Natural priors, CMSSM fits and LHC weather forecasts

Benjamin C. Allanach, Kyle Cranmer, Christopher G. Lester and Arne M. Weber

DAMTP, CMS, Wilberforce Road, Cambridge CB3 0WA, U.K.
Dept. of Physics, New York University, 4 Washington Place, New York, NY 10003, U.S.A.
Cavendish Laboratory, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.
Max Planck Institut für Physik, Föhringer Ring 6, D-80805 Munich, Germany

E-mail: B.C.Allanach@damtp.cam.ac.uk, cranmer@cern.ch, lester@hep.phy.cam.ac.uk, arne@mppmu.mpg.de

Abstract: Previous LHC forecasts for the constrained minimal supersymmetric standard model (CMSSM), based on current astrophysical and laboratory measurements, have used priors that are flat in the parameter $\tan \beta$, while being constrained to postdict the central experimental value of M_Z. We construct a different, new and more natural prior with a measure in μ and B (the more fundamental MSSM parameters from which $\tan \beta$ and M_Z are actually derived). We find that as a consequence this choice leads to a well defined fine-tuning measure in the parameter space. We investigate the effect of such on global CMSSM fits to indirect constraints, providing posterior probability distributions for Large Hadron Collider (LHC) sparticle production cross sections. The change in priors has a significant effect, strongly suppressing the pseudoscalar Higgs boson dark matter annihilation region, and diminishing the probable values of sparticle masses. We also show how to interpret fit information from a Markov Chain Monte Carlo in a frequentist fashion; namely by using the profile likelihood. Bayesian and frequentist interpretations of CMSSM fits are compared and contrasted.

Keywords: Supersymmetric Effective Theories, Cosmology of Theories beyond the SM, Supersymmetric Standard Model.
1. Introduction

The impending start-up of the LHC makes this a potentially exciting time for supersymmetric (SUSY) phenomenology. Anticipating the arrival of LHC data, a small industry has grown up aiming to forecast the LHC’s likely discoveries. There are big differences between nature of the questions answered by a forecast, and the questions that will be answered by the experiments themselves when they have acquired compelling data. A weather forecast predicting “severe rain in Cambridgeshire at the end of the week” should not be confused with a discovery of water. However, the forecast is something which influences short-term flood plans and will set priorities within the list of “urgent repairs needed by flood defences”.

LHC weather forecasts for sparticle masses or cross sections set priorities among signals needing to be investigated, or among expensive Monte Carlo background samples competing to be generated. Forecasts can influence the design parameters of future experiments and colliders. In advance of LHC we would like to have some sort of idea of what luminosity will be required in order to detect and/or measure supersymmetry. There is also the question of which signatures are likely to be present.

In order to answer questions such as these, a programme of fits to simple SUSY models has proceeded in the literature [4–8]. The fits that we are interested in have made the universality assumption on soft SUSY breaking parameters: the scalar masses are set to be equal to m_0, the trilinear scalar couplings are set to be A_0 multiplied by the corresponding Yukawa couplings and all gaugino masses are set to be equal to $M_{1/2}$. Such assumptions,
when applied to the MSSM, are typically called mSUGRA or the constrained minimal
supersymmetric standard model. The universality conditions are typically imposed at a
gauge unification scale $M_{\text{GUT}} \sim 2 \times 10^{16}$ GeV. The universality conditions are quite strong,
but allow phenomenological analysis of a varied subset of MSSM models. The universality
assumption is not unmotivated since, for example, several string models \cite{9} predict MSSM
universality.

Until recently, CMSSM fits have relied upon fixed input parameters \cite{1 – 7} in order to
reduce the dimensionality of the CMSSM parameter space, rendering scans viable. Such
analyses provide a good idea of what are the relevant physical processes in the various
parts of parameter space. More recently, however, it has been realised that many-parameter
scans are feasible if one utilises a Markov Chain Monte Carlo (MCMC) \cite{6}. Such scans were
used to perform multi-dimensional Bayesian fits to indirect constraints \cite{10}. A particularly
important constraint came from the relic density of dark matter $\Omega_{\text{DM}} h^2$, assumed to consist
solely of neutralinos, the lightest of which is the lightest supersymmetric particle (LSP).
Under the assumption of a discrete symmetry such as R–parity, the LSP is stable and thus
still present in the universe after being thermally produced in the big bang. The results of
ref. \cite{10} were confirmed by an independent study \cite{11}, which also examined the prospects
of direct dark matter detection. Since then, a study of the $\mu < 0$ branch of the CMSSM
was performed \cite{12} and implications for Tevatron Higgs searches have been discussed \cite{13}.

It is inevitable that LHC forecasts will contain a large degree of uncertainty. This
is unavoidable as, in the absence of LHC data, constraints are at best indirect and also
few in number. Within a Bayesian framework, the components of the answer that are
incontestable lie within a simple “likelihood” function, whereas the parts which parametrise
our ignorance concerning the nature of the parameter space we are about to explore are
rolled up into a prior. By separating components into these two domains, we have an
efficient means of testing not only what the data is telling us about new physics, but also
of warning us of the degree to which the data is (or isn’t) compelling enough to disabuse
us of any prior expectations we may hold.

In \cite{10, 11}, Bayesian statements were made about the posterior probability density of
the CMSSM, after indirect data had been taken into account. The final result of a Bayesian
fit is the posterior probability density function (pdf), which in previous MCMC fits, was
set to be

$$p(m_0, M_{1/2}, A_0, \tan \beta, s | \text{data}) = p(\text{data}|m_0, M_{1/2}, A_0, \tan \beta, s)p(m_0, M_{1/2}, A_0, \tan \beta, s)$$

$$p(\text{data})$$

for certain Standard Model (SM) inputs s and ratio of the two MSSM Higgs vacuum expecta-
tion values $\tan \beta = v_2/v_1$. The likelihood $p(\text{data}|m_0, M_{1/2}, A_0, \tan \beta, s)$ is proportional
to $e^{-\chi^2/2}$, where χ^2 is the common statistical measure of disagreement between theoretical
prediction and empirical measurement. The prior $p(m_0, M_{1/2}, A_0, \tan \beta, s)$ was taken some-
what arbitrarily to be flat (i.e. equal to a constant) within some ranges of the parameters,
and zero outside those ranges. Eq. (\cite{11}) has an implied measure for the input parameter.
If, for example, we wish to extract the posterior pdf for m_0, all other parameters are
marginalised over
\[p(m_0|\text{data}) = \int dM_{1/2} \, dA_0 \, d\tan \beta \, ds \, p(m_0, M_{1/2}, A_0, \tan \beta, s|\text{data}). \] (1.2)

Thus a flat prior in, say, \(\tan \beta \) also corresponds to a choice of measure in the marginalisation procedure: \(\int d\tan \beta \). Before one has a variety of accurate direct data (coming, for instance, from the LHC), the results depend somewhat upon what prior pdf is assumed.

In all of the previous MCMC fits, Higgs potential parameters \(\mu \) and \(B \) were traded for \(M_Z \) and \(\tan \beta \) using the electroweak symmetry breaking conditions, which are obtained by minimising the MSSM Higgs potential and obtaining the relations [16]:

\[\mu B = \frac{\sin 2\beta}{2} (\tilde{m}_{H_1}^2 + \tilde{m}_{H_2}^2 + 2\mu^2), \] (1.3)

\[\mu^2 = \frac{\tilde{m}_{H_1}^2 - \tilde{m}_{H_2}^2 \tan^2 \beta - 1}{\tan^2 \beta - 1} - \frac{M_Z^2}{2}. \] (1.4)

Eqs. (1.3), (1.4) were applied at a scale \(Q = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}} \), i.e. the geometrical average of the two stop masses.\(^1\) \(|\mu| \) was set in order to obtain the empirically measured central value of \(M_Z \) in eq. (1.4) and then eq. (1.3) was solved for \(B \) for a given input value of \(\tan \beta \) and \(\text{sign}(\mu) \). The flat prior in \(\tan \beta \) in eq. (1.1) does not reflect the fact that \(\tan \beta \) (as well as \(M_Z \)) is a derived quantity from the more fundamental parameters \(\mu, B \). It also does not contain information about regions of fine-tuned parameter space, which we may consider to be less likely than regions which are less fine-tuned. Ref. [15] clearly illustrates that if one includes \(\mu \) as a fundamental MSSM parameter, LEP has ruled out the majority of the natural region of MSSM parameter space.

A conventional measure of fine-tuning [26] is

\[f = \max_p \left[\frac{d \ln M_Z^2}{d \ln p} \right], \] (1.5)

where the maximisation is over \(p \in \{ m_0, M_{1/2}, A_0, \mu, B \} \). Here, eq. (1.4) is viewed as providing a prediction for \(M_Z \) given the other MSSM parameters. When the SUSY parameters are large, a cancellation between various terms in eq. (1.4) must be present in order to give \(M_Z \) at the experimentally measured value. Eq. (1.5) is supposed to provide a measure of how sensitive this cancellation is to the initial parameters. In ref. [14], a prior \(\propto 1/f \) was shown to produce fits that were not wildly different to those with a flat prior, but the discrepancy illustrated the level of uncertainty in the fits. The new (arguably less arbitrary) prior discussed in section 2 will be seen to lead to much larger differences.

Here, we extend the existing literature in two main ways: firstly, we construct a natural prior in the more fundamental parameters \(\mu, B \), showing in passing that it can be seen to act as a check on fine-tuning. We display the MCMC fit results from such priors. Secondly, we present posterior pdfs for LHC supersymmetric (SUSY) production cross-sections. These have not been calculated before.

\(^1\)Higgs potential loop corrections are taken into account by writing \(\tilde{m}_{H_i} \equiv m_{H_i}^2 - t_i/v_i, t_i \) being the tadpoles of Higgs \(i \) and \(v_i \) being its vacuum expectation value.
In the proceeding section 2, we derive the new more natural form for the prior distributions mentioned above. In section 3, we describe our calculation of the likelihood. In section 4, we investigate the limits on parameter space and pdfs for sparticle masses resulting from the new more natural priors. We go on to discuss what this prior-dependence means in terms of the “baseline SUSY production” for the LHC, and find out what it tells us about the “error-bars” which should be attached to this and earlier LHC forecasts. In section 5, we present our results in the profile likelihood format. In section 6 we present pdfs for total SUSY production cross-sections at the LHC. Section 7 contains a summary and conclusions. In appendix A, we compare the fit results assuming the flat tan β priors with a well-known result in the literature in order to find the cause of an apparent discrepancy.

2. Prior distributions

We wish to start with a measure defined in terms of fundamental parameters μ and B, hence

$$p(\text{all data}) = \int d\mu dB dA_0 dm_0 dM_{1/2} ds \left[p(m_0, M_{1/2}, A_0, \mu, B, s) \right]$$ \hspace{1cm} (2.1)

where $p(\text{all data}|m_0, M_{1/2}, A_0, \mu, B, s)$ is the likelihood of the data with respect to the CMSSM and $p(m_0, M_{1/2}, A_0, \mu, B, s)$ is the prior probability distribution for CMSSM and SM parameters. Of these two terms, the former is well defined, while the latter is open to a degree of interpretation due to the lack of pre-existing constraints on m_0, $M_{1/2}$, A_0, μ, and B.

We may approximately factorise the unambiguous likelihood into two independent pieces: one for M_Z and one for other data not including M_Z, the latter defined to be $p(\text{data}|m_0, M_{1/2}, A_0, \mu, B, s)$

$$p(\text{all data}|m_0, M_{1/2}, A_0, \mu, B, s) \approx p(\text{data}|m_0, M_{1/2}, A_0, \mu, B, s) \times p(M_Z|m_0, M_{1/2}, A_0, \mu, B, s) \approx p(\text{data}|m_0, M_{1/2}, A_0, \mu, B, s) \times \delta(M_Z - M_Z^{\text{cen}}).$$ \hspace{1cm} (2.2)

In the last step we have approximated the M_Z likelihood by a delta function on the central empirical value M_Z^{cen} because its experimental uncertainties are so tiny. According to the Particle Data Group [14], the current world average measurement is $M_Z = 91.1876 \pm 0.0021$ GeV.

Using eqs. (1.3), (1.4) to calculate a Jacobian factor and substituting eq. (2.2) into eq. (2.1), we obtain

$$p(\text{all data}) \approx \int d\tan \beta dA_0 dm_0 dM_{1/2} \left[r(B, \mu, \tan \beta) p(\text{data}|m_0, M_{1/2}, A_0, \mu, B, s)p(m_0, M_{1/2}, A_0, \mu, B, s) \right]_{M_Z = M_Z^{\text{cen}}},$$ \hspace{1cm} (2.3)

If an earlier experiment had already set clear constraints on m_0, $M_{1/2}$, A_0, μ, B, then even the prior would be well defined, being the result of that previous experiment. As things stand, however, we don’t know anything about the likely values of these parameters, and so the prior must encode our ignorance/prejudice as best we can.
where the condition $M_Z = M_Z^{en}$ can be applied by using the constraints of eqs. (1.3), (1.4) with $M_Z = M_Z^{en}$. The Jacobian factor

$$r(B, \mu, \tan \beta) = \left| \frac{B}{\mu \tan \beta} \frac{\tan^2 \beta - 1}{\tan^2 \beta + 1} \right|$$

(2.4)

disfavours high values of $\tan \beta$ and μ/B and comes from our more natural initial parameterisation of the Higgs potential parameters in terms of μ, B. We will refer below to $r(B, \mu, \tan \beta)$ in eq. (2.4) as the “REWSB prior”. Note that, if we consider $B \to \tilde{B} \equiv \mu B$ to be more fundamental than the parameter B, one loses the factor of μ in the denominator of r and by sending $\int dB d\mu \to \int d\tilde{B} d\mu$. However, in the present paper we retain B as a fundamental parameter because of its appearance in many supergravity mediation models of SUSY breaking.

It remains for us to define the prior, $p(m_0, M_{1/2}, A_0, \mu, B, s)$, a measure on the parameter space. In our case, this prior must represent our degree of belief in each part of the space, in advance of the arrival of any experimental data. There is no single “right” way of representing ignorance in a prior,\(^3\) and so some subjectivity must enter into our choice. We must do our best to ensure that our prior is as “even handed” as possible. It must give approximately equal measures to regions of parameter space which seem equally plausible. “Even handed” need not mean “flat” however. A prior flat in m_0 is not flat in m_0^2 and very non-flat in log m_0. We must do our best to identify the important (and unimportant) characteristics of each parameter. If the absolute value of a parameter m matters, then flatness in m may be appropriate. If dynamic range in m is more expressive, then flatness in $1/m$ (giving equal weights to each order of magnitude increase in m) may make sense. If only the size of m relative to some related scale M is of importance, than a prior concentrated near the origin in log(m/M) space may be more appropriate. The freedoms contained within these, to some degree subjective, choices permit others to generate priors different from our own, and thereby test the degree to which the data or the analysis is compelling. If the final results are sensitive to changes of prior, then more data or a better analysis may be called for.

The core idea that we have chosen to encode in (and which therefore defines) our prior on m_0, $M_{1/2}$, A_0, μ, B, and s may be summarised as follows.

(1) We define regions of parameter space where there parameters all have similar orders of magnitude to be more natural than those where they are vastly different. For example we regard $m_0 = 10^1$ eV, $M_{1/2} = 10^{20}$ eV as unnatural. In effect, we will use the distance measure between each parameter and a joint ‘supersymmetry scale’ M_S to define our prior.

(2) We do not wish to impose unity of scales at anything stronger than the order of magnitude level.

\(^3\)There are however plenty of “wrong” ways of representing ignorance. Choosing $p(m_0, M_{1/2}, A_0, \mu, B, s) \propto \delta(m_0 - 40 \text{GeV})(\arctan (A_0/B))^{100}$ would clearly impose arbitrary and unjustifiable constraints on at least three of the parameters!
(3) We do not wish to presuppose any particular scale for M_S itself — that is for the data to decide.

Putting these three principles together, we first define a measure that would seem reasonable were the supersymmetry scale of M_S to be known. Later we will integrate out this dependence on M_S. To begin with we factorise the prior probability density for a given SUSY breaking scale M_S:

$$p(m_0, M_{1/2}, A_0, \mu, B, s | M_S) = p(m_0 | M_S) \ p(M_{1/2} | M_S) \ p(A_0 | M_S)$$

$$p(\mu | M_S) \ p(B | M_S) \ p(s),$$

where we have assumed that the SM experimental inputs do not depend upon M_S. This factorisation of priors could be changed to specialise for particular models of SUSY breaking. For example, dilaton domination in heterotic string models predicts $m_0 = M_{1/2} = -A_0/\sqrt{3}$.

In that case, one would neglect the separate prior factors for $A_0, M_{1/2}$ and m_0 in eq. (2.4), leaving only one of them. Since it is our intention to impose unity between $m_0, M_{1/2}, A_0$ and M_S at the “order of magnitude” level, we take a prior probability density

$$p(m_0 | M_S) = \frac{1}{\sqrt{2\pi w^2 m_0}} \exp \left(-\frac{1}{2w^2} \log^2 \left(\frac{m_0}{M_S} \right) \right).$$

(2.6)

The normalising factor in front of the exponential ensures that $\int_0^\infty dm_0 \ p(m_0 | M_S) = 1$. w specifies the width of the logarithmic exponential, eq. (2.5) implies that m_0 is within a factor e^w of M_S at the “1σ level” (i.e. with probability 68%). We take analogous forms for $p(M_{1/2} | M_S)$ and $p(\mu | M_S)$, by replacing m_0 in eq. (2.6) with $M_{1/2}$ and $|\mu|$ respectively. Note in particular that our prior $p(\mu | M_S)$ favours superpotential parameter μ to be within an order of magnitude of M_S and thus also within an order of magnitude of the soft breaking parameters. This should be required by whichever model is responsible for solving the μ problem of the MSSM, for example the Giudice-Masiero mechanism [18]. A_0 and B are allowed to have positive or negative signs and values may pass through zero, so we chose a different form to eq. (2.6) for their prior. However, we still expect that their order of magnitude isn’t much greater than M_S and the prior probability density

$$p(A_0 | M_S) = \frac{1}{\sqrt{2\pi e^{2w}} M_S} \exp \left(-\frac{1}{2(e^{2w})} \left(\frac{A_0^2}{M_S^2} \right) \right).$$

(2.7)

ensures that $|A_0| < e^w M_S$ at the 1σ level. The prior probability density of B is given by eq. (2.7) with $A_0 \rightarrow B$. We don’t know M_S a priori, so we marginalise over it:

$$p(m_0, M_{1/2}, A_0, \mu, B) = \int_0^\infty dM_S \ p(m_0, M_{1/2}, A_0, \mu, B | M_S) \ p(M_S)$$

$$= \frac{1}{(2\pi)^{5/2} w^5 m_0 |\mu| M_{1/2}} \int_0^\infty \frac{dM_S}{M_S^5} \exp \left[-\frac{1}{2w^2} \left(\log^2 \left(\frac{m_0}{M_S} \right) \right) \right]$$

$$+ \log^2 \left(\frac{|\mu|}{M_S} \right) + \log^2 \left(\frac{M_{1/2}}{M_S} \right) + \frac{w^2 A_0^2}{e^{2w} M_S^2} + \frac{w^2 B^2}{e^{2w} M_S^2} \right] p(M_S)$$

(2.8)
and \(p(M_S) \) is a prior for \(M_S \) itself, which we take to be \(p(M_S) = 1/M_S \), i.e. flat in the logarithm of \(M_S \). The marginalisation over \(M_S \) amounts to a marginalisation over a family of prior distributions, and as such constitutes a hierarchical Bayesian approach [19].

The integration over several distributions is equivalent to adding smearing due to our uncertainty in the form of the prior. As far as we are aware, the present paper is the first example of the use of hierarchical Bayesian techniques in particle physics. In general, we could also have marginalised over the hyper-parameter \(w \), for example using a Gaussian centred on 1, but we find it useful below to examine sensitivity of the posterior probability distribution to \(w \). We therefore leave it as an input parameter for the prior distribution.

We evaluate the integral in eq. (2.8) numerically using an integrator that does not evaluate the integrand at the endpoints, where it is not finite. We have checked that the integral is not sensitive to the endpoints chosen: the change induced by changing the integration range to \([10 \text{ GeV}, 10^{16}]\) GeV is negligible. We refer to eq. (2.8) as the “same order” prior.

To summarise, the posterior probability density function is given by

\[
p(m_0, M_{1/2}, A_0, \tan \beta, s|\text{data}) \propto [p(\text{data}|m_0, M_{1/2}, A_0, \mu, B, s) \times r(B, \mu, \tan \beta) \ p(s) \ p(m_0, M_{1/2}, A_0, \mu, B)]_{M_Z=M_Z^{\text{cen}}},
\]

where we have written \([\ldots]_{M_Z=M_Z^{\text{cen}}} \) on the right hand side of above relation, implying that \(\mu \) and \(B \) are eliminated in favour of \(\tan \beta \) and \(M_Z^{\text{cen}} \) by eqs. (1.3), (1.4).

We may view the prior factors in eq. (2.9) to be inverse fine-tuning parameters: where the fine-tuning is high, the priors are small. It is interesting to note that a cancellation of order \(\sim 1/\tan \beta \) is known to be required in order to achieve high values of \(\tan \beta \) [25].

This appears in our Bayesian prior as a result of transforming from the fundamental Higgs potential parameters \(\mu, B \) to \(\tan \beta \) and the empirically preferred value of \(M_Z \). We display the various prior factors in figure 1 as a function of \(m_0 \) for all other parameters at the SPS1a CMSSM point \([20]: \ M_{1/2} = 250 \text{ GeV}, \ A_0 = 100 \text{ GeV}, \ \tan \beta = 10 \) and all SM input parameters fixed at their central empirical values. The figure displays the REWSB prior,
Table 1: SM input parameters.

<table>
<thead>
<tr>
<th>SM parameter</th>
<th>constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/\alpha_{\text{MS}}$</td>
<td>127.918±0.018</td>
</tr>
<tr>
<td>$\alpha_s^\text{MS}(M_Z)$</td>
<td>0.1176±0.002</td>
</tr>
<tr>
<td>$m_b(m_b)^\text{MS}$</td>
<td>4.24±0.11 GeV</td>
</tr>
<tr>
<td>m_t</td>
<td>171.4±2.1 GeV</td>
</tr>
</tbody>
</table>

The SM input parameters used are displayed in table 1. Since they have all been well measured, their priors are set to be Gaussians with central values and widths as listed in the table. We use ref. [17] for the QED coupling constant α^MS, the strong coupling constant $\alpha_s^\text{MS}(M_Z)$ and the running mass of the bottom quark $m_b(m_b)^\text{MS}$, all in the $\overline{\text{MS}}$ renormalisation scheme. A recent Tevatron top mass m_t measurement [21] is also employed, although the absolutely latest value has shifted slightly [22].

We display marginalised prior pdfs in figure 2 for the REWSB, REWSB plus same order ($w = 1$) and REWSB plus same order ($w = 2$) priors. The plots have 75 bins and the prior pdf has been marginalised over all unseen dimensions. No indirect data has been taken into account in producing the distributions, a feasible electroweak symmetry breaking vacuum being the only constraint. The priors have been obtained by sampling with a MCMC using the Metropolis algorithm [23, 24], taking the average of 10 chains of 100 000 steps each. figures 2a,b shows that although the same order priors are heavily peaked towards small values of $m_0 < 500 \text{GeV}$ and $M_{1/2} \sim 180 \text{GeV}$, the 95% upper limits shown by the vertical arrows are only moderately constrained for m_0. $w = 1$ is not surprisingly more peaked at lower mass values. The REWSB histograms on the other hand, prefer high m_0 (due to the lower values of μ there) and are quite flat in $M_{1/2}$. The same order of magnitude requirement is crucial in reducing the preferred scalar masses. The REWSB

4The focus-point region is a subset of the hyperbolic branch [54].

5Taking the product corresponds to assuming that the measurements are independent.
prior is fairly flat in A_0 whereas the $w = 1, w = 2$ priors are heavily peaked around zero. The $M_{1/2}$ same-order priors are more strongly peaked than, for example, m_0 because $M_{1/2}$ is strongly correlated with $|\mu|$ and so the logarithmic measure of the prior (leading to the factor of $1/(m_0 M_{1/2} |\mu|)$ in eq. (2.8) becomes more strongly suppressed. $\tan \beta$ is peaked very strongly toward lower values of the considered range for the REWSB prior due to the $1/\tan \beta$ suppression, but becomes somewhat diluted when the same order priors are added, as shown in figure 4.

3. The likelihood

Our calculation of the likelihood closely follows ref. [14]. For completeness, we describe the procedure here. Including the SM inputs in table 1, eight input parameters are varied simultaneously. The range of CMSSM parameters considered is shown in table 2. The SM input parameters are allowed to vary within 4σ of their central values. Experimental errors are so small on the muon decay constant G_μ that we fix it to its central value of 1.16637×10^{-5} GeV$^{-2}$.

In order to calculate predictions for observables from the inputs, the program SOFTSUSY 2.0.10 [27] is first employed to calculate the MSSM spectrum. Bounds upon the sparticle spectrum have been updated and are based upon the bounds collected in ref. [11]. Any spectrum violating a 95% limit from negative sparticle searches is assigned a zero likelihood density. Also, we set a zero likelihood for any inconsistent point, e.g. one which does not break electroweak symmetry correctly, or a point that contains tachyonic sparticles. For points that are not ruled out, we then link the MSSM spectrum via the SUSY Les Houches Accord [28] to micrOMEGAs1.3.6 [29], which then calculates $\Omega_{DM} h^2$, the branching ratios $\text{BR}(b \rightarrow s \gamma)$ and $\text{BR}(B_s \rightarrow \mu^+ \mu^-)$ and the anomalous magnetic moment of the muon $(g-2)_\mu$.

The anomalous magnetic moment of the muon $a_\mu \equiv (g-2)_\mu/2$ was measured to be $a_\mu^{\text{exp}} = (11659208.0 \pm 5.8) \times 10^{-10}$ [30]. Its experimental value is in conflict with the SM predicted value $a_\mu^{\text{SM}} = (11659180.4 \pm 5.1) \times 10^{-10}$ from [31], which comprises the latest QED [32], electroweak [33], and hadronic [34] contributions to a_μ^{SM}. This SM prediction however does not account for τ data which is known to lead to significantly different results for a_μ, implying underlying theoretical difficulties which have not been resolved so far. Restricting to e^+e^- data, hence using the numbers given above, we find

$$\delta \frac{(g-2)_\mu}{2} \equiv \delta a_\mu \equiv a_\mu^{\text{exp}} - a_\mu^{\text{SM}} = (27.6 \pm 7.7) \times 10^{-10}. \quad (3.1)$$

<table>
<thead>
<tr>
<th>CMSSM parameter</th>
<th>range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_0</td>
<td>-4 TeV to 4 TeV</td>
</tr>
<tr>
<td>m_0</td>
<td>60 GeV to 4 TeV</td>
</tr>
<tr>
<td>$M_{1/2}$</td>
<td>60 GeV to 2 TeV</td>
</tr>
<tr>
<td>$\tan \beta$</td>
<td>2 to 62</td>
</tr>
</tbody>
</table>

Table 2: Input parameters.
This excess may be explained by a supersymmetric contribution, the sign of which is identical to the sign of the superpotential μ parameter $[24]$. After obtaining the one-loop MSSM value of $(g-2)_\mu$ from micrOMEGAs1.3.6, we add the dominant 2-loop corrections detailed in refs. $[35,36]$. The W boson mass M_W and the effective leptonic mixing angle $\sin^2 \theta^l_w$ are also used in the likelihood. We take the measurements to be $[37,38]$

\[M_W = 80.398 \pm 0.027 \text{ GeV}, \quad \sin^2 \theta^l_w = 0.23153 \pm 0.000175, \]

(3.2)
where experimental errors and theoretical uncertainties due to missing higher order corrections in SM [39] and MSSM [40, 41] have been added in quadrature. The most up to date MSSM predictions for M_W and $\sin^2 \theta_{w}$ [40] are finally used to compute the corresponding likelihoods. A parameterisation of the LEP2 Higgs search likelihood for various Standard Model Higgs masses is utilised, since the lightest Higgs h of the CMSSM is very SM-like once the direct search constraints are taken into account. It is smeared with a 2 GeV assumed theoretical uncertainty in the SOFTSUSY2.0.10 prediction of m_h as described in ref. [14].

The rare bottom quark branching ratio to a strange quark and a photon $BR(b \to s\gamma)$ is constrained to be [42]

$$BR(b \to s\gamma) = (3.55 \pm 0.38) \times 10^{-4},$$

(3.3)

obtained by adding the experimental error with the estimated theory error [43] of 0.3×10^{-4} in quadrature. The WMAP3 [44] power law Λ-cold dark matter fitted value of the dark matter relic density is

$$\Omega \equiv \Omega_{DM} h^2 = 0.104^{+0.0073}_{-0.0128},$$

(3.4)

In the present paper, we assume that all of the dark matter consists of neutralino lightest supersymmetric particles and we enlarge the errors on $\Omega_{DM} h^2$ to ± 0.02 in order to incorporate an estimate of higher order uncertainties in its prediction.

We assume that the measurements and thus also the likelihoods extracted from Ω, $BR(b \to s\gamma)$, M_W, $\sin^2 \theta_{w}$, $(g-2)_\mu$, $BR(B_s \to \mu^+ \mu^-)$ are all independent of each other so that the individual likelihood contributions may be multiplied. Observables that have been quoted with uncertainties are assumed to be Gaussian distributed and are characterised by χ^2.

4. CMSSM fits with the new priors

In order to sample the posterior probability density, we ran 10 independent MCMCs of 500 000 steps each using a newly developed banked [45] Metropolis-Hastings MCMC. The banked method was specifically designed to sample several well isolated or disconnected local maxima, for example maxima in the posterior pdfs of $\mu > 0$ and $\mu < 0$. Previously, we had normalised the two samples via bridge sampling [12], which requires twice the number of samples than for one maximum, with additional calculations required after the sampling. Bank sampling, on the other hand, can be performed with roughly an identical number of sampling steps to the case of one maximum and does not require additional normalisation calculations after the sampling. The chance of a bank proposal for the position of the next point in the chain was set to 0.1, meaning that the usual Metropolis proposal had a chance of 0.9. The bank was formed from 10 initial Metropolis MCMC runs with 60 000 steps each and random starting points that were drawn from pdfs flat in the ranges displayed in tables [4] [5]. The initial 4000 steps were discarded in order to provide adequate “burn-in” for the MCMCs. We check convergence using the Gelman-Rubin \hat{R} statistic [18, 10], which provides an estimated upper bound on how much the variance in parameters could be decreased by running for more steps in the chains. Thus, values close to 1 show convergence of the chains. In previous publications, we considered $\hat{R} < 1.05$ to indicate convergence of
the chains for every input parameter. We have checked that this is easily satisfied for all of our results.

We compare the case of flat tanβ priors to the new prior in figure 3. The posterior pdf has been marginalised down to the $M_{1/2} - m_0$ plane and binned into 75×75 bins, as with all two-dimensional distributions in the present paper. Both signs of μ have been marginalised over, again like all following figures in this paper unless explicitly mentioned. The bins are normalised with respect to the bin with maximum posterior. We identify the usual CMSSM regions of good-fit in figure 3a. The maximum at the lowest value of m_0 corresponds to the stau co-annihilation region, where $\tilde{\tau}_1$ and χ^0_1 are quasi-mass degenerate and efficiently annihilate in the early universe. This region is associated with $\tan \beta < 40$, as figure 3b indicates. $m_0 \sim 1\, \text{TeV}$ in figure 3a has large $\tan \beta \sim 50$. This region corresponds to the case where the neutralinos efficiently annihilate through s-channel pseudoscalar Higgs bosons A^0 into $b\bar{b}$ and $\tau \bar{\tau}$ pairs. The region at low $M_{1/2}$ and high m_0 in figure 3a is the h^0 pole region, where neutralinos annihilate predominantly through an s-channel of the lightest CP even Higgs h^0. In order to evade...
LEP2 Higgs constraints, this also requires large \(\tan \beta \). The focus point region \([5, 7]\) is the region around \(M_{1/2} \approx 0.5 \text{ TeV} \) and \(m_0 = 2 - 4 \text{ TeV} \), where the lightest neutralino has a significant higgsino component, leading to efficient annihilation into gauge boson pairs. This region is somewhat sub-dominant in the fit, but extends through most of the range of \(\tan \beta \) considered.

We see a marked difference between figures 3a and 3b. The \(A^0 \) and \(h^0 \) pole regions have vanished with the REWSB priors. The \(A^0 \) pole region is suppressed because the REWSB prior disfavours the required large values of \(\tan \beta \), as shown in figure 4a. The \(h^0 \) pole region is suppressed because the REWSB prior disfavours large values of \(|A_0| \), see figure 2c, and large values of \(|A_0|/M_{1/2} \). Large values of \(|A_0| \) are necessary in this region in order to achieve large stop mass splitting and therefore large corrections to the lightest Higgs mass. Without such corrections, \(h^0 \) falls foul of LEP2 Higgs mass bounds. The focus-point region has been diminished by the REWSB priors mainly because the large values of \(m_0 \) required become suppressed as in figure 2a. This suppression comes primarily from the requirement that SUSY breaking and Higgs parameters be roughly of the same order as each other. Figures 3d display only one good-fit region corresponding to the stau co-annihilation region at low \(m_0 \). The banked method \([45]\) allows an efficient normalisation of the \(\mu > 0 \) and \(\mu < 0 \) branches, both of which are included in the figure.

We now turn to a comparison of the REWSB plus same order prior fits. We consider such fits to give much more reliable results than the flat \(\tan \beta \) fits, and a large difference between fits for \(w = 1 \) to \(w = 2 \) would provide evidence for a lot of sensitivity to our exact choice of prior. Some readers might consider the flat \(\tan \beta \) priors to be not unreasonable, and those readers could take the large difference between flat priors and the new more natural ones as a result of uncertainty originating from scarce data.

Pdfs of sparticle and Higgs masses coming from the fits are displayed in figures 4a–4h along with 95% upper bounds calculated from the pdfs. The pdfs displayed are for the masses of (a) the lightest CP even Higgs, (b) the CP-odd Higgs, (c) the left-handed squark, (d) the gluino, (e) the lightest neutralino, (f) the lightest chargino, (g) the right-handed selectron and (h) the lightest-stau lightest-neutralino mass splitting respectively. The most striking feature of the figure is that the Higgs and sparticle masses tend to be very light for the REWSB and same order prior, boding well for future collider sparticle searches. This effect is consistent with a preference for smaller \(m_0 \), \(M_{1/2} \) exhibited by the new priors in figure 2b,d. In general, there is remarkably little difference between the two different cases of \(w = 1 \) or \(w = 2 \). This fact is perhaps not so surprising considering that the shape of the priors doesn’t change enormously with \(w \), as figures 1, 2 show. The sparticle mass distributions for priors that are flat in \(\tan \beta \) were displayed in refs. \([10–12]\) and show a spread up to much higher values of the masses. As we have explained above, we do not believe flat \(\tan \beta \) to be an acceptable prior. Some readers may consider it to be so: such readers may consider our fits to be considerably less robust to changes in the prior than figure \(2 \) indicates. Lower values of \(A_0 \) and \(\tan \beta \) help to make the lightest CP-even Higgs light in the REWSB+same order prior case, shown in figure 4a. The mass ordering \(m_{\tilde{q}_L} > m_{\chi_2^0} > m_{l_R} > m_{\chi_1^0} \) allows a “golden channel” decay chain of
Figure 4: MSSM particle mass pdfs and profile likelihoods: dependence upon the prior in the CMSSM. The vertical arrows display the one-sided 95% upper limits on each mass. There are 75 bins on each abscissa. Histograms marked “profile” are discussed in section 5 and have been multiplied by different dimensionful constants in order to be comparable by eye with the $w=1, 2$ pdfs. The profile 95% confidence level upper limits are calculated by finding the position for which the 1-dimensional profile likelihood has $2\Delta \ln L = 2.71$.

$\tilde{q}_l \rightarrow \chi^0_2 \rightarrow \tilde{l}_R \rightarrow m_{\chi^0_1}$. Such a decay chain has been used to provide several important and accurate constraints upon the mass spectrum. In some regions of parameter space, it can also allow spin information on the sparticles involved to be extracted.
We may calculate the Bayesian posterior probability of such circumstances by integrating the posterior pdf over the parameter space that allows such a mass ordering. From the MCMC this is simple: we simply count the fraction of sampled points that have such a mass ordering. The posterior probability of such a mass ordering is high: 0.93 for \(w = 1 \) and 0.85 for \(w = 2 \), indicating that analyses using the decay chain are likely to be possible (always assuming the CMSSM hypothesis, of course).

As pointed out in ref. [10], the flat \(\tan \beta \) posteriors extend out to the assumed upper range taken on \(m_0 \) and so the flat \(\tan \beta \) pdf for the scalar masses were artificially cut off at the highest masses displayed. This is no longer the case for the new choice of priors since the regions of large posterior do not reach the chosen ranges of parameters, as shown in figures 3b,d. Thus our derived upper bounds on, for instance \(m_{\tilde{q}_L} \) in figure 6 and \(m_{\tilde{e}_R} \) in figure 12 are not dependent upon the \(m_0 < 4 \) TeV range chosen. The mass splitting between the lightest stau and the neutralino is displayed in figure 4h. The insert shows a blow-up of the quasi-degenerate stau-co-annihilation region and has a different normalisation to the rest of the plot. Since the REWSB+same order prior fit results lie in the co-annihilation region, nearly all of the probability density predicts that \(m_{\tilde{\tau}_1} - m_{\chi^0_1} < 20 \) GeV. It is a subject of ongoing research as how to best verify this at the LHC [58]. In figure 4e, the plot has been cut off at a probability \(P \) of 0.1 and the histograms actually extend to 0.70,0.68 in the lowest bin for \(w = 1 \) and \(w = 2 \) respectively. Similarly, we have cut off figure 4h at a probability of 0.05. The fits extend to 0.93, 0.85 for \(w = 1 \), \(w = 2 \) respectively in the lowest bin.

We examine the statistical pull of the various observables in figure 5. In each case, the likelihood coming from the empirical constraint is shown by the continuous distribution. The histograms show the fitted posterior pdfs depending upon the prior. We have sometimes slightly altered the normalisation of the curves and histograms to allow for clearer viewing. Figure 5a shows that the \(\Omega_{DM} h^2 \) pdf is reproduced well by all fits irrespective of which prior distribution is used. This is because the fits are completely dominated by the \(\Omega_{DM} h^2 \) contribution, since the CMSSM parameter space typically predicts a much larger value than that observed by WMAP [12]. Figures 5b, 5c, 5d show that \(BR(b \to s\gamma) \), \(M_W \), \(\sin^2 \theta_W \), are all constrained to be near their central values, with less variance than is required by the empirical constraint. Direct sparticle search limits mean that sparticles cannot be too light and hence cannot contribute strongly to the three observables. The rare decay branching ratio \(BR(B_s \to \mu\mu) \) is displayed in figure 5e. Both fits are heavily peaked around the SM value of \(10^{-8.5} \), indeed the most probable bin has been decapitated in the figure for the purposes of clarity, and really should extend up to a probability of around 0.9. The SUSY contribution to \(BR(B_s \to \mu\mu) \propto \tan \beta^6 / M_{\text{SUSY}}^4 \) and so the preference for small \(\tan \beta \) beats the preference for smallish sparticle masses \(\sim O(M_{\text{SUSY}}) \) in the new fits. In all of figures 5a-e, changing the width of the priors from 1 to 2 has negligible effect on the results. The exception to this trend is \(\delta a_\mu \), as shown in figure 5f. \(\delta a_\mu \) has a shoulder around zero for \(w = 2 \), corresponding to a small amount of posterior probability density at high scalar masses, clearly visible from figure 5g. Such high masses suppress loops responsible for the

\[\delta a_\mu \]

Other absolute probabilities quoted below are calculated in an analogous manner.
Figure 5: Statistical pull of different observables in CMSSM fits. We show the pdfs for the experimental measurements as well as the posterior pdf of the predicted distribution in $w = 1$ and $w = 2$ fits. Profile histograms are discussed in section 5 and are multiplied by different dimensionful constants in order to be comparable by eye with the $w = 1$, 2 pdfs.

SUSY contribution to $(g - 2)_{\mu}$. δa_{μ} is pulled to lower values than the empirically central value by direct sparticle limits and the preference for values of $\tan \beta$ that are not too large.
The almost negligible portion of the graph for which $\delta a_\mu < 0$ corresponds to $\mu < 0$ in the CMSSM. $(g - 2)_\mu$ has severely suppressed the likelihood, and therefore the posterior, in this portion of parameter space. For flat $\tan \beta$ priors, and $\delta a_\mu = 22 \pm 10 \times 10^{-10}$, we had previously estimated that the ratio of integrated posterior pdfs between $\mu < 0$ and $\mu > 0$ was $0.7 - 0.16$. For the new priors, where sparticles are forced to be lighter, their larger contribution to δa_μ further suppresses the $\mu < 0$ posterior pdf. From the samples, we estimate $P(\mu < 0)/P(\mu > 0) = 0.001 \pm 0.002$ for $w = 1$ and 0.003 ± 0.003 for $w = 2$, respectively for $\delta a_\mu = (27.6 \pm 7.7) \times 10^{-10}$. Thus, while the probabilities are not accurately determined, we know that they are small enough to neglect the possibility of $\mu < 0$.

5. Profile likelihoods

Since, for a flat prior, eq. 1.1 implies that the posterior is proportional to the likelihood in a Bayesian analysis, one can view the distributions resulting from the MCMC scan as being a “likelihood map” [10]. If one marginalises in the unseen dimensions in order to produce a one or two-dimensional plot, one either interprets the resulting distribution probabilistically in terms of the posterior, or alternatively as a way of viewing the full n-dimensional likelihood map, but without a probabilistic interpretation in terms of confidence limits, or credible intervals. Instead, frequentist often eliminate unwanted parameters (nuisance parameters) by maximization instead of marginalization. The likelihood function of the reduced set of parameters with the unwanted parameters at their conditional maximum likelihood estimates is called the profile likelihood [52]. Approximate confidence limits can be set by finding contours of likelihood that differ from the best-fit likelihood by some amount. This amount depends upon the number of “seen dimensions” and the confidence level, just as in a standard χ^2 fit [46].

While we believe that dependence on priors actually tells us something useful about the robustness of the fit, we are also aware that many high energy physicists find the dependence upon a subjective measure distasteful, and would be happier with a frequentist interpretation. When the fits are robust, i.e. there is plentiful accurate data, we expect the Bayesian and frequentist methods to identify similar regions of parameter space in any fits. We are not in such a situation with our CMSSM fits, as we have shown in previous sections, and so we provide the profile likelihood here for completeness.

We can use the scanned information from the MCMC chains to extract the profile likelihood very easily. Let us suppose, for instance, that we wish to extract the profile in $m_0 - M_{1/2}$ space. We therefore bin the chains obtained in $m_0 - M_{1/2}$ as before. We find the maximum likelihood in the chain for each bin and simply plot that. The 95% confidence level region then is delimited by the likelihood contour at a value $2\Delta \ln L = 5.99$ [10], where $\Delta \ln L = \ln L_{\text{max}} - \ln L$. The profile likelihoods in the $m_0 - M_{1/2}$ and $m_0 - \tan \beta$ plane are shown in figure 6.

Comparing figures 6a and 3a, we see that the profile likelihood gives similar information to the Bayesian analysis with flat likelihoods. The main difference is that the profile

These numbers come from the mean and standard deviation of 10 chains, each of which is considered to deliver an independent estimate.
Figure 6: Two dimensional profile likelihoods in the (a) $m_0 - M_{1/2}$ plane, (b) $m_0 - \tan \beta$ plane. There are 75 bins along each direction. The inner (outer) contours show the 68% and 95% confidence level regions respectively.

The likelihood’s confidence limit only extends out to $(M_{1/2}, m_0) < (1.0, 2)$ TeV, whereas for the Bayesian flat-prior analysis, values up to $(M_{1/2}, m_0) < (1.5, 4)$ TeV are viable. Comparing figure (b) and (c), we again see similar constraints, except that the tail at high $\tan \beta$ up to larger values of $m_0 > 2$ TeV has been suppressed in the profile. From the difference we learn the following facts: in this high $\tan \beta$-high m_0 tail, the fit to data is less good than in other regions of parameter space. However, it has a relatively large volume in unseen dimensions of parameter space, which enhances the posterior probability in figure (c). The difference between the two plots is therefore a good measure of such a so-called “volume effect”. In ref. [11, 13], an average-χ^2 estimate was constructed in order to identify such effects. We find the profile likelihood to be easier to interpret, however. It also has the added bonus of allowing a frequentist interpretation.

We show the profile likelihoods of the various relevant masses in figure (d). There is a general tendency for all of the masses to spread to somewhat heavier values than the $w = 1, 2$ same order+REWSB priors. We remind the reader that the profile likelihood histograms are not pdfs. In the figure, they have been multiplied by dimensionful constants that make them comparable eye to the Bayesian posteriors on the plot. The gluino mass shows the most marked difference: it appears that higher gluino masses are disfavoured by volume effects in the Bayesian analyses. However, while the profiles differ from the Bayesian analyses to a much larger degree than the $w = 1$ or $w = 2$ prior fits differ from each other, they are not wildly different to the Bayesian analyses. The higgs mass distributions look particularly similar. There is a qualitative difference in figure (g), where $m_{\tilde{e}_R}$ and $m_{\tilde{e}_L} - m_{\chi_1^0}$ have a non-negligible likelihood up to 1 TeV, unlike the posterior probabilities.

Figures (a-f) show the profile likelihoods of the pull of various observables. We see that $\Omega_{DM} h^2$ shows a negligible difference to the posteriors. This is because the dark matter relic density constraint dominates the fit and determines the shape and volume of the viable
parameter space. Most of the profiles are similar to the posteriors in the figure except for figure 5e, where the likelihood extends out to much higher values of the branching ratio of $B_s \to \mu\mu$. These values correspond in figure 6b to high tan β but low m_0 points. The posteriors for high $BR(B_s \to \mu\mu) \propto 1/M_{\text{SUSY}}^2$ are suppressed because of the large volumes at high m_0 (and hence at high M_{SUSY}, where $BR(B_s \to \mu\mu)$ approaches the Standard Model limit due to decoupling). In figure 6c, we see enhanced statistical fluctuations in the upper tail of the profile likelihood of M_W, presumably due to a small number of sampled points there. These fluctuations could be reduced with further running of the MCMCs, however.

6. LHC SUSY cross sections

In order to calculate pdfs for the expected CMSSM SUSY production cross-sections at the LHC, we use HERWIG6.500 [59] with the default parton distribution functions. We calculate the total cross-section of the production of two sparticles with transverse momentum $p_T > 100$ GeV. We take the fitted probability distributions of the previous section with the REWSB plus same order priors and use HERWIG6.500 to calculate cross-sections for (a) strong SUSY production i.e. squark and gluino production, (b) inclusive weak gaugino production (i.e. a neutralino or chargino in association with another neutralino, a chargino, a gluino, a squark or a gluino) and (c) 2-slepton production. No attempt is made here to fold in experimental efficiencies or the branching ratios which follow the decays into final state products. The total cross-section times assumed integrated luminosity therefore serves as an upper-bound on the number of events expected at the LHC in the different channels (a)-(c). Some analyses give a few percent for efficiencies, but for specific cases of more difficult signatures, the efficiencies can be tiny.

We show the one dimensional pdfs for the various SUSY production cross-sections in figure 7a. We should bear in mind that the LHC is expected to deliver 10 fb^{-1} of luminosity per year in “low-luminosity” mode, whereas afterwards this will increase to 30 fb^{-1}. Several years running at $\log_{10} \sigma/\text{fb}=0$ therefore corresponds to of order a hundred production events for 100 fb^{-1}. $\log_{10} \sigma/\text{fb}=0$ then gives some kind of rough limit for what might be observable at the LHC, once experimental efficiencies and acceptances are factored in. Luckily, we see that strong production and inclusive weak gaugino production are always above this limit, providing the optimistic conclusion that SUSY will be discovered at the LHC (provided, as always in the present paper, that the CMSSM hypothesis is correct and that the reader accepts our proposal for the prior pdfs). The 95% lower limits on the total direct production cross-sections are 360 fb, 90 fb and 0.01 fb for strongly interacting sparticle, inclusive weak gaugino and slepton production respectively. There therefore is a small chance that direct slepton production may not be at observable rates. The posterior probability that $\sigma(pp \to \tilde{\tau}^+\tilde{\tau}^-) < 1 fb$ is 0.063. Even in the event that direct slepton production is at too slow a rate to be observable, it is possible that sleptons can be observed and measured by the decays of other particles into them [60]. The pdfs of total SUSY production cross-sections for $w = 2$ are almost identical to those shown in the figure. The main difference is in the total direct slepton production cross section, where
Figure 7: Total SUSY LHC production cross-section pdfs in the CMSSM with REWSB plus $w = 1$

same order priors. “strong” refers to squark/gluino production, “weak” to inclusive weak gaugino production and “slepton” to direct slepton production. In (a), 95% lower limits on the cross-sections are shown by the vertical arrows. The probability normalised to the bin with maximum probability, is shown by reference to the colour-bar on the right hand side for (b), (c) and (d). The contours show the 95% limits in the two-dimensional plane.

the small bump at $\sigma \sim 10^{-2}$ fb is somewhat enlarged. It has the effect of placing the 95% lower bound on the slepton production cross-section at 4.8×10^{-4} fb. For $w = 2$, the chance of the di-slepton production cross-section being less than 1 fb is 0.15. The strong and weak gaugino production cross-sections have 95% lower bounds of 570,90 fb respectively for $w = 2$.

We examine correlations between the various different cross-sections in figures (b-d). For instance, figure (b) has two distinct maxima, the focus-point region on the left-hand side and the stau co-annihilation region on the right-hand side. If one could obtain empirical estimates of the total cross-sections to within a factor of about 3 (corresponding to an error of about 0.5 in the \log_{10} value) then measurements of σ_{strong} and σ_{weak} could distinguish between the two mechanisms. There is a overlap between the one-dimensional projections of the two different regions in either σ_{strong} or σ_{weak} and so measurements of both seem to be required for discrimination. The probability density of the focus-point region becomes
too smeared in the σ_{slepton} direction to appear in the 95% limit bounds in figure 7c,d. Experimental measurements of the cross-sections in figure 7 would provide a test of the CMSSM hypothesis. It is clear from figure 7a that σ_{slepton} has two isolated probability maxima. The one at $\sigma_{\text{slepton}} < 0$ corresponds to the focus point region, where scalar x masses are large. This region will probably directly produce too few sleptons to be observed at the LHC and so will not be useful there for discriminating the CMSSM focus point region from the co-annihilation region unless there is a significant luminosity upgrade [61].

7. Conclusion

This analysis constitutes the first use in a serious physics context of a new “banked” MCMC proposal function [45]. This new proposal function has allowed us to sample simultaneously, efficiently and correctly from both signs of μ. The resulting sampling passed convergence tests and therefore gave reliable estimates of LHC SUSY cross-section pdfs. MCMCs have also been used to determine the impact of potential future collider data upon the MSSM [62, 63, 13]. The development of tools such as the banked proposal MCMC constitutes a goal at least as important as the interesting physics results derived here. In case they may be of use for future work, we have placed the samples obtained by the banked MCMC on the internet, with instructions on how to read them, at the following URL [http://users.hepforge.org/~allanach/benchmarks/kismet.html].

We argued that prior probability distributions that are flat in $\tan \beta$ are less natural than those that are flat in the more fundamental Higgs potential parameters μ, B of the MSSM. We have derived a more natural prior distribution in the form of eq. (2.8), which is originally flat in μ, B and also encodes our prejudice that μ and the SUSY breaking parameters are “of the same order”. There is actually a marginalisation over a family of priors, and as such our analysis uses a hierarchical Bayesian prior distribution. It should be noted that this prior pdf can replace definitions of fine-tuning in the MSSM Higgs sector. Its use in Bayesian statistics is well-defined, and we have examined its effect on Bayesian CMSSM fits. The main effect is to strongly disfavour the Higgs-pole and focus point dark matter annihilation regions of CMSSM parameter space. The sparticle masses are then predicted to be probably lighter than previously thought as a result of the new prior. There is little difference in the results when one changes the widths of the same order pdfs, but the results are very different to previous ones in the literature where flat priors in $\tan \beta$ were examined. If one rejects the prior flat in the SUSY breaking parameters, as we have advocated here, our results appear rather robust with respect to changes in the prior. However, for readers that find the same order priors too strong, one can view the difference between the flat prior results and those using the same order priors as a result of uncertainty originating from scarce data. We feel that the sensitivity to priors must be studied, and find the large dependence on priors consistent with something that is intuitively obvious [44]; that a few pieces of indirect data are not sufficient to robustly constrain a complex model of 8 parameters. The frequentist analysis does not depend on any prior, but it also does not allow us to inject reasonable assumptions about the naturalness of the theory. A comparison between the likelihood profile and posteriors is
ideal because it contains information about volume effects in the Bayesian analyses. The frequentist confidence levels on MSSM particle masses are different to Bayesian credible intervals, but within the same ball-park as each other. Thus we may infer some rough limits, but to be conservative one might take the least constraining upper bound by any of the different methods.

This dependence upon priors does indicate the need for caution when interpreting our results; constraining data are currently too scarce to render the posterior pdfs approximately independent of the prior assumption. The lighter sparticles result in optimistic total SUSY cross-section predictions for the LHC. It would be interesting to see the footprints of other SUSY breaking models to see whether the correlations between different cross-sections are a good discriminator [65].

The profile likelihoods of SUSY production cross-sections are shown in figure 8. In the figure, “strong” refers to squark/gluino production, “weak” to inclusive weak gaugino production and “slepton” to direct slepton production. By comparison to figure 7a, we see that the profile likelihoods generally prefer somewhat larger SUSY production cross-sections than the Bayesian analysis with REWSB+same order $w = 1$ priors. The 95% one-sided lower confidence level bounds upon them are for 2000 fb for sparton production, 300 fb for weak gaugino production and 80 fb for slepton production. This last bound is particularly different from the Bayesian analysis since there the small probability for the focus-point régime, evidenced by the low bump to the left hand side of figure 7a, was only pushed just above an integrated posterior pdfs of 5% by volume effects.

Figure 8: SUSY production cross-section profile likelihoods. One-sided 95% lower confidence level limits are shown as calculated from these histograms by the vertical arrows.
A. Comparison with previous literature

The flat-prior results may at first sight seem to be in contradiction with the analysis of Ellis et al. [7], where a preference for light SUSY was found from quite similar global fits to those in the present paper. They also fit $M_W, \sin^2 \theta_W^{\text{eff}}$ as well as $(g - 2)_\mu$, while using the relic density of dark matter as a constraint. In their paper, Ellis et al. fixed $\tan \beta$, and all Standard Model inputs at their central experimental values. For every value of $M_{1/2}, A_0$ scanned, m_0 is adjusted until the central WMAP3 value of $\Omega_{\text{DM}} h^2$ results. The smearing due to the finite error on $\Omega_{\text{DM}} h^2$ is very small and so it is argued that this procedure well approximates the full constraints upon parameter space. We display the resulting constraint on the $A_0 - M_{1/2}$ plane for $\tan \beta = 10$ and $\mu > 0$ in figure 9a. The partial ellipses show the authors’ claimed 68% and 90% confidence level limits calculated with $\Delta \chi^2 = 2.30, 4.61$ [7] from the best-fit point, marked by a cross. Actually, since the confidence level regions are constrained within a wedge-shape in the figure, the 68% (90%) limits should not necessarily correspond to $\Delta \chi^2 = 2.30 (4.61)$ respectively. The regions shown on the figure should therefore be re-calculated, by calculating what sort of probability distribution $\Delta \chi^2$ has when trapped in such a wedge.

In order to emulate these results, we perform a similar but Bayesian fit with the MCMC algorithm: all Standard Model inputs are fixed at their central empirical values, $\tan \beta = 10$ is fixed and $m_0, A_0, M_{1/2}$ are allowed to vary in the MCMC algorithm in order to fit the combined posterior probability of dark matter plus other measurements. For this comparison, we choose flat priors in $m_0 < 1 \text{ TeV}, M_{1/2} < 1 \text{ TeV}$ and $-3 \text{ TeV} < A_0 < 3 \text{ TeV}$. The likelihood is calculated as in section 3. The main conclusion from figure 9 is that the two results are similar. If the correct relationship between $\Delta \chi^2$ and confidence-level were used in figure 9a, the confidence level region could extend out to higher values of $M_{1/2}$. We
should note strictly that, being Bayesian confidence regions as compared to frequentist, we do not exactly compare like with like in figures 9a,b but we do expect roughly similar confidence regions in the two cases. When we perform a similar fit with a larger allowed range of \(m_0 < 4 \) TeV, figure 9b deforms due to contributions from \(h^0 \) and fixed-point regions but the preference for \(M_{1/2} < 800 \) GeV remains. We conclude from this that Ellis et al. did not scan larger values of \(m_0 \) where the focus point regime resides. The procedure of Ellis et al. is not suited for including the \(h^0 \) and fixed-point regions, since then there is no unique solution of \(m_0 \) which provides the central value of \(\Omega_{\text{DM}} h^2 \). If we then additionally include smearing due to \(\tan \beta \) in figure 9b with a flat prior, the \(A^0 \)-pole region extends the region of valid \(M_{1/2} \) out to higher values > 1 TeV. Allowing variations of Standard Model input parameters produces further smearing in the fits until, finally, figure 9a is obtained.

Acknowledgments

This work has been partially supported by STFC. We thank R Rattazzi for discussions which lead to the re-examination of priors. We also thank the Cambridge SUSY working group and T Plehn for helpful discussions and observations. The computational work has been performed using the Cambridge eScience CAMGRID computing facility, with the invaluable help of M Calleja.

References

[21] TEVATRON ELECTROWEAK WORKING GROUP collaboration, E. Brubaker et al., Combination of CDF and D0 results on the mass of the top quark, hep-ex/0608032.

[22] CDF collaboration, A combination of CDF and D0 results on the mass of the top quark, hep-ex/0703034.

[46] See, for example, section 7.3 of F. James, Minuit, function minimization and error analysis, CERN Program Library Long Writeup D506.

