Proton-Nucleus Interactions at 200 GeV/c.

Alma-Ata - Leningrad - Moscow - Tashkent Collaboration

Москва - 1973

CERN LIBRARIES, GENEVA

CM-P00066735
ВЗАИМОДЕЙСТВИЯ ПРОТОН – ЯДРО ПРИ 200 ГЭВ/С.

Алма-Ата - Ленинград - Москва - Ташкент сотрудничество.

Э. В. Ансон, Э. Г. Босс, А. А. Герячих, А. А. Локтионов, П. В. Морозова,
Н. П. Павлова, М. С. Такибаев, М. А. Ташимов, Н. С. Титова, И. Я. Часникнов.

Институт физики высоких энергий АН Каз. ССР, Алма-Ата.

Ф. Г. Лепехин, Б. Б. Симонов.

Ленинградский институт ядерной физики
им. Б. П. Константинова АН СССР.

В. Г. Богданов, Н. А. Перфильев, Э. И. Соловьева, Е. В. Фадина.

Радиевый институт им. В. Г. Хлопина, Ленинград.

М. И. Адамович, Н. А. Добронин, В. Г. Ларионова, М. И. ТреТЬЯкова,
С. Л. Харламов, М. М. Чернявский.

Физический институт им. П. И. Лебедева АН СССР, Москва.

С. А. Азимов, В. В. Лавков, Н. С. Скрипник, Г. М. Чернов.

Физико – технический институт
им. С. В. Стародубцева АН Узб. ССР, Ташкент.
А Н Н О Т А Ц И Я.

Изучены основные характеристики протон-ядерных взаимодействий в фотоэмulsionи при 200 ГэВ/с. В работе получены распределения по множественности релятивистских частиц \(n_5 \) и медленных \(\Lambda_5 \), на общей статистике 3255 взаимодействий, наблюденных при просмотре по следу. Найдено, что \(\langle n_5 \rangle = 13.8 \pm 0.2 \) и \(\langle \Lambda_5 \rangle = 7.3 \pm 0.1 \), причем оказалось, что \(\langle \Lambda_5 \rangle \) и распределение по \(\Lambda_5 \) близки к тем, которые получены при более низких энергиях.

На части статистики (631 звезда) получены угловые характеристики релятивистских вторичных частиц и их зависимость от \(n_5 \). Сравнение угловых характеристик p-ядро и pp взаимодействий показывает, что вплоть до \(n_5 \sim 16 \) угловые характеристики не отличаются, для \(n_5 \approx 17 \) наблюдается заметное уширение угловых распределений в сторону больших углов.

В работе также приведены данные о множественности релятивистских частиц для различных областей быстрых (областей фрагментации и ионизации) для взаимодействий p-ядро и pp при различных \(n_5 \). Оказалось, что множественность релятивистских частиц в области фрагментации налетающего нуклона, и области ионизации для p-ядро и pp взаимодействий близки друг другу, в то время как для области фрагментации мишени множественности сильно различаются.
Введение.

Изучение взаимодействий адронов с ядрами за последнее время приобретает все большее значение, так как, возможно, позволит выяснить свойства систем, которые образуются при взаимодействии адронов с нуклонами, а также механизм взаимодействий адронов с нуклонами и ядрами.

Фотоэмульсии типа НИИХИМФOTO БР-2 с размером слоя 10×20 см и толщиной 600 м облучены на ускорителе NAL (Батавия, США) пучком протонов с импульсом 200 Гэв/с. Просмотр с целью нахождения ядерных взаимодействий велся по следу. На ось длиной 3303 м найдено общей число 9339 неупругих взаимодействий, из которых оказались 1620 квази-нуклонных, причем 300 событий с числом \(n_{ch} = 1,3,5,7 \) идентифицированы как случаи когерентного рождения частиц на ядрах / 1,2 /, 630 как \(pp \) и 690 как \(\rho n \) — взаимодействия. Общие характеристики \(\rho / n \) взаимодействий приведены в работе / 3-5 /. В настоящей работе на части статистики изучались общие характеристики протон-ядерных взаимодействий.

I. Распределения по множественности заряженных частиц.

На рис.1 приведено распределение по числу заряженных релятивистских частиц \(n_s \), на рис.2 — по числу медленных \(\Lambda' = n_g + n_\xi \). В табл.1 приведены данные о средних величинах \(<n_s^e_x> \), \(<n_\Lambda' > \), \(<n_g> \), \(<n_\xi> \) (\(n_g \) — число "серых" следов, \(n_\xi \) — число "черных" следов) для различных типов взаимодействий, в том числе и для \(\rho / n \) взаимодействий / 5 /. Отношение \(\frac{<n_s>}{(\sqrt{<n_g^2>}-<n_\xi>)^2/2} = 1,72 \pm 0,07 \).

На рис.3 приведено интегральное распределение числа событий

\(\chi^2 \) — Сводные данные по \(<n_s> \) и \(<n_\Lambda' > \) при более низких (ускорительные данные), а более высоких энергиях (космического приведены в работе / 6 /.
\(N(>N_h) \) в зависимости от \(N_h^2 \). Зависимость \(\langle n_s \rangle \) от \(N_h \) изображена на рис. 4. Из анализа данных табл. I и рис. I-4 следует:

1) Распределения по \(N_h \) и их средние значения \(\langle N_h \rangle \) близки к тем, что были получены при взаимодействии адронов при более низких энергиях, что, повидимому, указывает на слабое участие во взаимодействиях внутри ядра генерированных пионов. Независимость величин \(\langle N_h \rangle \) от энергии первичного адрона трудно понять с точки зрения обычного внутриядерного каскада.

В интегральном распределении \(N(>N_h) \) (рис. 3) наблюдается излом в области \(N_h \sim 6 \), как и при более низких энергиях, что указывает на то, что области \(N_h \approx 6 \) соответствуют взаимодействия на легких и тяжелых ядрах, а области \(N_h \geq 7 \) — только на тяжелых.

2) Наблюдается рост \(\langle n_s \rangle \) с ростом \(N_h \).

3) Наблюдается слабый рост \(\langle n_s \rangle \) от \(A \). (\(A = 80 \) для среднего ядра фотоэмульсии). Получено, что при энергии 200 лев \(\frac{\langle n_s \rangle_{A=80}}{\langle n_s \rangle_{PN}} = 1,71 \), что дает для зависимости \(\langle n_s \rangle_A = \langle n_s \rangle_{PN} A^\alpha \) значение \(\alpha \approx 0,12 \). Необходимо также отметить, что сравнение зависимости от энергии \(\langle n_s \rangle_{A=80} \) (для всех ядер фотоэмульсии) и \(\langle n_s \rangle_{PP} \) показывает, что \(\langle n_s \rangle_{A=80} \) растет с ростом энергии быстрее, чем \(\langle n_s \rangle_{PP} \), причем, главным образом, за счет событий с \(N_h > 7 \), т. е. за счет событий на тяжелых ядрах с большим возбуждением.

4) При малых \(N_h < 0,1,2 \) \(\langle n_s \rangle_A \) практически совпадает с \(\langle n_s \rangle \) для \(PN \) взаимодействий.

Нами изучены также корреляции между \(\langle n_s \rangle \), \(\langle n_8 \rangle \) и \(n_s \); \(\langle n_8 \rangle \) и \(n_8 \) и т. д. Из анализа этих данных следует:

1) \(\langle n_8 \rangle \propto \langle n_s \rangle \) вплоть до \(n_s \sim 10 \); для \(n_s > 10 \), \(\langle n_8 \rangle \)
остается почти постоянным. Механизм образования большого числа "серых" следов подлежит дальнейшему изучению.

2) $<n_9>$ остается почти постоянным ($<n_9> \approx 1-2$) при увеличении n_9 до 15, а дальше с увеличением n_9 наблюдается слабый рост $<n_9>$.

3) $<n_8>$ слабо растет с ростом n_8 до $n_8 \approx 15-20$
($<n_8> = 4-5$ при $n_8 \approx 15-20$), дальше с ростом n_8 рост $<n_8>$ возможно несколько усиливается.

II. Угловые распределения.

На рис.5(а-с) приведены угловые распределения вторичных заряженных релятивистских частиц в шкале $\lambda = \frac{\theta}{t} g \phi$ для различных групп множественностей. Рис.5(d) представляет суммарное угловое распределение для всех протон-ядерных взаимодействий. На рис.5(e) приведены данные для p-ядерных взаимодействий после вычитания pN и когерентных. Для сравнения на том же рис.5 приведены угловые распределения для pp-взаимодействий.

В табл.2 представлены средние характеристики ($\overline{\lambda}$, $\delta(\overline{\lambda})$) суммарных угловых распределений для групп $n_9 \leq 8$; $9 \leq n_9 \leq 16$, $n_9 \geq 17$ и для всех звезд ($n_9 \geq 1$), а также аналогичные средние характеристики по индивидуальным линиям. С увеличением n_9 ($\overline{\lambda}$) уменьшается, однако δ_5 остается $\approx \delta_3$ вплоть до $n_9 \approx 16$
для $n_9 \geq 17$ δ_5 становится заметно меньше δ_3, что указывает на отклонение процесса взаимодействия от квази-мукиданного характера при $n_9 \geq 17$.

Дисперсия суммарных угловых распределений с увеличением n_9 несколько уменьшается, при исключении лидирующих частиц.
(одна частица на взаимодействии с $\vartheta_{\min} < 0.5^\circ$) остается почти постоянной для всех n_3 и $6'(\lambda') = 0.64 \pm 0.006$ для всех ливней. Для индивидуальных ливней $<6'> = 0.59 \pm 0.008$ и практически не зависит от n_3, однако $6'(<6'>) = 0.25 \pm 0.02$ для $n_3 \leq 8$ и уменьшается до 0.12 ± 0.01 при $n_3 \geq 17$.

Сравнение угловых распределений протон-ядра и ν взаимодействий (рис.5) для соответствующих интервалов n_3 показывает, что суммарные угловые распределения для групп $n_3 \leq 8$ и $9 \leq n_3 \leq 16$ в пределах ошибок не отличаются, и только для $n_3 > 17$ наблюдается заметное уширение угловых распределений в сторону больших углов, левая часть гистограммы близка к соответствующей для ν взаимодействий, однако надо отметить, что число так называемых "лидирующих" частиц на зениту для протон-ядерных взаимодействий при $n_3 \geq 17$ заметно меньше. Хотя угловые характеристики протон-ядерных взаимодействий для $n_3 \leq 16$ в первом приближении совпадают с соответствующими для ν взаимодействий, надо обратить внимание на тот факт, что соотношение различных групп множественностей для ν и ν - ядро сильно отличается (среди ν $n_3 \leq 8$ около 60% от всех ν и $n_3 \geq 18$ ~ 3%, в то время как для ν - ядро $n_3 \leq 8$ ~ 34% и $n_3 > 17$ ~ 28%). Таким образом, вероятно, из факта совпадения угловых характеристик при $n_3 \leq 16$ для взаимодействий протон-ядро нельзя заключить, что все эти взаимодействия являются взаимодействиями на одном квази-свободном нуклоне ядра.

III. Множественность релятивистских частиц для различных областей быстрых.

В работе /5/ на основании распределения по быстрым $y = - \ln t g \vartheta$, для ν взаимодействий при 200 Гэв/с рассмот-
рены \(< n_5 \rangle \) для области фрагментации взаимодействующих частиц
\((y > 5 - < n_7 >, y < 2 - < n_3 >)\) и область пионизации \((5 > y > 2 - < n_5 >)\).

В табл. 3 приведены данные для взаимодействий \(p - ядро \) о
величине \(< n_5 \rangle \) для вышеуказанных областей быстрот для различ
ных групп: \(n_5 \leq 8 ; 9 \leq n_6 \leq 16 ; n_7 > 17 \) и для всех звезд
\((n_7 > 1)\). В этой же табл. приведены для сравнения соответству
шие данные для \(pp \) взаимодействий \(/ 5 / \).

Анализ данных табл. 3 показывает, что средние множественно-
ности заряженных частиц в области фрагментации налетающего нук
лона \((< n_7 > \), что соответствует \(y > 5 \) \) для взаимодействий
\(p - ядро \) и \(pp \) при полной \(n_5 < 16 \) в пределах ошибок совпадают
при \(n_7 > 16 \) для \(p - ядро \) \(< n_7 > \) несколько меньше.

В области пионизации для отдельных групп \(n_5 \) средние
величины \(< n_5 \rangle \) для \(p - ядро \) и \(pp \) совпадают, однако по всем
п - ядро \(< n_5 \rangle_p \approx 1,5 \langle n_5 \rangle_{pp} \), что связано с различной долей
событий с малыми \((n_6 \leq 8)\) и большими \((n_7 > 17 \) \) множественно-
ностями среди \(p - ядро \) и \(pp \) взаимодействий.

В области фрагментации мишени \((y < 2)\) для \(n_6 \leq 8 \), \(n_7 \rangle
для \(p - ядро \) и \(pp \) совпадают, однако для \(16 \leq n_6 \geq 9 \), \(\langle n_7 \rangle_{pp} \)
заметно превышает \(\langle n_7 \rangle_{pp} \), а для \(n_6 > 16 \), \(\langle n_7 \rangle_{pp} \) примерно в
три раза превышает \(\langle n_7 \rangle_{pp} \). Таким образом, сравнение взаимодей-
ствий \(p - ядро \) и \(pp \) показывает, что увеличение \(n_7 \rangle \) для
\(p - ядро \) связано с частицами, вылетающими под большими углами,
что, возможно, связано с тем, что при прохождении протона через
тяжелое ядро в некоторой части случаев фрагментирует не один, а
несколько нуклонов мишени. Дальнейший анализ данных, полученные
более подробных характеристик взаимодействий \(P - ядро \) (в том
числе и импульсных), сравнение с теоретическими моделями позво-
лит получить новые данные о механизме взаимодействия адронов с
нуклонами и ядрами.

Сотрудничество предполагает в ближайшее время увеличить
статистику по угловым характеристикам в 2–3 реза, получить ха-
рактеристики p – ядро для легких и тяжелых ядер эмульсии, ана-
лиза данных продолжается.

Авторы глубоко признательны руководству, сотрудникам
\textit{NA} \textit{L} (Батавия, США) и В.А. Никитину за содействие в постанов-
ке эксперимента и проведение облучений фотоэмульсий, а также
лаборантам лабораторий, участвовавших в выполнении данной ра-
боты.
ЛИТЕРАТУРА.

1. Алма-Ата — Ленинград — Москва — Ташкент сотрудничество.

2. Алма-Ата — Ленинград — Москва — Ташкент сотрудничество.
 Ядерная физика (в печати). доклад на Всесоюзной конференции по космическим лучам 1973 г.

3. Алма-Ата — Ленинград — Москва — Ташкент сотрудничество.
 Письма ЖЭТФ, 17, 655. Препринт ФИАН № 68, 1973 г.

4. Алма-Ата — Ленинград — Москва — Ташкент сотрудничество.

5. Алма-Ата — Ленинград — Москва — Ташкент сотрудничество.
 Ядерная физика (в печати).

6. З. В. Андон, М. С. Такибаев, И. Я. Часников.
 Письма ЖЭТФ, 14, 405, 1971 г.
Подписи к рисункам.

Рис.1. Распределение по множественности релятивистских заряженных частиц — \(n_s \).

Рис.2. Распределение по числу медленных заряженных частиц
(\(E_p \leq 400 \text{ Мэв} \)) — \(N_n \).

Рис.3. Интегральное распределение событий \(N(>N_n) \) в зависимости от \(N_n^2 \).

Рис.4. Зависимость \(\langle n_s \rangle \) от \(N_n \).

Рис.5. Угловые распределения вторичных релятивистских заряженных частиц для взаимодействий различных \(n_s \):

\[
\begin{align*}
&n_s \leq 8 \quad \text{(a)} \\
&9 \leq n_s \leq 16 \quad \text{(b)} \\
&n_s \geq 17 \quad \text{(c)} \\
&n_s \geq 1 \quad \text{(d)}
\end{align*}
\]
(д) — суммарное распределение всех звезд.

Протон-ядерные взаимодействия (без \(pN \) и когерентных) — (e).

\(p \) — ядро взаимодействия — сплошные линии.
\(pp \) — взаимодействия — пунктир.

Нормировка по числу взаимодействий.
Таблица I.
Характеристики взаимодействий протонов с ядрами
фотоэмulsionии при 200 Гэв/с.

<table>
<thead>
<tr>
<th>Типы звезд.</th>
<th>(<n_8>)</th>
<th>(<N_h>)</th>
<th>(<n_g>)</th>
<th>(<n_q>)</th>
<th>(N') число звезд.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_h > 0) (Все звезды)</td>
<td>I3,8±0,2</td>
<td>7,3±0,1</td>
<td>-</td>
<td>-</td>
<td>3255</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>В том числе:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N_h = 0,1,2)</td>
<td>8,5±0,2</td>
<td>0,73±0,03</td>
<td>-</td>
<td>-</td>
<td>880</td>
</tr>
<tr>
<td>(N_h = 3 - 7)</td>
<td>12,7±0,3</td>
<td>4,68±0,05</td>
<td>-</td>
<td>-</td>
<td>761</td>
</tr>
<tr>
<td>(N_h > 8)</td>
<td>20,0±0,3</td>
<td>15,70±0,20</td>
<td>-</td>
<td>-</td>
<td>941</td>
</tr>
<tr>
<td>Всего:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2582</td>
</tr>
</tbody>
</table>

\(N_h > 0 \)	I3,3±0,3	7,30±0,30	4,5±0,20	2,80±0,14	738 x)
\(N_h > 0 \)	I2,7±0,3	7,10±0,20	4,2±0,14	2,90±0,15	631 xx)
р/N взаим.	8,1±0,2xxx	0,15	0	0,15±0,02	1320

x) Звезды, для которых определены \(<n_8> \) и \(<n_g> \).
xx) Звезды, в которых измерены угловые характеристики вторичных частиц.
xxx) После внесения поправок на эффективность просмотра и насыщения Далица \(<n_8> = 7,8 \pm 0,2 \).
Таблица 2.

<table>
<thead>
<tr>
<th></th>
<th>$n_s \leq 8$ (^x)</th>
<th>$9 \leq n_s \leq 16$</th>
<th>$n_s \geq 17$</th>
<th>$n_s \geq 1$ (все звезды)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>217</td>
<td>241</td>
<td>173</td>
<td>631</td>
</tr>
</tbody>
</table>

Для суммарных угловых распределений.

<table>
<thead>
<tr>
<th></th>
<th>$\bar{\lambda}$</th>
<th>$6(\bar{\lambda})$</th>
<th>$\bar{\lambda}'$</th>
<th>$6(\bar{\lambda}')$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$-1,27_{-0,02}^{+0,02}$</td>
<td>$-1,03_{-0,01}^{+0,01}$</td>
<td>$-0,79_{-0,01}^{+0,01}$</td>
<td>$-0,95_{-0,008}^{+0,008}$</td>
</tr>
<tr>
<td></td>
<td>$0,75_{-0,01}^{+0,015}$</td>
<td>$0,71_{-0,01}^{+0,01}$</td>
<td>$0,63_{-0,01}^{+0,01}$</td>
<td>$0,70_{-0,006}^{+0,006}$</td>
</tr>
<tr>
<td></td>
<td>$-1,12_{-0,020}^{+0,020}$</td>
<td>$-0,97_{-0,013}^{+0,013}$</td>
<td>$-0,77_{-0,01}^{+0,01}$</td>
<td>$-0,89_{-0,007}^{+0,007}$</td>
</tr>
<tr>
<td>$6(\bar{\lambda}')$</td>
<td>$0,64_{-0,01}^{+0,014}$</td>
<td>$0,66_{-0,01}^{+0,01}$</td>
<td>$0,60_{-0,006}^{+0,006}$</td>
<td>$0,64_{-0,006}^{+0,006}$</td>
</tr>
<tr>
<td>$\theta_{1/2}$</td>
<td>3,1(^0)</td>
<td>5,4(^0)</td>
<td>9,4(^0)</td>
<td>6,4(^0)</td>
</tr>
<tr>
<td>$\bar{\theta}_{1/2}$</td>
<td>4,4(^0)</td>
<td>6,1(^0)</td>
<td>9,8(^0)</td>
<td>7,4(^0)</td>
</tr>
</tbody>
</table>

Для индивидуальных звезд.

<table>
<thead>
<tr>
<th></th>
<th>$<\bar{\lambda}>$</th>
<th>$6(<\bar{\lambda})$</th>
<th>$<\bar{\lambda}'>$</th>
<th>$6(<\bar{\lambda}'>$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$-1,37_{-0,03}^{+0,03}$</td>
<td>$-1,04_{-0,02}^{+0,02}$</td>
<td>$-0,80_{-0,02}^{+0,02}$</td>
<td>$-1,09_{-0,020}^{+0,020}$</td>
</tr>
<tr>
<td></td>
<td>$0,49_{-0,03}^{+0,03}$</td>
<td>$0,28_{-0,02}^{+0,02}$</td>
<td>$0,21_{-0,01}^{+0,01}$</td>
<td>$0,42_{-0,020}^{+0,020}$</td>
</tr>
<tr>
<td></td>
<td>$-1,18_{-0,03}^{+0,03}$</td>
<td>$-0,98_{-0,02}^{+0,02}$</td>
<td>$-0,78_{-0,02}^{+0,02}$</td>
<td>$-0,99_{-0,014}^{+0,014}$</td>
</tr>
<tr>
<td>$6(<\bar{\lambda}'>$</td>
<td>$0,42_{-0,03}^{+0,03}$</td>
<td>$0,27_{-0,02}^{+0,02}$</td>
<td>$0,20_{-0,01}^{+0,01}$</td>
<td>$0,35_{-0,013}^{+0,013}$</td>
</tr>
<tr>
<td>$<\theta>$</td>
<td>$0,67_{-0,02}^{+0,02}$</td>
<td>$0,67_{-0,01}^{+0,01}$</td>
<td>$0,60_{-0,01}^{+0,01}$</td>
<td>$0,65_{-0,009}^{+0,009}$</td>
</tr>
<tr>
<td>$6(<\theta>$</td>
<td>$0,26_{-0,014}^{+0,014}$</td>
<td>$0,19_{-0,01}^{+0,01}$</td>
<td>$0,13_{-0,01}^{+0,01}$</td>
<td>$0,21_{-0,008}^{+0,008}$</td>
</tr>
<tr>
<td>$<\theta'>$</td>
<td>$0,56_{-0,02}^{+0,02}$</td>
<td>$0,61_{-0,01}^{+0,01}$</td>
<td>$0,58_{-0,01}^{+0,01}$</td>
<td>$0,59_{-0,006}^{+0,006}$</td>
</tr>
<tr>
<td>$6(<\theta'>$</td>
<td>$0,25_{-0,02}^{+0,02}$</td>
<td>$0,17_{-0,01}^{+0,01}$</td>
<td>$0,12_{-0,01}^{+0,01}$</td>
<td>$0,19_{-0,010}^{+0,010}$</td>
</tr>
</tbody>
</table>

\(x\) \(\bar{\lambda} = \langle l g t g \theta_i \rangle\), \(\bar{\lambda}'\) - без ликидующей частицы (вместе с когерентными взаимодействиями).
Таблица 3.
Множественность релятивистских частиц \(\langle n_i \rangle \) на звезду для различных областей быстрот \((y > 5)\) и \(y < 2\) — области фрагментации, \(5 > y > 2\) — область пиронизации для \(pp\) — взаимодействий.

<table>
<thead>
<tr>
<th>Области быстрот</th>
<th>(< n_1 >)</th>
<th>(< n_2 >)</th>
<th>(< n_3 >)</th>
<th>(N) — число взаимодействий</th>
</tr>
</thead>
<tbody>
<tr>
<td>Типы взаимодействий</td>
<td>(y > 5)</td>
<td>(5 > y > 2)</td>
<td>(y < 2)</td>
<td></td>
</tr>
<tr>
<td>(n_s > 1) (все звезды)</td>
<td>1,06 ± 0,06</td>
<td>7,9 ± 0,4</td>
<td>4,9 ± 0,2</td>
<td>436</td>
</tr>
<tr>
<td>(n_s \leq 8)</td>
<td>1,00 ± 0,06</td>
<td>3,4 ± 0,3</td>
<td>1,2 ± 0,1</td>
<td>132</td>
</tr>
<tr>
<td>(9 \leq n_s \leq 16)</td>
<td>1,30 ± 0,10</td>
<td>7,5 ± 0,6</td>
<td>3,6 ± 0,3</td>
<td>167</td>
</tr>
<tr>
<td>(n_s > 17)</td>
<td>0,90 ± 0,10</td>
<td>12,7 ± 1,4</td>
<td>10,3 ± 1,1</td>
<td>137</td>
</tr>
<tr>
<td>(p - p) взаимодействия</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_{in} = 2, 4, 6, 8)</td>
<td>1,17 ± 0,06</td>
<td>3,1 ± 0,16</td>
<td>1,30 ± 0,07</td>
<td>367</td>
</tr>
<tr>
<td>(n_{in} = 10, 12, 14)</td>
<td>1,40 ± 0,10</td>
<td>7,8 ± 0,50</td>
<td>2,30 ± 0,20</td>
<td>213</td>
</tr>
<tr>
<td>(n_{in} = 16 - 26)</td>
<td>1,60 ± 0,20</td>
<td>12,2 ± 1,70</td>
<td>3,50 ± 0,50</td>
<td>50</td>
</tr>
<tr>
<td>Всего (pp)</td>
<td>1,30 ± 0,05</td>
<td>5,4 ± 0,26</td>
<td>1,60 ± 0,07</td>
<td>630</td>
</tr>
</tbody>
</table>
Рис. 2.
$N(> N_h)$

Рис. 3.
Рис. 4.
Рис. 5.
\[\lambda = \log_t q^\theta \]