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method in that order as applications of the maximum·likelihood method.
distribution, binomial distribution, Poisson distribution, and least-squares
H. Cramer. ‘* The general presentation will be to study the Gaussian
references are Annis, Cheston, and Primakoff, L M; S. Bartlett, ·’ and
on the Least Squares and Maximum Likelihood Methods. "l Other useful
many helpful discussions and I have drawn heavily from his report "Notes
Chicago in the autumn of 1953. I am grateful to Dr. Frank Solmitz for
Enrico Fermi, Frank Solmitz, and George Backus at the University of
tion to much of the material here was in a series of discussions with
material and approach presented here was Enrico Fermi. My first introduc
mathematical rigor in this presentation. The primary source for the basic
familiarity with the mathematical literature and the corresponding lack of
Laboratory in the summer of 1958. I wish to make clear my lack of

These notes are based on a series of lectures given at the Radiation
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1 + 5(X) = .....5.95.

the a priori knowledge that
not conserve parity. Because of angular—morrientum conservation, we have
For example, consider the decay of a spin—§ particle, the muon, which does
determine the final-state wave function from experimental measurements.

The more common problem facing a physicist is that he wishes to

Z. Inverse Probabilit

dp = f(x) dx

dp, is
call it a probability density function. Note that an element of probability,
As physicists, we call such a function a distribution function. Mathematicians

f(x)d.x = 1

to unity:
particles, is a very large number. Note that the function f(x) is normalized
xl in an interval Axl is Nf(x1)Ax1, where N, the total numberof scattered
can predict with certainty that the number of particles that leave at an angle
where x = cos G`, of a certain scattering experiment. In this example one
such case is that in which we know in advance the angular distribution f(x),
exact knowledge of a final- state wave function (or probability density). One
A common example of direct probability in physics is that in which one has

= N ~·—* ¤¤ N- pl
lim 1

N

out of N events are in Class 1, then we have
pl is the probability of getting an event in Class 1 and we observe that N1
completely unrelated), and (b) the law of large numbers. This says that if
merely note two properties: (a) statistical independence (events must be

Books have been written on the "definition" of probability. We shall

1. Direct Probability

August13, 1958

Berkeley, California
University of California
Radiation Laboratory

Jay Orcar

NOTES ON STATISTICS FOR PHYSICISTS
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combine, compare, interpret, or manipulate experimental results. OCR Output
are confusing to other physicists who in the course of their work must
a "safety" factor (such as rr) before publishing their results. Such practices
some physicists deliberately multiply their estimated standard deviations by

Some physicists use probable error rather than standard deviation. Also

i = l
dpA = 77* fA(xi)dxi

result of Nevents of values xl, x2, . . .,xN is
If A is true, then the joint probability for getting a particular

. . . . . . where x is the kinetic energy of the decay ·rr' divided by its maximurri value.
hypothesis B that it has spin l, then it is "known" that f (x) = 1 and fB(x) = Zx, A
vFor example, if Hypothesis A is that the ·r" meson has spin zero, and
of the variable x must be fA(x), and if B istrue the distribution is fB (x).
be true. And it is also known that if A is true the experimental distribution

Suppose it is known that either Hypothesis A or Hypothesis B must

3. Likelihood Ratios

the word "probability.
remainder of this report we will conform to this sloppy physicist-usage of
different concepts: direct probability and inverse probability. In the
Most physicists use the same word., probability, for the two completely
probability, in contrast to the direct probability used by the mathematician.
The kind of probability the physicist is talking about here is called inverse

(0,*- A0.) < on < (nl +A0) is either O or 1.

He would say the probability of having
the word "probability" in the previous sentence would shock a mathematician.
(the area under a Gaussian curve out to one standard deviation). The use of

(0,. — A0,) < on < (ci"` +Ln) is 68.3%

physicist usually means is that the "probability" of finding
Crudely speaking, A0, is the standard deviation, J and what the

physicists.
calculate 0 and A0.? These are questions of extreme importance to all
questions >=What do we mean by o.°'° and A0.? and What is the "best" way to
result 0 = ci°'° x An. The major portion of this report is devoted to the
to determine 00. Usually the physicist does an experiment and quotes a
physical value of the parameter under question. It is the job of the physicist
to be determined. We shall always use the subscript zero to denote the true
However, the numerical value of 0. is some universal physical constant yet

UCRL—84l7-5



- #l(¤.;x) dx = 1. OCR Output
assurning f(n;x) is the true normalizecl_ distribution function:
of getting a particular experimental result, xl . . . , xn,
The likelihood function,} (o.), is the join; probability density

Zl:1 `¤ K

(2)XM) = 7T _f (¤;>gl. mi } V
{tt} N

u is called the likelihood function, (c,).
first one and then the other, value of ci is itrue. This probability functiontof
probabilities of getting our particular experimental results, x., assuming i
relative probability of any two different values of c. is the ratioof the
In this case, as before, we invoke the same basic principle which says the
the possible values for :10 belong to a continuous rather than a discrete set.

1 + gmx) : .7;%

continuous variable. For example, in the yi-e decay distribution,
physics to have an infinite set of hypotheses; i. e. , a parameter that is a
discrete set of hypotheses among which to choose. It is more common in

The preceding section was devoted to the case in· which one had a

4. Maximurn—Likelihood Method

of Likelihood Ratios.
and the general procedure involved are discussedin Appendix I: Prediction
1 against spin 1. How many events will be needed for this? This problem
Suppose that for the ·r meson one wishes to establish betting odds of 10 to
estimate beforehand how many events he will need to "prove" a hypothefis.

An important job of a physicist planning new experiments is to

Sec. l0.
modifications applied when a priori knowledge exists are discussed in
remaining material in this report is based on this basic principle alone. The
in which there exist no a priori probabilities favoring A or B. All the
assigns inverse probabilities whose ratio is the likelihood ratio in the case
is the betting odds of A against B. The formalism of inverse probability
have a shorter way of saying it by using inverse probability. They say Eq. ‘(1)
lengthy sentence is a correct statement using direct probability. Physicists
the experiments turns out the way it did, assuming B is true. The foregoing
turns out the way it did, assuming A is true, divided by the probability that
This is the probability, that the particular experimental result of N events

(—,-i=1 fs xi
<1>= 7T ———A ‘

f
The likelihood ratio K is

UCRL- 8417-6



(4) OCR Output] 0.. : 0,.
;; OI wherew E2AvX(u1,"‘,¤M),3

solution is to solve the M simultaneous equations,
to be determined, the procedure for obtaining the maximuxri-likelihood

In the general case in which there are M parameters, u,] . . .. GM.

there is no other method of estimation that is more accurate.
*The theorem states that in the limit of large N, n -· :10; and furthermore,
Likelihood Theorem, which is proved in Cramer by use of direct probability.

A confirmation of this inverse-probabiliiy approach is the Maximum

Sections 6 and 7.

ei and ·A¤.. Straightforward procedures for obtaining An are presented in
.ngich a case, it is better to present a plot of (u) rather than merely quoting

The left-hand figure represents what is calle a case of poor statistics. In

+IA¤ \<···

,4% X<~=·>

right-hand figure below.
to approach a Gaussian distribution as N —>¤¤) and will look similar to the
In general, the likelihood function will be close to Gaussian (it can be shown

J do
(3)., Z A Au = Uh- `l Apdu 2

of the accuracy of the determination u = 0.*. We shall call this Ao.
The rms (root-mefan-square) spread of cn about n* is a conventional measure
The most probable value of ¤. is called the maximum-likelihood solution o.
The relative probabilities of o. can be displayed as a plot of jh) vs u. *

-7 UCRL-8417



R. B. Lindsay (Wiley, New York, 194,1). OCR Output
and Poisson distributions is given in Chapter II of Physical _Sta;tistic;s_ by

A derivation of the Gaussian distribution and its relation to the binomial

Next we consider the accuracy of this determination.

(1* =

measuring errors are the same we have
weighted according to the inverse squares of their errors. When all the
is the maximuxn-likelihood solution. Note that the measurements must be

<<»>.1= » --2-L
. Z 1 *

I x

U1 Gi

z°·;··*1 • E ·-···$·, = 0 L
xi ci

2;; (5}Bw _ i Z? —
x— u'

i=1 oi
-Z-— + const;iw =.- é Z -——

(x-¤·)

then

__ _ (ul -2;-gexp [—(><i-¤) /2% ] .
2. 2.1 Z 3; Ji

the likelihood function is
For a set of N measurements x4, each with its own measurement error cx;

f (no; x) = N]-———"&`r"""U ' exp `[-‘(xe0.O)72UL]t ,

function is
measuring error 0. Then if x is Gaussiamdistributed, the distribution
is the result of a particular type of measurement that ig known to have a
sider the example of the measurement of a physical parameter oo, where x

As a first application of the maximum·likelihood method, we con

5. Gaussian Distributions

UCRL-8417-8
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2.8 W/BG. )/,(d¤.8WuP V:g(
is best to use the average
If gf (n) is Gaussianlike, BZW/6:12 is the same everywhere. If not, it
éof (0.). The complete function is then obtained by using a French curve.tryirg several values of ¤. and using Eq. (2.) to get the corresponding values
analytically. In such cases the curve Xiu) can be found numerically byIn many actual problems, neith r q.` nor Ao. may be found

distributed with "errors" Oi
refers to repeated measurements of the same quantity which are Gaussian
T-his formula is commonly known as ,the law of combination of errors and

0. 1

1 _) '? ACL = ‘

differentiating Eq. (5) with respect to 0.. The answer is
Now the error of the above determination, Eq. (6), can easily be found by

Ao = (7)Magic Formula I.F 8 2 ij —-ZY- Bu
"E

Since Au as defined in Eq. (3) is , we have

Baz
2;;:,h

SQ
- >a< - - h (a - o ) ,

*2w = · 2 (¤, - n)+ const,

where 1/JK is the rms spread of u. about oak,

. (¤) ¤¤ exp [-(h/2) (¤—¤ ) ].
>}< 2

Gaussian in ¤.), we have
distribution. To this approximation (actually the above example is always

It can be shown that for large N, »•‘x(¤.) approaches a Gaussian

6. The Magic Formula: Maximmm-Likelih0"0d Error, One Parameter

UCRL-8417



and Eq. (7) leads to

80.
*· at “ 2...;.1/.. : , N Q .V.dx IV % 5; J OCR Output

Thus

fdx = 1

The last integral vanishes if one integrates before the differentiation because

fdx8 —Lf—-g—fdx=- dxrt-—2 f 80. 2.Z -2B 0. 2 · f6 G
2

Z 5Ei f9E Z 8a T Z 3 :1 f 80.
&“1m£_a1s£:i_a£“+1a“f _ 'l -`

This cai-[bes put in the form of a first derivative as follows:

6 0. Z8 u
9.;*;.. = N [ .€L’£‘*.§. mx.

for N events,

8 0.28 0
6w ._ iazm { —-—-——‘ - e ——~—=,— dx
""_` /'* 2z

repeated experiments consisting of N events each. For one event we have
4these circumstances we wish to determine 6 w/8 oz averaged over manydevelopMagic Formula II, which depends only on knowledge of f(a;x). Under
many data will be needed in order to obtain a given accuracy. We shall now
important in the design of experiments to be able to estimate in advance how
mental result before the error can be determined. However, it is often

Note that Magic Formula I depends on having a particular experi

This technique is discussed further in Section 12.
Thus, use of the average second derivative gives the required larger error.

3 ou l "·‘

2 8 w
than

tails offlu) drop off more slowly than Gaussian tails, Bzw/Boz is smallerA plausib'lity argurnent for using the above average goe£.a.s..follows: If the

-10 UCRL-8417
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form of_ the product of independent one-dimensional Gaussiars we have;
Now that the general M-dimensional Gaussian surface has been put in the

aa dYAVL _ L L. d P — C exp [-(2) fg hv]M

_ have
Since = 1 is the Jacobian relating the volume elements d{3 and dy, we

MM

,
divlp : C exp '_ _ I3diV¥B

the B-space is V "" "`° "'
The element of probability inLet_§v= (B ppg)- ·· [BM) and Y E (3 · U

@ "*[yl ia} NV

U-I-I·U = h zh whereU=U . (lO)
~ -1-1 (H1 O

unitary matrix that diagonalizes lj:
According to Eq. (9), lj is a symmetric matrix. Let _Q be the

approximation, then one should merely present a plot of.X(a).
mentioned in Section 4, if the statistics are so poor that this is a poor
on the approximation that,<(¤.) is Gaussianlike in the region oi = ni . As
(an M-dimensional Gaussian surface). As before, our error formgglas depend

a— A. (¤) — C exp (-237 4% Hh BaBb)»

Neglecting the higher-order terms, we have

.. >G<· L "”»&°) · Wm )· 2 Qi § Habpapb

equations for ci
The second termk of the expansion vanishes because Bw/8ci__ = O are the

aj - asm?] 1 l >t< (9)_ 6 `“w H

and

. E ci. - ci. 1 1 i

OCR Outputwhere

a bazl Baal * li-iZZ H @{3 a 2 ab ab"` Bw w(¤.)=w(<i’°“)+E -———

UCRL-8417-12
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ig. : Z BaL Z '

i GZ
w= —-QZ --2-- NJ?/r¤»¤,Z-—N£n(2·:r),

(><i—ctl)

1=1
(ul, nz) = 17 V—————.; . N/2 wr u

Zexp [-(><i—¤1)/Zugl
Then

_Find 0,1 , n2*, and their errors.
standar$ deviation). N particles having ranges xl, . . . , xN are observed.
Gaussian-distributed with mean range nl and straggling coefficient nz (the

Example: Assume that the ranges of monoenergetic particles are

H . · · : L1 IHQICI ( ) X determinant of H
1+j_i ; A /ig-; gth minor of lj(g)c

A rule for calculating the inverse matrix H * is

1] n. u.
dx

(11).. HM epi/ ff BB1/ J
Averaged over repeated experiments

Magic Formula III

ij Bqaali i j j _ij· _ (n— n)(<i- d) — (H )where I-{
’*‘ -1 __ 3 LW

According to Eq. (10), H = U` · h · U, so that the final resultis

‘*· h- "..

. a 1a a 33
21 UTI h '1 U

5 5 `/db Uai
Then

UCRL-8417—13—



~/ZN error of the error). OCR Outputl QN
Aq= IL- and As., = LE- (this is sometimes called the

. . diagonal elements of the error matrix,
T,~1_According to Eq. (ll), the errors on o, a d ci are the square roots of the 1n2

G_`>k2.
0

ZN _2 of
H = and H ' =

o.*2
Hz {]___*2‘

a, egg : ‘ "£Z“ E ("1‘°1)·
a-ZW

Bo. 2Bu 1 0. 4 1 1 0. Z ` `-—:——- JZ J . `»——5—=-———-—Z(x.-¤)+——-,
2 Nza ··w N = sa ZW

at 0. and ¤. 1 Z
in Segtion 17. * The matrix H is obtained by evaluating the following quantities at
do not occur at the same place. Mean values of such qmfantities are studied
This is because in this case the most probab·le value, 0..)., and the mean, o.,,

___ uz ————N-—_l
Z)(xi-ol U)

replaced by (N-1):
The reader may remember a standard-deviation formula in which N is

>*,<\Z;(xi'G·1 )G :`/2 N
>}< 2

¤i = N F xi

tions equal to zero:
The maximum-likelihood solution is obtained by setting the above two equa

? i11T Z QA 1 Z,gi; ’ JT2 ("‘°’2‘

-14 UCRL-8417



be used in such an experiment to determine the systematic effect and its OCR Output
for that specific purpose. In general, the maximum—likelihood method can
effects and their errors are estimated by separate experiments designed
systematic effect is called a "systematic error. " Often such systematic
energy, dead time, etc. The uncertainty in the estimation of such a
angle resolution, variation of counter efficiency with beam position and
such as background, selection bias, scanning efficiency, energy resolution,

"Systematic effects" is a general category which includes effects

9. Systematic Errors

T6" ‘ ll )1a· Where Jij ` §`9E"·
Y1 -1 8**1

easily obtainable. Then

La
In some such cases the BT-? cannot be obtained directly, but the TT are

Boi
b

" —‘‘. " " .. - "‘ * - 1 1 Ml! ·* (YiYi·)(Yj·Yj)·ii ·9T1;·g·E!·· Hag K25 (13)
By. 8y

of the 0., is known, then we have
yl, . . ., YM, which are known functions of the di. Ifthe error matrix H` I"

It is a common problem to be interested in M physical parameters

<¤> = 2 (Au) Y rms gqa8**2 at aj
are completely uncorrelated, is
A well·known special case of Eq. (12.), which holds only when the variables

rms {ii sa; ai.? t lml L- I X Sy By ··(Ayl**3,%

a a
= . _ _ · - (Y yl igig-yE-q-(¤a¤34)(mO—mO).

ay>$< Z

_ Y·>”=Zs:2··<¤a·¤a >·
>' 8 '

,¤_ . . gr y - y(ni ). To first order in (ui-ni ) we have
function of the n"s: y = y (dl, . . . , nM). The "best" value for y is then >l<>·

Consider the case in which a single physical quantity, y, is some

8. Propagation of Errors: the Error Matrix

-15 UCRL—S417





confidence interval is OCR Output

If A = M0) had been chosen as the physical parameter instead, the same

f -00fw
P(0> ci') = I;

OO fide
in the figure.

quantity is cis X( consider the area under the tail of fm) Ihosen for 0. To show th
Unfortunately such a probability depends on the arbitrary choice of what

P(o.' < 0 < 0 ") = d0da,f/ viJn L
all 00

certain values such as 0* and 0"? This is called a confidence interval,
can also ask the question, What is the probability that 0 lies between two
rms values to give an idea of the accuracy of the determination 0 = 0*. One

So far we have worked only in terms of relative probabilities an a

ll. Confidence Intervals and Their Arbitrariness

function to be determined. This type of problem is discussed in Reference 2.
where '0‘·1f(0;x) is known from the nature of the experiment and G(0) is the

(G) = e<¤.x>d¤. A/*0fm H ,
Here one observes
one may wish to determine the momentum distribution of cosmic ray muons.
unknown distribution in 0, G(0), rather than a single value 00. For example,

There is a class of problems in which one wishes to determine an

the likelihood function of the experiment under consideration.
_is the combined likelihood function of all previous experiments and ’)—]?(0) is
own a priori probability. However, the above equation is useful when G(0)
it is impossible to know a "true" G(0), because it in turn must depend on its
distribution in which all values of 0 are equally probable. Strictly speaking,
procedure in the absence of any a priori information is to use an a priori
ledge the term on the right-hand side is zero. In other words, the standard
give the maximurn-likelihood solution. In the absence of any a priori know

8 MH (0*) = - -2- 1Z»n,G(0.*) 5 0 6 0.

_ U ia? ‘ is-; ""/G "` at WH ·
Bw 8

w = Zn G +

UCRL-8417OCR Output-17



skewness correction. ·° We now demonstrate that we have S = O and Sd = l. OCR Output
for S(<1) = $2. Bartletjfs paper also contains a further refggement oia
Similarly the 2-standard-deviation confidence interval is obtained by solving
by solving for the two values of 0. which give S(d') = +1 and S(n") = -1.
the 68.3% confidence interval (one standard deviation) in d can be obtained
Bartlett proposes that, since S is closer than ci to being Gaussian distributed,

An
. _ S (Q)

c. - e*

would then be
· For anfé (u) which is a Gaussian curve with standard deviation Ad, S(d)

¤. . min
8 °'

)where C: ° c ST ‘ 'S(=—{ SW ‘“ ` Z()d 2 °°2’max&

a mean of zero and standard deviation of one, independent of the choice of 0.:
some of the above objections} He defines a function S(d) which always has

M. S. Bartlett discusses a type of confidence interval that avoids

_ _¥_._Bartlett'S. Function

Poisson distributions are also available.
integral. Tables of cumulative binomial distributions and cumulative
confidence intervals can be evaluated by using tables of the probability
probabilities arelunaffected by the choice of zi. For Gaussian distributions,
evaluating Au. Only the maximum·likelihood solution and the relative
the choice of the physical parameter. This is also true to some extent in
Thus, in general, the numerical value of a confidence interval depends on

P (¤>¤ 'l

..®

dk F fax

P(>.> N) = = °‘

pf dk i dnci fi Q

UCRL-8417-18



hood function ,7; (p) is then OCR Output
For a given experimental result of Nl out of N events in Class l, the likeli
fact that we are not interested in the order in which the events occurred.

J=1
Note that E P(j, N) =[p + (1-p)] H = 1. The factorials correct for the

l1 distribution." - `

Class 1 out of N total events is
probability for Class 2., and the joint probability for observing N1 events in
etc. Let p be the probability for an event of Class 1. Then (1-p) is the
of two classes, such as up or down, forward or back, _ positive or negative,

, .· Here we are concerned with the case in which an event must be one

13. Binomial Distribution

ei maxc. . mln
J 8d

Ba .·• S"=1,becausetheterm- } -{. . V Z Sci2 I ?r¥°-Z-f——dn=2£| — gil =O.

.\ - —-———-— da + —- da. 2 Bo. }
6 gi6 ‘if EQ f 1 (3

`/`L --81 & dc. of Bu

fda_ __ 1 Q Bu BnC2 _»_Z Bn \ "

l 8du.—— .4 f52:1 1 6 fda: X6.¤%/)2

—1 Bw 1 af_ _ _ _ S ‘csTd°‘ c ls? da · Kmmaxl · A‘°m1¤l] ·°·fG)7€

UCRL-8417-19



of a decay in the up hemisphere; then we have OCR Output
number up vs the number uown. What then is An? Let p be the probability
cosire, x1, of each event is not known. In this problem all we know is the
is the error on the asymmetry parameter ci. Suppose that the individual

~ LG "‘ 1 3 IQ
distribution we found that
Example: In the previous example (see Section 6) on the (I-e decay angular

(N1-NIV = Np(1-pl
ani

N1 = pN

direct probability. Then
The results, Eqs. él7) and (18), also happen to be the same as those using

(18)_ p(1—p"`) A·—········*P R!N

>§< 2 (1-p 1TE _ F

):1 1 P`? “"N, "`N` TT
>{<2

From (16) and (17):

P =·y (:17)

From Eq. (l5)Z we have

P (1-p)
(16)

Z N N - N 8 l W · 1

1-p ’Bp p
1151

Bw _ Ni N · Ni

w = N1 Im/p + (N-N1) £’42.(1-p) + const

N5 N KP) ‘ P NW)N-N I

-20 UCRL-8417



swept through N! times. Dividing by N! gives OCR Output
does the job except that the particular probability element in Eq. (Z0) is

N dxi X N° if [ T = X 1*]. A
space. Note that the integral
The entire probability is obtained by integrating over the N-dimensional

i=l
. (.20)N \ · - X P(N,x) = rr1' @{1, >< e xf

times the probability of no events in the remaining length:
element of this probability is the joint probability of N events at dx}, . . . dxN

Let P(N, x) be the probability of finding N events in a length x. An

(19)P(0,x) = e(at x = 0, P(0,x) = 1).
`x/)`

L;vP (0,x) = - Q + const,

dP(0.x) = - P(0.x) X -`€¥ .

be the probability of getting no events in a lengtlvx. Then we have
X, the probability of getting an event in an interval dx is dx/K. Let P (0, x)
determination of a cross section or a mean free path. For a mean free path

A common type of problem which falls into this category is the

14. Poisson Distribution

_ An — (1 --··Z—···- )
4 :1*2

_ _F Au = 4
BY Eq- (18).

dp = -§·d¤., and in the limit of small errors, Au, = 4Ap.

dxZ E I
_(` l-+¢1x‘= Z

1+
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In a cross-section determination, we have 0. = px`0‘, where p is the number OCR Output

__ MN
and by Eq. (7), A0. = -C}

Thus we have 0. = N

8 0

8°w _ N

80, 0.
gi. : E. - 1

w= N!/yvu.-0-24pN} ,

h) = <=:.
`°j

hood solution for d 5 N and its error:

events were observed. The problem is to determine the maximum·likeli
We now consider the case in which, in a certain experiment, N

counting rate is N.
This form is usgul in analyzing counting experiments. Then the "true‘

. . . . the Poisson distribution._ P(N, N) — -K.n—- e , (Z2.)
- n-N

N

Equation (2.1) is often expressed in terms of N:

Likewise it can be shown that (N—N)° = N.

N=1 `
___ UU L\ — N=2 N(i‘-QL s X/"= X/>r.

J=1

°" . - i M - >r >t Z P(J,><)=¢ x/ (2%;) = s x/ (<->x/ )=1

As a check, note

the Poisson distribution. (21)rf)*`* Pm, X) : ivlin 8-x/X ,
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xmin
l Q OCR Output

F dx) = eexp (·

x max

the product of such exponentials or
mmaThe probability of getting no events in the entire- interval xin < x < xx iS

Ax is exp (- [ F dx)

x+Ax

events in a small finite interval
repeated many times. According to Eq. (19), the probability of getting no
is the average number of events one would get if the same experiment were

x . min

max l I F dx E ~l<Id(n)

in which the probability of getting an event in dx is F(x)dx, and
icular result be correctly written. We shall now consider the general case y
in question. The only requirement is that the probability of getting a part
then this likelihood function gives the relative probabilities of the parameters
correctly writes down the probability of getting his experimental result,
necessary so long as the basic principle is observed: namely, that if one
to unity. Fermi has pointed out that the normalization requirement is not
hood formalism, whereby the distribution functions are always normalized ,

So far we have always worked with the standard maximum-likeli

15. Extended Maximum-Likelihood Method

oN e-ado.@0.) du,
= 32 (l\5+·1)! = N+1.. 0

a¢[(o) do aN+1 e—udo.

In conclusion we note that n* jg E

0*= -- and ,. =.* 5 EA

of target nuclei peri cm° and x is the total path length. Then
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procedure would have been to normalize F(n;x) to unity by using
In the absence of the extended maximum-likelihood method our

is no method of estimation that is more accurate.

extended maximmn-likelihoodimethod and that in the limit of large N there
direct probability, that the Iviaximumi Likelihood Theorem also holds for the

In a private communication, George Backus has proven, using

care of in the integration over F(x).
A derivation similar to that used for Eq. (8) shows that N is already taken

_50,.50,. i? 311. $:1. 1 1 1
aw 1 arI ar\i` J /

The only change is that N no longer appears explicitly in the formula

ij 5 :1; 8 ci;
H = _ 8"'vv

where

l l J `] V¤
`—-"_'° ` `—`°"""" •l)•) .- .=¤· .- .·=· = Hfyll (no)(¤.ci) ___ IJ

The errors are still given by

5 °1
Bw = 0

The solutions ai =.a.i* are still given by the M simultaneous equations:

xmin

1
F(¤.;x)dx.A w(n) = E!4vF(¤.;x;)

x omax

and

i=1
Au.) = e-Nm) F(¤.;xi)

Thus we have

_ 7( d p—e i=1 F(xi) dxi .
··· N N -N

at x = x,, . . .,x,`,,is then
The element of probability for a particular experimental result of N events
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Poisson-distributed with c= ~]N. ·In this case the likelihood function is
, . . . , where each measurement consigts ofPNi events. Then yi = Ni and is
results are (yl :h Ul) (y 1: 0* ). One such tgpe of experiment is
measurements (not p events) at the points xl, . . . , x . The experimental

From now on we shall confine our attention to the case of p

whichithe xi have known measurement errors is discussed in Reference l.
the xi may or may not, as the case may be, be all different. The case in
experimental result is N events giving precise values xl, . . . , xN where

Until now we have been discussing the situation in which the

16. The Least-Squares Method

answers in the special case in which F(ui;x) is homogeneous in the ui
Crawford has pointed out that the two methods give exactly the same
job of calculating the cross section. In a private communication Frank
as the shape of the angular distribution enables one to do a somewhat better
a path length L), The fact that one has additional a priori information such
obtained by the usual procedure of setting p0‘L = N (the number of events in

Another example is that the best value for a cross section 0 is not

principle, be better.
likelihood method will give a different solution for the di, which should, in
these two quantities are not necessarily equal. Thus the extended maximum
must always hold. -However, in the extended maximum-likelihood method

N(u;) = N,

the total number of ccunts In this standard procedure therequation

F dx = N ,

by using the auxilary equation
been reduced to three by using 0.5 E ello} Then a3 and d4 would be found
which is normalized to one. Note that the four original parameters have

1 5 2
_ 5 “""" ‘ *T‘rr:

6- >=/¤1 + Q8-X/¤z

where x is the time. The standard method would then be to use

3
` / / F(qi;){)=(],€xG1 + O,/{G XGZ

have
lifetimes ul and dz. Let 0.3 and :14 be the two initial decay rates. Then we
For example, consider a sample containing just two radioactive species, of
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a=1

nn OCR OutputWl E ZP [ v - `flx ll] a a
where

a=1
w=-`éw - Z) Lp/1*JZ1r cr

P ......

(Z3)1 - Z ——qT;-.,·;: ¢><P [—(va-y(¤<a)) Q/ZG G ]
2. Z

this Gaussian case the likelihood function is
method is mathematically equivalent to the maximum-likelihood method. In
least-squares method is applicable. We shall now see that the least-squares
yi are Gaussian-distributed with standard deviations oi. Here the famous

The remainder of this section is devoted to the case in which the

XI XZ X3 X4 X5

A/'7(xl
a=1 dui Z ·-— a=1 Y Xa) ui
P 6`9`(xa) P Na 6s7(xa) F -· .

equations
Poisson-distributed points, the solutions are obtained from the M simultaneous
tal points. The best-fit curve corresponds to di = ai . In this case of
We use the notation `§(¤.i;x) for the curve that is to be*fitted to the experimen

i=1 i=1
w = E Ni L4`§(xi) - Z $7(xi) + const.

and

: fr [§(xi)]"i e-`f(xi)Je i=l Yi

UCR.L·84l7-26



..

2* =¤;· H ‘ ;

- ·— An
O=u-0*-H, (29) OCR Output

solution are

In matrix notation the M simultaneous equations giving the least- squares

=1
M -7 8 M _ { TF ’ ' Z,U1"`;“bHb1l

Then

i . a=1 0
(28)uE 2

P Y f-(x ) al a

Define

iJ _ 2 a.—1 0
(21)H. = zP f- (x lf-(x l li a

and

a=l
a.5i (g6)—8 . .;;.,/L: - 2 P Y - Q ubf (x ) I ‘ Z fi(x) ,

Then

e az]
(0i;x) = Z3 o.afa(x)

Finally we consider the special case in which $(0;; x) is linear in the

ij -5-5;-5-6-;, _* .. : _ L = AL (oi 01 )(0j 0.5*) (E )ij, where H2
Z 8 bh/L

to Eq. (11), the least-squares errors are
the maximum-likelihood and least—squares solutions are identical. According'
,values of ni which`Tn`iT1imize are called the least—squares solutions. Thus
This minimum value of/77ii is calledv,/2* , the least-squares sam. The

au. 1
. *1am - - 0

The solutions oi = oi* are given by minimizing`)7T (maximizing w);

UCRL·84l7-27
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_u= (11.25 0.85 1.49) OCR Output

-2.54' 0 24.4180.26 0 0.068

H‘=[O 3.847 0 l,H=[0 0.26 O

2.5 0 0.26 0.664 0 -2.54

_ FC = ¤' = Z ..........¤' H1z'z"2JH13 Z".? HzzJHzs Z z·

8. U 38.:4 U 8 3 ( U a
_ = . 4 _ a H11_ 2 'T:") Hzz Z "z" ·Hs3 `:°'T·

42 1

2fi= 1, f=x, f3=xi`,

y`(x) = ul + 0.2x + o3x° ,

3:1:1, 5:1:1, and 8:1:2. Find the best-fit curve.
pointsat x = - 0.6, -0.2, 0.2, and 0.6. The experimental results are 5:22,
Example: The curve is known to be a parabola. There are four experimental

the7*fZ_value is the sum over all the points on all the curves.
several different curves (all functions of the ui) may jointly be fitted. Then
complete experiment may be a. combination of several experiments in which
curve-fitting it is never necessary to plot any curves. Quite often the
solutions and their errors. Note that even though this procedure is called
Equation (30) is the complete procedure for calculating the least·squares

1J 3,:1 01 1 J J ...· 1J
.._.m..... _ (c1.-c1.*)(c1.-0..*) = H i.. where H.. E Z —;?-`-Jr;

P f- (x )f-(x )

(30)

c ai a=1 b=l 0*, "
¤.·¤= = 2 2 (I-1),

M p y f (xb) ba `1
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The normalization is obtained by integrating from0’Y(=0 tom = ¤¤. OCR Output

mw/ _ (p Z)-1 . . " e('»YL/2) d \(Y\
Thus

vi pp w{ w.-1 ( -1) ’ L dp<>¤ p d°° p /2‘Y= d

volume element in this space is then
dimensional space. The volurne of a p-dimensional sphere is U ¤¤ pp. The
Note that V71= pl', where p is the magnitude of the radius vector in py

dp P cc exp [—°)}7/2] dpyi

is

distribution of );{(on). According to Eqs. (23) and (24) the probability element
distribution of 74!(¤.*) rather than of [(o*). We shall first consider the
out to be the radius vector in p-dimensional space. In this case we use the
in the special case of the least·-square problem, the integration limits turn
an impossibly difficult nuuierical integration in N-dimensional space. However,

In practice, the determination of the distribution of }$(¤.*) is usually .

was used.

one would seriously question either the experiment or the function f(o,;x) that
answer that there was one chance in 104 of getting such a low value off (o.*),
function for fhad been used. If for a particular experiment one got the
value observed would be a useful indication of whether the wrong type of
true f(¤.0, x). Then the probability of getting an K (n*) smaller than the
using direct probability, the distribution of »{(u*) assuming a particular

A
be lower in height and of greater width. In principle, one can calculate,
function for f(u;x). If one is using the wrong f, the likelihood function will
principle, be used as a check on whether one is using the correct type of

The numerical value of the likelihood function at ,[(n*) can, in

17.* Goodness of Fit, the X" Distribution

`y(x) = (3.685 dc 0.815) + (3.27 zh l.96)x + (7.808 zh 4.94)x° is the best-fit curve.

7.808, Au., = 4.94

3.27 ,’ Aaz ='· L96 . Aq.1A¤.3 = -2.54 ,

23.685;} Aqi = O.815, A¤1Au= O,
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°Yl”\* =' 0.674 compared to '7y]* = 4-3 = 1

·->,7»{* = (Z5 -y"(-.63 -‘y(-.2)5-*‘y(.2) ‘8-'·(.6+ l) + (1;+ ’9 ( (;§OCR Output
the end of Section 16.
Example 1: Determine the .X‘ probability of the solution to the problem at

Appendix II.
Since the derivation of Eq. (31) is somewhat lengthy, it is given in

_ >=< = (p-M) and AM* = R/2(p-M)
(31)

dP(§·y('#) = X" distribution for (p-M) degrees of freedom,

we have

experimental points, and M is the number of parameters solved for. Thus
distribution of (p-M) degrees of freedom, where p is the number of
Fortunately, this distribution is also quite simple. It is merely the X

E m¤*>.vm v
distribution of

Usually an is not known. In such a case one is interested in the

(p + N] 2p).

suspicious if his experimental result gives an '7)f value much greater than
. One can show, using Eq. (Z9), that (mc - 0) = 2p. Hence, one sqiould be

From the definition of M (E . (24) ’ is obvious that Y'-?] = p

Physics and other common mathematical tables.
for several degrees of freedom are in the Handbook of Chemistry and

dP(7d)

X2 tables of
This distribution is the well-known X" distribution with p degrees of freedom.

-. !`(x}= /6 ( M F/1):4
6 ""where 2 77/Z(¤ `}//(0 °·

up mp/z> (Z9)dP(77Y ) = _ . 72 “ cp/z>-1 Mo/2 · e dw "’
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of the same quantity should be at least this far apart 7.4% of the time. OCR Output
$7/(* >3.2is1 0.074. Therefore, according to statistics, two measurements
According to the X" table for one degree of freedom, the probability of getting

-7)/kg 3(L00 -1.008+ .4- .008) :3.2 "-]',;=2_ 1:1Z ) (10@
Thus

According to Eq. (6) the weighted mean is u* = 1.008 X 10sec.
-10

Are these results really inconsistent?

1Oto Ee (1.00 :1: 0.01) X 10'sec and (1.04 zh 0.02) X 1010 sec respectively.
Example 2: Two different laboratories have measures the lifetime of the 6

Y=u1+e1zx+a3x

tent with the assumed theoretical shape of
getting 7*/)* >O.674 is 0.41. Thus the experimental data are quite consis
According to the X“ table for one degree of freedom the probability of
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(1Q 1§)‘—N (1 ‘‘)£d 1 1 dx) Og · Og · I \ Og Xx°2IA A ( OCR Output

fluctuation (rms spread) of log gc/for a given N is
event would be complete proof in itself that the tau is spin zero. The
just one event with x = 0: [{ would then be infinite and this one single
lucky, one might not need. so_many events. Consider the extreme case of
Thus about 30 events would be needed on the average. However, if one is

N = 30.

log‘10° = 4 = N) log (E;-E)dx = - N ( log (2x)dx ,

How many events will be needed for this? In this case Eq. (32) gives
zero is true, and we wish to establish betting odds of 104 to 1 against spin 1.
Consider the example (given in Section 3) of the ·r meson. We believe spin

B
log Q = N ) log A f (x)dx, assuming·B is true. ZB

or

1

log = N ] log yi-I-L fA(x)dx, assuming Ais true, (32)

We have

ematically than the alverage of the ratio itself.
of the likelihood ratip. The average logarithm is better behaved math
certain hypothesis. {The usual procedure is to calculate the average logarithm
estimate beforehand just how many events will be needed to "prove" a

An important job for a physicist who plans new experiments is to

Aopendix I: Prediction of Likelihood Ratios
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of the eigenvalues of S are one, and (p—M) are zero. Let U be the unitary OCR Output
trace always equals the sum of the eigenvalues of the matrix. Therefore M
Since the trace of a matrix is invariant under a unitary transformation, the

a, b, c b, c
- - · - - TrS - E Fabl-{bc _Fca - Z Hcblibc - Tri- M

· V"‘

si = O or 1. The trace of Sis

If si is an eigenvalue of_§_, it must equal sf', an eigenvalue of S". Thus

.
i= <2Q§?;><gi`§¤i> =}3*:£i = 54z `1`1`1r

Note that
fav DL? d*¤_

S E FH F (35)
-1/`-»·

* A A’• 4** no __•*• Av
= (Z-§)(l-S)(Z—Z) where q· F = Z and

,~» ...* __ m

·mw uv
7V\* =7y’)0 - (Z. · IF-qFF)HHH(FZ-FF¢i) , *" *·* `•“*"’ ~·~` 1`1

using Eq. (34). The second term on the right is zero because of Eq. (33).

.

WL ‘1"‘*"*

+ ze · ez-Q ·§s;»@-2> + <z· 2;- 1;—»ss>s<s§Z—2H€>

a b a "a
_"" "" °` “'

+ 2(_Z·.-gf' F)F(g_-g)+.(g·g)F‘F(§;21}»~ N _, * * ~ '’*'P v ¤(X ) bib a\.. }"?O=EZ2 (-52-
where thhel unstarred o, is usedjfor no. ’°'

_ a-1 b-1
_ L " ou- M" »·· F" Z wo ‘ Z; E[(Za`°‘¤ Fab)+(?b’%)Fab] ·

(34)ThenBj=Z.· F- Ii-1
A

(33)Z- E = 2· liby Eq. (28) and (2.9).
'/A*

Note that;-I =F ‘ ]; by Eq. (27),

U 1i 6. 1ZE -; and F,.E J?f. . )

We shall define

A.ppen`dix II: Distribution of the Least—Squares Sum

UCRL—8417-33
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br OCR Output

Information Division

of freedom.

By definition (see Section 17) this is the XZ distribution with (p-M) degrees
where `YY\* is the square of the radius vector in (p-M)—dimensional space.

‘la·dP('W\*) °° G- WW2 d(p-M)
Thus

cancel out M of the eigenvalues of 1.

a a=1
E nsince the M nonzero eigenvalues of S

xr rv p_M Z
(1-S).

a aa=1 .
= Z wv; n" where n·v~·__ arethe eigenvalues of

j»{\* 1_l__= 1 · U(1-S)I· 5, where n 5 (Z-;) · B,
-1

matrix which diagonalizes S (and also gl-S)). According to Eq, (35),
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24.MY

Commission.

information pursuant to his employment or contract with the
prepares, handles or distributes, or provides access to, any
Commission to the extent that such employee or contractor

Commission" includes any employee or contractor of the
As used in the above, "person acting on behalf of the

closed in this report.
information, apparatus, method, or process dis·
of, or for damages resulting from the use of any

B. Assumes any liabilities with respect to the use

vately owned rights; or
disclosed in this report may not infringe pri
any information, apparatus, method, or process
contained in this report, or that the use of
pleteness, or usefulness of the information
or implied, with respect to the accuracy, com

A. Makes any warranty or representation, express

mission, nor any person acting on behalf of the Commission:
sponsored work.; Neither the United States, nor the Com·

This report was prepared as an account of Government
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