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NOTES ON STATISTICS FOR PHYSICISTS
Jay Orear® '

Radiation Laboratory
University of California
Berkeley, California

August 13, 1958
Preface

These notes are based on a series of lectures given at the Radiation
Laboratory in the summer of 1958. I wish to make clear my lack of
familiarity with the mathematical literature and the corresponding lack of
mathematical rigor in this presentation. The primary source for the basic
material and approach presented here was Enrico Fermi. My first introduc-
tion to much of the material here was in a series of discussions with
Enrico Fermi, Fraunk Solmitz, and George Backus at the University of
Chicago in the autumn of 1953. I am grateful to Dr. Frank Solmitz for
many helpful discussions and I have drawn heavily from his report '"Notes
on the Least Squares and Maximum Likelihood Methods. vl Other useful
references are Annis, Cheston, and Primakoff, 2 M.S. Bartlett, and
H. Cramer,. The general presentation will be to study the Gaussian
distribution, binomial distribution, Poisson distribution, and least-squares
method in that order as applications of the maximum-likelihood method.

“Permanent address: Department of Physics, Cornell University, Ithaca,
New York. ’

lFrank Solmitz, Notes on the Least Squares and Maximum Likelihood
Methods, Institute for Nuclear Studies Report, University of Chicago.

2‘M. Annis, W. Cheston, and H. Primakoff, On Statistical Estimation in"
Physics, Revs. Modern. Phys. 25, 818 {Oct. 1953).

3M. S. Bartlett, On the Statistical Estimation of Mean Lifetimes, Phil.
Mag., 44, 249 (1953). - : '

4H. Cramer, Mathematical Methods of Statistics (Princeton University
=Press, 1946). '
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Radiation Laboratory :
University of California
Berkeley, California

August 13, 1958

1. Direct Probability

Books have been written on the '"definition' of probability. We shall
merely note two properties: (a) statistical independence (events must be
completely unrelated), and (b) the law of large numbers. This says that if
pj is the probability of getting an event in Class 1 and we observe that N)
out of N events are in Class 1, then we have

. N
lim 1 -
N -~ o !:N—] P

A common example of direct probability in physics is that in which one has
exact knowledge of a final-state wave function (or probability density). One
such case is that in which we know in advance the angular distribution f(x),
where x = cos 6, of a certain scattering experiment. In this example one

can predict with certainty that the number of particles that leave at an angle

x, in an interval Ax; is Nf(x;)Ax;, where N, the total number of scattered
particles, is a very large number. Note that the function f(?() is normalized
to unity: ;

flx)dx = 1. k
-1
As physicists, we call such a function a distribution function. Mathematicians
call it a probability density function. Note that an element of probability,
dp, is

dp = f(x) dx

2. Inverse Probability

The more common problem facing a physicist is that he wishes to
determine the final-state wave function from experimental measurements.
For example, consider the decay of a spin-3 particle, the muon, which does
not conserve parity. Because of angular-momentum conservation, we have

the a priori knowledge that

1 + ax

f(x) = 5
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However, the numerical value of a is some universal physical constant yet

tc be determined. We shall always use the subscript zero to denote the true
physical value of the parameter under question. It is the job of the physicist .
to determine a,. Usually the physicist does an experiment and quotes a
result a = @™ £ Aa. The major portion of this report is devoted to the
questions What do we mean by o™ and £a? and What is the "best" way to
calculate a* and £a? These are questions of extreme importance to all
physicists.

Crudely speaking, 2a is the standard deviation, 5 and what the
physicist usually means is that the ''probability'’ of finding

b3

(@ - 2a) < a, < (q.*-i-tso.) is 68.3%

0
(the area under a Gaussian curve out to one standard deviation). The use of
the word ''probability' in the previous sentence would shock a mathematician.
He would say the probability of having '

(@*- 8a) < ag < (a +&a) is either 0 or 1.

The kina of probability the physicist is talking about here is called inverse
probability, in contrast to the direct probability used by the mathematician.
Most physicists use the same word, probability, for the two completely

- different concepts: direct probability and inverse probability. In the
remainder of this report we will conform to this sloppy physicist-usage of
the word ''probability. "

3. Likelihood Ratios

Suppose it is known that either Hypothesis A or Hypothesis B must
be true. And it is also known that if A is true the experimental distribution
of the variable x must be fj(x), and if B is true the distribution is g (x).
For example, if Hypothesis A is that the 77 meson has spin zero, and
hypothesis B that it has spin 1, then it is "known'' that f, (x) = 1 and fg(x) = 2x, .
where x is the kinetic energy of the decay 7w~ divided by its maximum value.

If A is true, then the joint probability for getting a particular
result of N 'events of values X1, X3, o . ., XN is
N

dpA = '77’1 fA(xi)dxi .
i =

5Some physicists use probable error rather than standard deviation. Also
some physicists deliberately multiply their estimated standard deviations by
a "safety' factor (such as w) before publishing their results. Such practices
are confusing to other physicists who in the course of their work must
combine, compare, interpret, or manipulate experimental results.
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The likelihood ratio K is
£y by)

N
= 77 . (1)
~ =1 B o) '

This is the probability, that the particular experimental result of N events
turns out the way it did, assuming A is true, divided by the probability that
the experiments turns out the way it did, assuming B is true. The foregoing
lengthy sentence is a correct statement using direct probability. Physicists
have a shorter way of saying it by using inverse probability. They say Eq. (1)
is the betting odds of A against B. The formalism of inverse probability
assigns inverse probabilities whose ratio is the likelihood ratio in the case
in which there exist no a priori probabilities favoring A or B. All the
remaining material in this report is based on this basic principle alone. The
modifications applied when a priori knowledge exists are discussed in

Sec. 10.

An important job of a physicist planning new experiments is to
estimate beforehand how many events he will need to "prove'" a hypothegsis.
Suppose that for the 7 meson one wishes to establish betting odds of 10~ to
1 against spin 1. How many events will be needed for this? This problem
and the general procedure involvéd are -discussed in Appeadix I: Prediction
of Likelihood Ratios.

4. Maximum- Likelihood Method

The preceding section was devoted to the case in' which one had a
discrete set of hypotheses among which to choose. It is more common in
physics to have an infinite set of hiypotheses; i.e., a parameter that is a
continuous variable. For example, in the p-e decay distribution,

flasx) = L%E’i. ,

the possible values for a, belong to a continuous rather than a discrete set.
In this case, as before, we invoke the same basic principle which says the
relative probability of any two different values of a is the ratio of the
probabilities of getting our particular experimental results, x., assuming
first one and then the other, value of a is itrue. This probabifity function. of
a is called the likelihood function, ,( (a). ‘

o N ‘
(@) = 777 flax) 4. (2)
i=1 '
The likelihood function,X(a), is the joint probability density
of getting a particular experimental result, x; . . ., xq,

assuming f(a;x) is the true normalized distribution function:

:\fﬂl(a;x) dx =. 1.
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The relative probabilities of a can be displayed as a plot of X(a) Vs a.
The most probable value of a is called the maximum-likelihood solution a .
The rms (root-mean-square) spread of a about a* is a conventional measure
of the accuracy of the determination a = a®. We shall call this 2a.

b opg e [Jed?Zaa | 2 (3)
oo L J‘fda

In general, the likelihood function will be close to Gaussian (it can be shown -
to approach a Gaussian distribution as N — ) and will look similar to the
right-haand figure below. :

La) | | Ala)

The left-hand figure represents what is called a case of poor statistics. _In
such a case, it is better to present a plot of X (a) rather than merely quoting
a® and ‘Aa. Straightforward procedures for obtaining Aa are presented in .
Sections 6 and 7.

A confirmation of this inverse-probability approach is the Maximm—
Likelihood Theorem, which is proved in Cramer *by use of direct probability.
The theorem states that in the limit of large N, a = ag and furthermore,
there is no other method of estimation that is more accurate.

In the general case in which there are M parameters, ol . - s amM»
to be determined, the procedure for obtaining the maximum-likelihood
solution is to solve the M simultaneous equatious,

where w = WX(GI’ o, O'M)’

Qj Q©
.ﬂs
i
o
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5. Gaussian Distributions

As a first application of the maximum-likelihood method, we con-

sider the example of the measurement of a physical parameter ag, where x
known to have a

is the result of a particular type of measurement that i
Then if x is Gaussian-distributed,® the distribution

measuring error o.
function is
1 ' 2
‘© exp '[-'(xaao)/ZO ]

flogix) = B oo

For a set of N measurements x. i each with its own measurement error 0

.

the likelihood function is
N 1 2 2
jj (a) =i7:/; Iz o, exp [-(x,-a)/20,"] ;
then N 2
: (xi-a)
w=-1 z — + const;
ow xi - a
e F Tz 4)
. o'i
) x4 a*
Z’——'Z - Z '-""2 = O ’
o, o,
I x,
Z =21 "
F = (6)
z =
o

Note that the measurements must be
When all the

is the maximum-likelihood solution.
weighted according to the inverse squares of their errors.

measuring errors are the same we have
* le

a =..._N__

Next we consider the accuracy of this determination

6A derivation of the Gaussian distribution and its relation to the binomial
and Poisson distributions is given in Chapter II of Physical Statistics by
R. B. Lindsay (Wiley, New York, 1941).




-9. UCRL-8417

6. The Magic Formula: Maximum-Likelihood Error, One Parameter

e
It can be shown that for large N, ~4(a) approaches a Gaussian
distribution. To this approximation (actually the above example is always
Gaussian in a), we have C

Z @) « exp [-B/2) (a-aD?],

where 1A'h is the rms spread of o about a*,

w’é-%(a— 0'*)2"*’ const,
ow  _ *
w - h (a - &%)},
Bzw_

5 = - h
da

Since Aa as defined in Eq. (3) is 1/\/31- , We have

o

r 2 -
Da = . 3 ;’} Magic Formula 1. (7)
L da

Now the error of the above determination, Eq. (6), can easily be found by
differentiating Eq. (5) with respect to a. The answer is :

_L
La = -{2 1_2-"1 ¢
73

This formula is commonly known as the law of combination of errors and
refers to repeated measurements of the same quantity which are Gaussian-
distributed with 'errors' o, . '

In many actual problems, neither q.* nor Aa may be found
analytically. In such cases the curve /{e(a) can be found numerically by
trying several values of a and using Eq. (2) to get the corresponding values
of (a). The complete function is_then obtained by using a French curve.
If /’f (a) is Gaussianlike, 092w/da? is the same everywhere. If not, it
is best to use the average ‘

52w . Y_S(.alz‘w/aaz)Xda

9 a2 - Jf da
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A plaus?lity argument for using the above average goes as follows: If the

tails of L (a) drop off more slowly than Gaussian tails, 8 2'W/E) a? is smaller
than » 2
8w
9 aZ %
a

Thus, use of the average second derivative gives the required larger error.
This technique is discussed further in Section 12.

Note that Magic Formula I depends on having a particular experi-
mental result before the error can be determined. However, it is often
important in the design of experiments to be able to estimate in advance how
many data will be needed in order to obtain a given accuracy. We shall now
develop Magic Formula II, which depends only on knowledge of f{a;x). Under
these circumstances we wish to determine 84w/8a® averaged over many
repeated experiments counsisting of N events each. For one event we have

7

0w _ [olwt .

s T fdx
da J da

for N events,

2 2
0w _ 9 "lnf
— = N — fdx,
da da

This caw'be put in the form of a first derivative as follows:

oefunt . o 1 e\ 1 feg\* [ 1 8%
T, 2  Jaif da T2 B T 52
da H da

2 2 2
Dk e o 1 [of dx # 37F rax

2 f {%a 2

da da

The last integral vanishes if one integrates before the differentiation because

ffdx=l.

Thus

and Eg. (7) leads to
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1
- -3
T [ecV .

o dx Magic Formula II (8)

Aa = 1 [
N | T V=

(the case in which there is no experimental result).

-_--—-_—_—-------—---_--_-__.._-.--_—--_-__-----..-_-—---..-_-—--—-_-—__

Example
Assume in the p-e decay distribution function, f(a;x) = —l;‘}- , that
a, = -1/3. How many p-e decays are needed to establish a to a 1% accuracy

i. e, a/Ha =100)?

@
h

l

o
1)

1 2a
3
_ 1 2a
fe= TN f I+a
i v 2
Note that .
lim [Aa] = 3
a—>r o ~N
For 1 R 2;§
» ¢@=-3" % JN
For this problem
pe ==t N=2.52 x10° events.

7. Maximum- Likelihood Errors, M-Parameters, Correlated Errors

When M parameters are to be determined from a single experiment
the error formulas of the preceding section are

containing N events,
hich the errors are uncorrelated.

applicable only in the rare case in w
Errors are uncorrelated only for(a.-u.1 )(o.--o,j ") = 0 for all cases with i ;‘ j.
For the general case we Taylor-expand W(Jd) about (a™):
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M .
ow
- % _ L
w(a) = w{a™) + Z- 5o ‘ ﬁa > Z Z Hab Bapb + s
a=l a % a b
a
a
where o
ﬁl Za -a
and
azw
H1_]:_ 9a.0a. (9)
1755 *

The second terrny of the expansion vanishes because 9w/ 8 a = 0 are the

equations for a,

f/w,ﬁa) = w(a*®) - ’é‘ § %: Hab ﬁapb PRI

Neglecting the higher-order terms, we have '

/Z/(a) = C exp ('%E T Hy BBy

(an M-dimensional Gaussian surface). As before, our error formlgklas depend
on the approximation that,((a) is Gaussianlike in the region g =a; . As
mentioned in Section 4, if the statistics are so poor that thjs is a poor
approximation, then one should merely present a plot of & (a).

According to Eq. (9), His a symmetric matrix. Let U be the
unitary matrix that diagonalizes H: :

,_[1o ~ 1
U. H- U " = h = h where U= U ~ . (10)
~ a w . 2. (g ~v L ad
o -
bm
Let = (B,,8,," + - Byydandy = B U™ The element of probability in

the B-space is

aMp=Cexp [-iy- U)- Hy- 0)) aMp .

Since lg] = 1 is the Jacobian relating the volume elements dMﬁ and dMy, we
have
2.] M

M
a"p=Cexp [-})Zh
P pl-)z aMy

aya

Now that the general M-dimensional Gaussian surface has been put in the
form of the product of independent one-dimensional Gaussians we have:

— -1
Ya¥p = 6abha ’
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Then
B.= Y £ YwWwU.U
i"j 2 b a'b Tai bj
sr ulntu
a 1a a a)
= (U-l - h- U)-l
o~ w ~ 1}
According to Eq. (10), H = U“l * h - U, so that the final resultis
% N -1 82w
(Q'i - a; )(aj - o.j )= (g )ij where H 8(1 Ta.

Averaged over repeated experiments

_ /.
o 1fef\/at
H;, = f?é’&:)tgaj) dx

J
Magic Formula 1II

A rule for calculating the inverse matrix H_1 is

(1) & = o
'/

Example:

(11)
ijth mianor of B
determinant of I_;I,

Assume that the ranges of monoeaergetic particles are

Gaussian-distributed with mean range aj and straggling coefficieat a, (the

standarg devxatlon) N particles having ranges x7,

~Find ay, °2 , and their errors.

Then
7{(0 y 0y) = //I:T[’ ::.l——' exp [
1 . N2 Ta
i=1 2
_ . (ximal
wWE -z T -
i as
dw o s (x;-a))
35,'_1 S 2 !
i a

NJ?/IUCLZ

.y Xy are observed.

/Za]

- Nin(2w),
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ow  _ 1 2 N
ZF— (xi-al) - =

a 3

2 Q‘L i 2

The maximum-likelihgod solution is obtained by setting the above two equa-

tions equal to zero:

&

,g'

»* - 1 5
1 TN &N
z/—"—_::z
N (x;-a) )

a

2 =—T-——

The reader may remember a standard-deviation formula in which N is
replaced by (N-1):

*.2
- Z‘,(xi—cs,1 )

0.2 = _N—_—_—__—l

’ *
This is because in this case the most probable value, a, , and the mean, a,,
do not occur at the same place. Mean values of such quantities are studied
, The matrix H is obtained by evaluating the following quantities

in Sectmn 17.,
at al and a

N .

a"w =
6(112
N
B
0.2*
0

2 I

According to Eq.
diagonal elements of the error matrix, }j

2
N 3 N
— - 34 Dlx;-a))" + —,
o3 da, ) 2
a“{é?.‘“azw = - AT aj),
ca 2 az
az*z
0 0
and H-l = 2
2N _ o~ 0.2"‘_
a,*2 0 —IN—

(11), the errors on a anld a, are the square roots of the

¢

and Aa, = 2 (this is sometimes called the

N 2N error of the error).
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8. Propagation of Errors: the Error Matrix

Counsider the case in which a single physical quantity, y, is some
function of the a's: y =y (ay, . . ., apym). The '"best' value for y is then

y* = y(ai*). To first order in (aj-aj ) we have

* 9 "
y-y =Z 2L (a —aa),

Baa a
®2 _ 5 ¢ Oy ay % *
by -y} i mea“a Bor (a,-a ) fay - o ),

i < (N 12)
a

A well-known special case of Eq. (12), which holds only when the variables
are completely uncorrelated, is

By =]z (23 7% (pa )2
Yiems ~ a é—aa/ ay’ -

It is a common problem to be interested in M physical pan'ameters1 .

Y1 - - -s Yy Which are known functions of the a;. If the error matrix H”
—n

of the a; is known, then we have

dy. By.
* % 1 hS Y~
(y:-y: Jly.-y. ) = 2 Z —o— 7—— HKH {H) (13)
1o J J a b Baa E)ab i «b
l ayi da,
In some such cases the 5o cannot be obtained directly, but the 7y are
a a

easily obtainable. Then

2y; -1 Oy
-s—a;- = {J )ia’ where Jij_ ayj ,

9. Systematic Errors

"Systematic effects' is a general category which includes effects
such as background, selection bias, scanning efficiency, energy resolution,
angle resolution, variation of counter efficiency with beam position and
energy, dead time, etc. The uncertainty in the estimation of such a
systematic effect is called a ''systematic error.' Often such systematic
effects and their errors are estimated by separate experiments designed
for that specific purpose. In general, the maximum-likelihood method can
be used in such an experiment to determine the systematic effect and its
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error. Then the systematic effect and its error are folded into the dis-
tribution function of the main experiment. Ideally, the two experiments can
be treated as one joint experiment with an added parameter apsy tO
account for the systematic effect. '

In some cases a systematic effect cannot be estimated apart from
the'main experiment. The example given in Section 7 can be made into
such a case. ILet us assume that among the beam of monoenergetic particles
there is an unknown background of particles uniformly distributed in range.
In this case the distribution function would be :

1

exp [+« (x-u1)2/2a22] +a
2

3 3

3

S| (
fla), ey agix) = C“i
a2

where

C (al, as, a3) = f dx.

® ¥
8
X

min

.
The solution ag is simply related to the percentage of background.

10. Uniqueness of Maximum- Likelihood Solution

Usually it is a matter of taste what physical quantity is chosen as a.
For example, in a lifetime experiment some workers would solve for the
lifetime, T, while others would solve for \¥ where \ = 1/r. Some
workers prefer to use momentum, and others energy, etc. Consider the
case of two related physical parameters X\ and a. The maximum-likelihood
solution for a is obtained from the equation 8w/8a = 0. The maximum-
likelihood solution for X is obtained from dw/8\ = 0. But then we have

dw 8a _ ow
o =0, and o 0.

Thus the condition for the maximum-likelihood solution is unique and
independent of the arbitrariness involved in choice of physical parameter.
A lifetime result 7° would be related to the solution A\ by ¥ = 1/N\

The basic shortcoming of the maximum-likelihood method is what
to do about the a priori probability of a. If the a priori probability of a is
G(c) ard the likelihood function obtained for the experiment alone is a~€ (a),
then the joirt likelihood function is

Zla) = Gla) H (a);
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w=2nG+24v}e.

ow

_ 9 0
3o = 3 Gt 5

3

;—af’“’ﬂ (a¥) = - 5o 4G (o*)

give the maximum-likelihood solution. In the absence of any a priori know-
ledge the term on the right-hand side is zero. In other words, the standard
procedure in the absence of any a priori information is to use an a priori
distribution in which all values of a are equally probable. Strictly speaking,
it is impossible to know a 'true' G(a), because it in turn must depend on its
own a priori probability. However, the above equation is useful when G(a)

.is the combined likelihood function of all previous experiments and ’a-e(u) is
the likelihood function of the experiment uander consideration.

There is a class of problems in which one wishes to determine an

unknown distribution in a, G(a), rather than a single value ag. For example,
one may wish to determine the momentum distribution of cosmic ray muons.

Here one observes
. L@ = [ H @xaa)

where a‘f(a;x) is known from the nature of the experiment and G(a) is the
function to be determined. This type of problem is discussed in Reference 2.

11. Confidence Intervals and Their Arbitrariness

So far we have worked only in terms of relative probabilities an :
rms values to give an idea of the accuracy of the determination a = a*. One
can also ask the question, What is the probability that a lies between two
certain values such as a! and a''? This is called a confidence interval,

Pla'<a<a')= (jl,fda/ jyﬁda
a! -0

Unfortunately such a probability depends on the arbitrary choice of what
quantity is chosen for a. To show this

consider the area under the tail ofdf(a) X(a)
in the figure.

T L

jﬂfd“ ' _~ |

If X\ = Ma) had been chosen as the physical parameter instead, the same
confidence interval is
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[Xe L

POA>N) = — =
f)
:f:fdx Jw an
}'1 Pla>al).

Thus, in general, the numerical value of a confidence interval depends on
 the choice of the physical parameter. This is also true to some extent in
evaluating Aa. Only the maximum-likelihood solution and the relative
probabilities are unaffected by the choice of a. For Gaussian distributions,
confidence intervals can be evaluated by using tables of the probability
integral. Tables of cumulative binomial distributions and cumulative
Poisson distributions are also available.

12. Bartlett S. Function

«

M. S. Bartlett discg.sses a type of confidence interval that avoids
some of the above objections.” He defines a function S{a) which always has
a mean of zero and standard deviation of one, independent of the choice of a:

2
9 X/Z(n)da .
da

For anX(a) which is a Gaussian curve with standard deviation Aa, S{a)
would then be

a .

: max
S{a) = cl— -g% where CZE - S
a

min

S(Q) - _ O-A-ac.

Bartlett proposes that, since S is closer than a to being Gaussian distributed,
the 68.3% confidence interval (one standard deviation) in a can be obtained

by solving for the two values of a which give S{(a') = +1 and S(a') = - 1.
Similarly the 2-standard-deviation confidence interval is obtained by solving
for S(a) = 2. Bartlett's paper also contains a further refinement of a
skewness correction. We now demonstrate that we have S = 0 and S2 = 1.

A i
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2 K{
‘e S2 = 1, because the term - f qf da = N LAY
. ! 2 Jda da i
J da :
a a
min max

13. Binomial Distribution

.+ Here we are concerned with the case in which an event must be one
of two classes, such as up or down, forward or back, positive or negative,
etc. Let p be the probability for an event of Class 1. Then (l-p) is the
probability for Class 2, and the joint probability for observing N; events in
Class 1 out of N total events is .

1] -
P(N,, N) = _I\T—'_(%_I—\T_)T M1 (1-pN" N1 | The binomial (14)
1« W distribution.
N N
Note that £ P(j, N) =[p + (1-p)]" = 1. The factorials correct for the
=1

fact that we are not interested in the order in which the events occurred.
For a given experimental result of N] out of N events in Class 1, the likeli-
hood function JZ (p) is then
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N! Ny N-N
f(ﬂ(P) = NITN-N T p 1(1-p) :

w = N1 np (N-Nl) Ln{l-p) + const

N N-N1

ow 1
— T —— ™ —— e, s 1
L= I (15)
plw _ Ny N-Ny "
— i 2 (16)
op p (1-p)
From Eq. (15). we have
£ N‘
P Tx @v)
From (16)and (17):
-(p-p*)2 = L
Nl ] N - \Il
p?" Z (l_p*)z
_|p* (1-p™)
4p '\J'——"N—— (18)

The results, Egs. 5(17) and (18), also happen to be the same as those using

direct probability.~ Then
N1 = pN
anl )

Example: In the previous example (see Section 6) on the p-e decay aangular
distribution we found that
3
Na = 5_
@ N

is the error on the asymmetry parameter a. Suppose that the individual
cosire, X5, of each event is not known. In this problem all we know is the
number up vs the number down. What then is £a? Let p be the probability
of a decay in the up hemisphere; then we have
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1 : a
= l¥ax . = 1+-2'.'
P 3 - ’
0

dp = lda, and in the limit of small errors, Aa = 4Ap.

By Eq. (18),

sa=q R UP) R

- em A e e e s e e Gm e e L M W e e e W e e e e e e e e e G e e e e S ee e 4e e W G W R e OB AR T e e e G W e

14. Poisson Distribution

A common type of problem which falls into this category is the
determination of a cross section or a mean free path. For a mean free path
\, the probability of getting an event in an interval dx is dx/\. Let P (0, x)
be the probability of getting no events in a length-x. Then we have

dP(0, x) = - P(0,x) X T

LwP (0,x) = - § + coast,

x/)\.

PO, = e” (at x = 0, P(0,x) = 1). (19)

Let P(N, x} be the probabiliﬁy of finding N events in a length x. An
element of this probability is the joint probability of N events at dx],...dxyN
times the probability of no events in the remaining length:

N . '
aNp(N, x) = 4T (%’:‘1\ % o X/ © 20
i=1

The entire probability is obtained by integrating over the N-dimensional
space. Note that the integral

N ¥ dx; N
ﬂf‘x—=<x>

0

does the job except that the particular probability element in Eq. (20) is
swept through N! times. Dividing by N! gives
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] %

( )N
P(N, x}) = \'"‘:— e-x/x , the Poisson distribution.

>

As a check, note

o ;
S PG x) = e M BAL ) N N

e_x/x = x/\.

Likewise it can be shown that (N-ﬁ_)'2 = N.

Equation (21) is often expressed in terms of N:

P(N, N) = —— e , the Poisson distribution.

(21)

(22)

This form is useful in analyzing counting experiments. Then the "true"

ccunting rate is N.

We now consider the case in which, in a certain experiment, N
events were observed. The problem is to determine the maximum-likeli-

hood solution for a = N and its error:

ow - N _ .
Q

da
82w . N
- Tz
da a
Thus we have a* =N
1 _ Q
and by Eq. (7), La = ——
NN

In a cross-section determination, we have a = pxo, where pis the number
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of target nuclei per cm3 and x is the total path length. Then

* . N bo
(o4 5% and

In conclusion we note that a%* )! a:

‘oo 0
f aja) da f 0N+1 e %a
"a-_-? = 9 = (N+1)!=N+1.

N!

= “% N -a
ﬁ‘\(a) da. Ja e da .

15. Extended Maximum- Likelihood Method

So far we have always worked with the standard maximum-likeli-
hood formalism, whereby the distribution functions are always normalized
to unity. Fermi has pointed out that the normalization requirement is not
necessary so long as the basic principle is observed: namely, that if one
correctly writes down the probability of getting his experimental result,
then this likelihood function gives the relative probabilities of the parameters
in question. The only requirement is that the probability of getting a part--
icular result be correctly written. We shall now consider the general case
in which the probability of getting an event in dx is F(x)dx, and

X

max '
f Fdx = N (a)

X .
min -

is the average number of events one would get if the same experiment were
repeated many times. According to Eq. (19), the probability of getting no
events in a small finite interval ‘ ‘

x+Ax
LOREN Ax is exp (- f F dx)
x

The probability of getting no events in the entire interval X in $X<x o 18

the product of such exponentials or

xma.x -N,-
exp (-f . Fdx)=e T .
v % .
mi

o
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The element of probability for a particular experimental result of N events
at X T Xy, « . +,X.i8 then
o 1 N
. R g R AT

Ly P FC s Ul B

Thus we have

N
e-N(a) 47 F(a.;xi)

i=]

)

and

N N Xmax
wia) = 1Z=1 M/F(a;xi) - f F(a;x)dx.
x

min

The solutions a, =.a.i* are still given by the M simultangous equations: -

ow

o - 0

1

The errors are still given by

L 1))
(oi-ui*)(uj-aj*) =t (t{ )'J
where
82w

ij =- aiaaj

The only change is that N no longer appears explicitly in the formula

8w 1 [aF aF\.."'dx
" Tose ) F (oo \oa, &

1

A derivation similar to that used for Eq. (8) shows that N is already taken
care of in the integration over F(x).

In a private communication, George Backus has proven, using
direct probability, that the Maximum-< Likelihood Theorem also holds for the
extended maximum-likelihood method and that in the limit of large N there
is no method of estimation that is more accurate.

In the absence of the extended maximum-likelihood method our
procedure would have been to normalize F(a;x) to unity by using
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For example, consider a sample containing just two radioactive species, of
lifetimes a; and d.z. Let ay and ay be the two initial decay rates. Then we

have ,

(

F(ai;x) =a e_x/o‘l + a, e -x/a2

3 4 ’
where x is the time. The standard method would then be to use
_ e x/a) + ag e—x/o,z
fla;x) = - )
%1 7% %

which is normalized to one. Note that the four original parameters have
been reduced to three by using ag = °‘¥£°3' Then a3 and ay would be found
by using the auxilary equation

o0
desz,
0

the total number of ccunts In this standard procedure the equation

—I\T(ai) = N,

must always hold. However, in the extended maximum-likelihood method
these two quantities are not necessarily equal. Thus the extended maximum-
likelihood method will give a different solution for the a;, which should, in
principle, be better. o

Another example is that the best value for a cross section ¢ is not
obtained by the usual procedure of setting po L. = N (the number of events in
a path length L). The fact that one has additional a priori information such
as the shape of the angular distribution enables one to do a2 somewhat better
job of calculating the cross section. In a private communication Frank
Crawiford has pointed out that the two methods give exactly the same
answers in the special case in which F(a;;x) is homogeneous in the a;.

16. The Least-Squares Method

Until now we have been discussing the situation in which the
experimental result is N events giving precise values x,,. . . , x,, where
the x. may or may not, as the case may be, be all different. The case in
which' the x; have known measurement errors is discussed in Reference 1.

From now on we shall confine our attention to the case of p
measurements (not p events) at the points x, ..., x_. The experimental
results are (yl + 01), .« .,y £05). One such tgpe of experimeant is
where each measurement consibts opri events. Then y. = Nj and is
Poisson-distributed with o, = 'JNi. In this case the likelihood function is
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and P P
w = Ni Lny(x;) - Z Y(xi) + const.
i= i=

We use the notation y(g;;x) for the curve that is to be fitted to the experimen-
tal points. The best-fit curve corresponds to a; = a; . In this case of
Poisson-distributed points, the solutions are obtained from the M simultaneous

equations

P 3y (x,) P, 9Vixy)
2 o T I ) e
a=1 ni a=1 yxa) H

ﬁ(x)

X

The remainder of this section is devoted to the case in which the
y; are Gaussian-distributed with standard deviations ¢,. Here the famous
least-squares method is applicable. We shall nowsee that the least-squares
method is mathematically equivalent to the maximum-likelihood method. In
this Gaussian case the likelihood function is

- |
. g7 1 vx By 20 2
A= 7 NTEe, o [0aY6) ¥/ 20 %] (23)

where

P '
M = =z — ' (24)

a
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The solutions a, = ni* are given by minimizing‘m (maximizing w):

e?am‘ = 0. | (25)

-
This minimum value of7‘)f is called )/)* , the least-squares sam. The
.values of a; which minimize 79/ are called the least-squares solutions. Thus
the maximum-likelihood and least-squares solutions are identical. According’
to Eq. {11), the least-squares errors are

2
-1 8¢ M
-a.* ~-a. X = ey .= 41
(o= og¥Mogap®) = (H 7)j where Hy; = 4 3o

Finally we consider the special case in which ’i(ai; x) is linear in the

% . . ‘ v
y(ai;x) = :f—.:] o.afa(x) .
Then | M |
. - f, (x_) '
oM _ p Ya "8z1 D'b%™a .
N 2 2_ 3 fi(xa) ’ (26)
i a=1 1] .
a
and
P f.(x_)M.(x_ )
j= Z J_Liz_:?__ (27)
a=1 (v
: a
Define
P y £ (x)
- ‘ aiTa
Ui = X _— (28)
. a=1 ] ‘
a
Then
M i
9V _ ]‘
T C2|G T el
i L b=1 J
In matrix notation the M simultaneous equations giving the least-squares
solution are
0=u-a* - H, (29)
-1

<,
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M P Ypia %)
_ -1
o= Z ——— H7y
a=l b=l o
' -1(30)
_ p f.(x_).(x_)
(a.-a.*){(a.-a.*) = H 1 where H.. = Z 1 2 J).2
i i S D] - 1 ij a=1 o 2
a

Equation (30) is the complete procedure for calculating the least-squares
solutions and their errors. Note that even though this procedure is called
curve-fitting it is never necessary to plot any curves. Quite often the
complete experiment may be a combination of several experiments in which
several differeat curves (all functions of the ui) may jointly be fitted. Then
the 7 value is the sum over all the points on all the curves.

- e - e e e R e MR e WS e Ee MR e m e YR M R e G e S W e e A e e M e S M BN e e e e o Ee e

Example: The curve is known to be a parabola. There are four experimental
points-at x = - 0.6, -0.2, 0.2, and 0.6. The experimental results are 5%2,
3x], 5%1, and 8+2, Find the best-fit curve.

. 2
y(x) =a; +a2x+a3x R
_ _ 2
f=1, f,=x, f5=x°,
/ l xaz xa4
H=2Z =5 H;= 2 —  Hpd—5 ,
a1 0 a. g a o .
a a
2 3
i a xa. xa,
le-'z_'za JH13‘Z‘—2‘0 ‘szJHz.%'Zaz'
a a a
2.5 0 0.26 [0.664 0 -2.54
H=[0 0.26 O - wl=lo 3.847 0 .

0.26 0 0.068 -2.54° 0 24.418

u=(11.25 0.85 1.49)
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0.815, Aa,la

5.
|
it

3.685,"

ap* = ] 18, =0, K
0,2* =3,27, Ao,z = 1.96 , Agle.B = .2.54, b
(13* = 7.808, Aa3 = 4,94 .

Ti(x) = (3.685 £ 0.815) + (3.27 £ 1.96)x + (7.808 = 4.94)x2 | is the best-fit curve.

- e s A s A D W M e G SR R R R R Gm W em B W G WP TR L W R Y 4D D R W e M W MR RS G M Er e AN e e T e Sv e W R e e M e e W N e B e e

17. Goodness of Fit, the XZ Distribution

The numerical value of the likelihood function at ﬂa*) can, in
principle, be used as a check on whether one is using the correct type of .
function for f(a;x). If one is using the wrong f, the likelihood function will
be lower in height and of greater width. In principle, one can calculate,
using direct probability, the distribution of »f(u*) assuming a particular
true f(ao, x). Then the probability of getting an s (a*) smaller than the
value observed would be a useful indication of whether the wrong type of
function for f had been used. If for a particular experiment one got the
answer that there was one chance in 10* of getting such a low value of,f (a*), -
one would seriously question either the experiment or the function f(a;x) that
was used.

In practice, the determination of the distribution of )f(a*) is usually .
an impossibly difficult numerical integration in N-dimensional space. However,
in the special case of the least-square problem, the integration limits turn
out to be the radius vector in p-dimensional space. In this case we use the
distribution of 77{{(a*) rather than of ,((a*). We shall first consider the
distribution of 7/](00). According to Egs. (23) and (24) the probability element
is .

dP P « exp (-7]/2] clpyi . N

Note that Y= 92, where p is the magnitude of the radius vector in P-
dimensional space. The volume of a p-dimensional sphere is Ux pP. The
volume element in this space is then '

-1 -1 EJP
Py, « P apa WP/ 29E g :
Thus '

dP(M) oc\l(l\)/zm M/2) g W

The normalization is obtained by integrating fromM=O toM = o,

ey e e e e ey e e e
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“Mo/2 v/

_ 1 (»/2)-1 .
dPWa}-Zm ?7(0 , e (29)

_ -
where 7}10 = WZ(%)? [ (x) = /Aebef)‘ A& r/‘i):i

/
This distribution is the well-known xz distribution with p degrees of freedom.
x ¢ tables of

dP(7))

for several degrees of freedom are in the Handbook of Chemistry and
Physics and other common mathematical tables.

From the definition of 77](Eq. (24))if is obvious that Y7, = p.
One can show, using Eq. (29), that (mo - 0) = 2p. Hence, one s%ould be
~ suspicious if his experimental result gives an 7’/{ value much greater than

(p +~N2p).

Usually ag is not known. In such a case one is interested in the

distribution of '
m* = Mk,

Fortunately, this distribution is also quite simple. It is merely the

distribution of (p-M) degrees of freedom, where p is the number of
experimental points, and M is the number of parameters solved for. Thus

we have

2

dP(\y(‘) = XZ distribution for (p-M) degrees of freedom,
(31)

¥ = (ptM) and AM* = ¥2(p-M) i

Since the derivation of Eq. (31) is somewhat lengthy, it is given in
Appendix II.

- an e e s e e W Tm e e MR W m ar v Ee S MR Mm e e Ve W G v GV e e G e e e A B e e R M e M R e e e e e e e e e e o e e

Example 1: Determine the .XZ probability of the solution to the problem at
the end of Section 16.

P = (2_z(__é_>)2 + (3 '%"‘”)Z + (5-53(.2>\2+ (8—'9(.6)) 2

/ 2

V)’)"l* = 0.674 compared to TmM*=4-3=1.
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According to the XZ table for one degree of freedom the probability of
getting 7{* >0.674 is 0.41. Thus the experimental data are quite consis-
tent with the assumed theoretical shape of

Example 2: Two different laboratories have measures the lifetime of the 6
o be (1.00 = 0.01) X 10-10 gec and (1.04 £ 0.02) X 1010 gec respectively.
Are these results really inconsistent?

1.008 X 10710 sec.

According to Eq. (6) the weighted mean is a*

2 2 —
s (1.00 - 1.oos> . (1.04 - 1.008) 232 WEe2-1

Thus

1 I

0.01 0.02

1

According to the xz table for one degree of freedom, the probability of getting
77* >3.21is. 0.074. Therefore, according to statistics, two measurements

of the same quantity should be at least this far apart 7.4% of the time.

S e W D W G D W R G D e M G SR G A W W G0 G T TR MR M s e G M D M MR M e e NS TR G G e P M L e D WD e e S D D M D TR G e e e S e
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Appendix I: Prediction of Likelihood Ratios

- An importapt job for a physicist who plans new experiments is to
estimate beforehand just how many events will be needed to ''‘prove' a

certain hypothesis. iThe usual procedure is to calculate the average logarithm

of the likelihood rat1p The average logarithm is better behaved math-

ematically than the average of the ratio itself.

We have

f
log 7{ = N f log -f-é— fA(x)dx, assuming A is true, (32)
B .

or
rr N S
log = N log f,, (x)dx, assuming B is true.

Consider the example (given in Section 3) of the 7 meson We believe sp1n
zero is true, and we wish to establish betting odds of 104 to 1 agamst spin 1.
How many events will be needed for this? In this case Eq. (32) gives

1 1
log10% = 4= l\j’\ log (5) dx = - N (mg (2x) dx ,
0 0
= 30.

Thus about 30 events would be needed on the average. However, if one is
lucky, one might not need so many events. Consider the extreme case of
just one event with x = 0: (\> would then be infinite and this one single
event would be complete proof in itself that the tau is spin zero. The
fluctuation (rms spread) of log for a given N is

£ ¢ "
(log @ - log@@)? = N [ (log -é )% £ dx - (jlog?-g— £, ax)
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Appendix II: Distribution of the Least-Sguares Sum

We shall define

4
i Y. f.(x.)
Zi = -(—7—1 and F. . = -io_—l--
9% 3 i
~
Note that H = F * F by Eq. (27),
Z+F=d- Hby Eq. (28) and (29). (33)
Theno* =2 - F- H'! (34)

{ n -
o = zoZ [(Za"';b*Fab)+mb'€b)?ab]z

where thl\?I unstarrei ais usedzfor Qn-

- p Y a (X ) . v ~ o ~

Mo =xx (2 . __.Bf_b__é__.\ + 2(z- o - FIFE*-3) + (@*-0)F FE*-3),
a

g (1) - - o~

b a a /
3 sk ~ *n -
M=tz E-o" EENE-@+ @ E-H

using Eq. (34). The second term on the right is zero because of Eq. (33).

M= - 2 F-oFF)H 'HH ) Fz-FFa) ,
et ar —ar A e Arw ane oo —

1 B D E oL s T
-aHH ")H(H™ 'FZ-H  "Ha)

L R Ao

* - . o
")’V\ = (Z-Z}1-S)(Z-Z) where a* F =2Z and
- e St pee ann Ann

-1
S= FH "F. (35)

P P P~

Note that
-1

?:S.
P~ .

. . . 2
If s; is an eigenvalue of S, it must equal s,

st= Fu'EEE D - FH

, an eigenvalue of SZ. Thus

s; = 0 or 1. The trace of S is

) e -1 .
TrS= 2 FabPpe  Fea =2 HepHpe =Trl=M.

a,b,c.
Since the trace of a matrix is invariant under a unitary transformation, the
trace always equals the sum of the eigenvalues of the matrix. Therefore M
of the eigenvalues of S are one, and (p-M) are zero. Let U be the unitary
Po—
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matrix which diagonalizes S {and also Q-S)). According to Eq. (35),

M* M U(l-S)H . ':1_)’, where-n = (_;-2_) . ‘_I‘I.,
¢
p .
= Z "™ _ M where v are the eigenvalues of
a=1 a ‘7‘ a
(1-S).
g p_M 2
ro= = n since the M nonzero eigenvalues of S

1 A
cancel out M of the eigenvalues of 1.

Thus \M’V

- 2 _(p-M)
dP(W\*) « e d n,
where M\* is the square of the radius vector in (p-M)-dimensional space.
By definition (see Section 17) this is the x ¢ distribution with (p-M) degrees
of freedom.
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