylindrical Shell

121. General Case of Deformation of a Cylindrical Shell

122. Cylindrical Shells with Supported Edges

123. Deflection of a Portion of a Cylindrical Shell

124. An Approximate Investigation of the Bending of Cylindrical Shells

125. The Use of a Strain and Stress Function

126. Stress Analysis of Cylindrical Roof Shells

Chapter 16. Shells Having the Form of a Surface of Revolution and Loaded Symmetrically with Respect to Their Axis

127. Equations of Equilibrium

128. Reduction of the Equations of Equilibrium to Two Differential Equations of the Second Order

129. Spherical Shell of Constant Thickness
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>130. Approximate Methods of Analyzing Stresses in Spherical Shells</td>
<td>547</td>
</tr>
<tr>
<td>131. Spherical Shells with an Edge Ring</td>
<td>555</td>
</tr>
<tr>
<td>132. Symmetrical Bending of Shallow Spherical Shells</td>
<td>558</td>
</tr>
<tr>
<td>133. Conical Shells</td>
<td>562</td>
</tr>
<tr>
<td>134. General Case of Shells Having the Form of a Surface of Revolution</td>
<td>566</td>
</tr>
<tr>
<td>Name Index</td>
<td>569</td>
</tr>
<tr>
<td>Subject Index</td>
<td>575</td>
</tr>
</tbody>
</table>