Index

Adiabatic demagnetization, 16
refrigerator, 16, 176
Aerospace cryocoolers, 225
Air liquefier development
Claude, 12
Linde, 10
Philips, 17
present day cycle, 141
Aluminum alloys
Al–Li alloy development, 80
elastic modulus, 62
fatigue crack-growth rate, 65
fracture toughness, 62
tensile strength, 62
Aluminum nitride
specific heat, 88
Aluminum oxide
compressive strength, 87
dielectric loss, 89
elastic modulus, 88
electrical resistivity, 88
specific heat, 88
AMPTIAC, 43
Analog heat transfer techniques, 110
Apoptotic cell death, 347
Apoptotic control in cryopreservation, 356
Astrium cryocoolers, 263, 264
Austenitic stainless steels, 65
alloy development, 71
elastic modulus, 62
fatigue crack-growth rates, 65, 66
fracture toughness, 62, 63, 69
tensile properties, 62, 67
weld properties, 69
Biopreservation, 341
Birth of space program, 228
Moon space flights, 229
BSCCO, see Superconductors
Bubble chamber, 164
Cailletet, 8
CEBAF, 165
Cell death modes in cryopreservation, 345
apoptosis, 346
necrosis, 345
transitional cell death, 347
Cellular response to cryopreservation, 344
Ceramics, 86
elastic modulus, 88
electrical resistivity, 88
fatigue, 88
fracture energy, 88
history, 86
specific heat, 88
thermal contraction, 88
CIC, 37
CIRS, 37
Claude, 12
cycle, 13
CMP, 39
Collins, 16
Commercial air separation, 147
distillation, 141
structured packing, 149
chordal weir tray, 149
heat exchange, 147
processes involved, 150
purification step, 147
Composites, fiber reinforced, 95
carbon-fiber reinforced, 95
dielectric properties, 98
fatigue properties, 96
glass-fiber reinforced, 95
Kevlar-fiber reinforced, 97
specific heat, 98
Composites, fiber reinforced (cont.)
  thermal conductivity, 97
  thermal contraction, 97
Composites, nonmetallic, 72
  high-pressure laminates, 72
  inspection, 73
  manufacture, 73
  pre-impregnation, 74
  repair, 73
  resins and coatings, 78
  resin-transfer molding, 74
  straps/struts, 80
  test techniques, 76
Compressive properties
  of composites, 73
  of fibers, 96
Computational fluid dynamics, 106, 115
CPI, 32
CPIAC, 43
Critical current
  of BSCCO, 99, 327
  of Nb3Sn, 287
    effects of applied magnetic field, 288, 299, 303
    scaling law, 299
    Kramer plots, 299
    from bronze process, 301
    from internal-tin process, 302
  of NbTi, 99
  of YBCO, 99, 319
Critical magnetic field
  of BSCCO, 327
  of Nb3Sn, 289
  alloying, effect of, 289
  of YBCO, 312
Critical temperature
  of Nb3Sn, 288
  alloying, effect of, 289
Cryocooler research (1965–1975), 235
    rotary-reciprocating refrigerator, 236
    sorption coolers, 236
    Vuilleumier coolers, 235
Cryocooler research (1975–1985), 242
    flexure Stirling coolers, 246
    long-life cryostats, 248
    long-life Stirling coolers, 245
    magnet-driven Stirling coolers, 246
    rotary-magnetic refrigerators, 244
    rotary-reciprocating refrigerator, 243
    sorption coolers, 247
    Stirling coolers, 245
    turbo-Brayton refrigerator, 244
    Vuilleumier coolers, 243
Cryocooler research (1985–1995), 254
    long-life Brayton coolers, 256
    long-life pulse tube coolers, 254
    long-life Stirling/JT coolers, 255
    sorption coolers, 257
Cryocooler research (1995–2005), 273
    hybrid JT and pulse tube cooling, 275
    hybrid JT and sorption cooling, 274
    long-life pulse tube coolers, 273
    long-life Stirling coolers, 273
    sub-Kelvin cryocoolers, 275
Cryogenic activity
  historical summary, 3, 6
Cryogenic applications in space, 226
  gamma-ray detector, 227
  infrared sensors, 226
  X-Ray detectors, 228
Cryogenic data handbooks, 33
Cryogenic data sources, 31, 39
electrical databases, 36
Cryogenic Information Center, 36
Cryogenic insulation, 120, 130
  foam and fiber, 125
  microsphere, 124
  multilayer, 126
  powder, 122
  opacified powder, 124
  vacuum, 121
Cryogenic materials research, 52
Cryogenic missions (1965–1975), 230
  Apollo cryogenic dewars, 230
  Hughes Vuilleumier crycooler, 231
  Lockheed solid CO2 cryostat, 232
  Lockheed Nimbus LRIR cryostat, 233
  Malaker Stirling cryocooler, 230, 233
Cryogenic missions (1975–1985), 237
  ATMOS Stirling cooler, 241
  HEAO CH4-CO2 cryostat, 238
  LIMS CH4-NH3 cryostat, 237
  IRAS He dewar, 240
  PRSA dewar, 240
  STP rhombic-drive Stirling cooler, 242
  Spacelab IRT helium dewar, 242
Cryogenic missions (1985–1995), 249
  ASTR Oxford Stirling cryocooler, 252
  Clementine spacecraft cryocooler, 252
  COBE He dewar, 249
  CSE Stirling cooler, 252
  ERS Oxford-style cooler, 251
  ESA SF He dewar, 253
  HTSSE HTS validation, 251
  IRTS SF He dewar, 253
  JERS Stirling cooler, 251
Cryogenic missions (1995–2005), 259
AATSE Astrium cryocooler, 263
ASTER Oxford Stirling cooler, 261
BETSCE JT sorption cooler, 272
CHEX SF He dewar, 273
COOLAR N₂ JT cooler, 272
CRISM Ricor cryocooler, 267
CX pulse tube cryocooler, 260
EO spacecraft, pulse tube cooler, 261
EOS AIRS pulse tube cryocooler, 264
EOS TES pulse tube cryocooler, 265
GPB SF He cryostat, 271
HIRDL S Oxford Stirling cooler, 265
HTSSE Stirling cooler, 260
INTEGRAL Astrium cryocooler, 264
JAMI pulse tube cooler, 265
Messenger Ricor cryocooler, 266
MIDAS Stirling cooler, 272
MIPAS Astrium cryocooler, 263
MOPITT Stirling cooler, 260
MTI pulse tube cryocooler, 261
NASA spacecraft pulse tube cooler, 260
NICMOS turbo-Brayton cryocooler, 267
Odin Stirling cooler, 262
RHESS Stirling cooler, 262
SAVER pulse tube cryocooler, 262
SIRTF (Spitzer) SF He cryostat, 270
SPIRIT solid H₂ cryostat, 267
STRV Stirling cryocooler, 261, 273
VIRTIS Stirling cryocooler, 264
WIRE solid H₂ cryostat, 269
XRS ADR and SF He, 271
Cryogenic monographs, 47
Cryogenic textbooks, 46
Cryogenic thermometry, 179, 196
electric, 209
gas, 196
³He melting curve, 208
vapor pressure, 201
Cryopreservation induced cell death, 348, 350
apoptosis observations, 348
control of molecular response, 351
delayed-onset of cell death, 349
effects on cell function, 350
Cryopreservation protocols, 343
Cryopreservation status, 344
Density
of BSCCO, 327
of composites, 73
Dewar, 14
Dielectric properties
of aluminum oxide, 89
of barium titanate, 89
of ceramics, 89
of epoxy, 93
of fiber-reinforced composites, 98
of glass/epoxy composites, 89
of polycarbonate, 93
of polymers, 92
Dilution refrigerator, 173
Elastic properties
of ceramics, 88
of composites, 73
of polymers, 89
Electrical insulation, 72
Electrical resistivity
of aluminum oxide, 88
of polymers, 92
of silicon carbide, 88
Empirical temperature, 181
Energy levels following cryopreservation, 354
Evacuated insulation, 122, 133
Evaporation instabilities of stored cryogens,
Extracellular preservation media, 352
Fatigue
of ceramics, 88
of fibers, 96
of fiber-reinforced composites, 96
of polymers, 92
Faraday refrigeration process, 4
Fatigue crack-growth rate, 63
ASTM test standards, 63
Paris range, 64
Ferritic steels
elastic modulus, 62
fracture toughness, 62
tenstile strength, 62
Fibers
carbon, 86, 96
ceramic, 96
compressive properties, 96
fatigue properties, 96
glass, 86, 96
Kevlar, 86, 96
tenstile properties, 96
thermal contraction, 96
Finite – element method, 109
Flaw size, critical, 60
Flux pinning
  in BSCCO, 332
  grain-boundary effects in Nb$_3$Sn, 297
  impurity effects, 297
Foam and fiber insulation, 125
Fountain effect in low-g, 167, 251
Fracture energy
  of composites, 88
  of glass, 88
Fracture mechanics, 60
Fracture toughness, 61
ASTM test standards, 62
  of austenitic steels, 69
    inclusion spacing, effect of, 69
    nickel content, dependence on, 70
  yield strength, effect of, 69
Free-radical effect in cryopreservation, 354
Functional nonmetallics, 99
Future of LNG and LPG, 143
Gamma ray detectors, 227
Gas-purged insulation, 137
Gas separation analysis, 111
    McCabe-Thiele method, 112
Gifford-McMahon cycle, 171
Glass
  fracture energy, 88
  thermal contraction, 88
Glass-transition temperature, 94
Grain-boundary effects
  alloy contents, 290
  alloy effects on grain growth, 295
  in Nb$_3$Sn, 290
Gravity Probe B experiment, 167
Hampson, 8
Heat exchanger
  recuperative counter-flow, 7
Helium dewar, 240, 242, 249, 253, 271
Helium dilution refrigerator, 174
Helium liquefier development
  Collins, 16
  Kapitza, 15
  Onnes, 14
  present day cycle, 174
High-pressure laminates, 72
  inspection, 73
  manufacture, 73
  NEMA-grade G-10 and G-11, 72
    compressive strength, 73
    density, 73
    elastic modulus, 73
    shear strength, 73
    thermal conductivity, 73
    thermal contraction, 73
    repair, 73
History of materials, 85
Hybrid JT and pulse tube cooler, 275
Hybrid JT and sorption cooler, 274
Hydrogen liquefaction, 152
  liquefier cycles, 154
  O-P hydrogen conversion, 152
Hydrogen liquefier development
  Dewar, 14
  NBS, 21
  present day cycle, 154
  USAF, 21
Hypothermic process 342
Ion disregulation in cryopreservation, 353
Infrared detector, 226
Inspection
  of magnet coil insulation, 73
Insulation
  foam and fiber, 125
  evacuated, 123, 128
  powder, 122
  vacuum, 121
  gas-purged, 137
  microsphere, 124
  multilayer, 126
    attachment guidelines, 128
    design guidelines, 128
    opacified powder, 124
International Cryogenic Materials Conference, 52
  composite papers, 56
  geographic distribution of papers, 53, 56
  structural-alloy papers, 55
  topical distribution of papers, 54
  total number of papers, 53
International Temperature Scales, 183
  IPTS-48, 185
  IPTS-68, 185
  ITS-90, 184
  PLTS-2000, 184
  2005 redefinition, 184
International Toroidal Experimental Reactor, 80
  A15 structure superconductor research, 285, 302, 304
  austenitic steel research, 66
Intracellular preservation media, 352
JT cryocoolers, 230, 233, 241, 272
JT cycle, 8
Kapitza, 15
Kirk ice machine, 11
Large Hadron Collider, 164
Linde, 8
Liquefaction
of air, 141
of helium, 14, 174
of hydrogen, 14, 152
of oxygen, 8, 147
of natural gas, 24, 154
Liquefied natural gas (LNG), 154
  cycles, 156
  equipment, 156
  pre-purification of feed, 155
  shipments, 24
Liquid helium in particle physics
  bubble chamber, 164
  Large Hadron Collider, 164
Long-life cryostats, 248
  Brayton, 256
  pulse tube, 254, 273
LNG
  cycles, 156
  equipment, 156
  shipment, 24
Magnetic effect on thermometry, 216
McCabe Thiele method, 112
Microsphere insulation, 124
Modern liquefaction cycles
  air separation, 147
  helium, 174
  hydrogen, 154
  LNG, 151
Moon space flight, 229
Multifilamentary superconducting wires
  Nb3Sn, 301
    from bronze process, 301
    high-current density, 303
    from internal-tin process, 302
Multilayer insulation
  attachment guidelines, 128
  design guidelines, 128
  evacuated, 138
Natural gas liquefaction, 154
  feed pre-purification, 155
  liquefaction cycles, 156
  liquefaction equipment, 156
Nb3Sn, see Superconductors
NBS Cryogenic Data Center
  documentation, 35
  technical services, 35
Necrosis cell death, 347
Nickel alloys
  elastic modulus, 62
  fatigue crack-growth rates, 65
  fracture toughness, 62
  Incoloy 908 development, 80
  tensile strength, 62
NIST Pure Fluids program, 45
Onnes, 14
Opacified-powder insulaton 124
O-P hydrogen conversion, 152
Osmotic control during cryopreservation, 354
Oxford Stirling coolers, 251, 252, 261, 265
Oxygen liquefier development
  Cailletet, 8
  Hampson, 8
  Linde, 8
  Pectet, 8
  present day cycle, 147
  Wrobleweski, 8
Pectet, 8
Perkin refrigerator, 4, 5
Phase diagrams
  YBCO, 311, 314
  pH buffering in cryopreservation, 354
Piezoelectric materials
  barium titanate, 100
Polymers, 89
  amorphous
    loss factor, 91
  dielectric properties, 91
  elastic modulus, 89
  epoxy
    elastic modulus, 89
    fatigue, 92
    specific heat, 89
    fracture strain, 89
  glass-transition temperature, 94
  plexiglass
    elastic modulus, 89
  polyamide-imide
    elastic modulus, 89
  polybutadiene, 93
  polycarbonate
    elastic modulus, 89
    fatigue, 92
Polymers (cont.)
polyether ether ketone
fatigue, 92
polyethylene, high density
elastic modulus, 89
dielectric loss, 91
fatigue, 92
polyethylene-imide
elastic modulus, 89
polyisobutylene, 93
polyoxymethylene
elastic modulus, 89
polypropylene, 93
polystyrol
elastic modulus, 89
dielectric loss, 91
polyvinyl chloride
elastic modulus, 89
Teflon
elastic modulus, 89
specific heat, 89
thermal conductivity, 93
thermal contraction, 94
Porous plug phase separator, 167
Powder insulation
evacuated, 123
nonevacuated, 122
Pre-impregnated (prepreg) composites, 73
compressive strength, 73
density, 73
elastic modulus, 73
inspection, 73
manufacture, 73
repair, 73
shear strength, 73
thermal conductivity, 73
thermal contraction, 73
Preservation media
extracellular, 352
intracellular, 352
Preservation solution design, 351
Pulse tube cryocoolers, 172, 260, 261, 262, 264, 265
Pyroelectric materials
barium titanate, 100
polyvinylidene, 100
polyvinyl chloride, 100
Radiation effects, 78
gas evolution from resin systems, 79
on resin systems, 78
swelling of resin systems, 79
testing, 79
Radiation shields for storage containers, 137, 139
Rare earth
specific heat, 172
Refrigerator
adiabatic demagnetization, 16, 176, 271
rotary-reciprocating, 236, 243
Regenerative cryocoolers at 4K, 170
Repair of magnet-coil insulation, 73
Resin systems
ceramic, 78
cyanate ester, 78
epoxy, 78
Resin-transfer molding, 73
compressive strength, 73
elastic properties, 73
density, 73
inspection, 73
manufacture, 73
repair, 73
shear strength, 73
thermal conductivity, 73
thermal contraction, 73
Rhombic-drive Stirling cooler, 242
Ricor cryocoolers, 266, 267
Rotary-magnet refrigerator, 244
Rotary-reciprocating refrigerator, 236, 243
Shear/compression test, 76
fatigue properties of composite insulation, 77
static properties of composite insulation, 77
Shear modulus, see Elastic properties
Shear strength
of composites, 73
Silicon carbide
electrical resistivity, 88
specific heat, 88
thermal conductivity, 88
Solid CO₂ cryostat, 232
Solid H₂ cryostat, 270, 271
Solid CH₄-CO₂ cryostat, 238
Solid CH₄-NH₃ cryostat, 237
Solid Ne-CO₂ cryostat, 250
Solution design for cryopreservation, 355
Sorption coolers, 236, 247, 257, 272
Spallation neutron source, 165
Specific heat
of aluminum nitride, 88
of aluminum oxide, 88
of fiber-reinforced composites, 97
of polymers, 89
of rare earth materials, 172
of silicon carbide, 88
of zirconium oxide, 88

Standard reference materials, 187

Stirling coolers, 12, 245, 251, 252, 260, 261, 262, 272, 273, 274
flexure, 246
long-life, 245, 255, 273
magnet driven, 246
Oxford, 251, 252, 261, 265

Storage containers
heat leak, 136
radiation shields, 137, 139
vapor cooling, 136

Stress-intensity factor, 60

Sub-Kelvin coolers, 275

Superconductors
addition of titanium, 304
BSCCO, 321
applications, 321
(Bi,Pb)2Sr2Ca2Cu3O10 (2223), 321
critical current, 327
magnetic field, effects of, 332
critical field, 327
density, 327
flux pinning, 332
microstructure, 332
oxide-powder-in-tube fabrication, 322, 323
alloying, 324
cracks and porosity effects, 329
heat treatment, 325, 326
mechanical deformation, 325, 328
powder, 324
silver sheath, 324
wire development, 322
history, 285, 309

YBa2Sn, 285
alloying, effects of, 288
critical current density, 287, 302
critical magnetic field, 289
critical temperature, 289, 292
flux-pinning effects, 297
grain-boundary composition, 292
multifilamentary wires, 301
bronze process, 301
internal-tin process, 302

YBCO, 79, 313, 332
buffer-layer architecture, 318
critical current, 319
deposition, 318
fabrication, 316
flux pinning, 332
grain distribution, 316
substrates, 316
trapped magnetic fields, 316
melt processed
fabrication, 314
phase diagram, 314
YBa2Cu3O6+x (123)
crystal structure, 310
phase diagram, 311, 314
upper critical magnetic field, 312

Superfluid He cryostat, 270, 271
Superfluid He use
in cryostats, 270, 271
in particle physics, 164
in space mission, 167

Technical paper presentation, 115

Tensile properties
of aluminum alloys, 62
of austenitic steels, 62, 67
carbon addition, effect of, 69
grain size, effect of, 68
nitrogen addition, effect of, 67
prediction of yield strength, 68
solid solution alloying, effect of, 69
of ferritic steels, 62
of fibers, 96
of nickel alloys, 62
of titanium alloys, 62

Thermal conductivity
of ceramics, 88
of composites, 73, 97
of silicon carbide, 88

Thermal contraction
of ceramics, 88
of composites, 73, 97
of fibers, 96
of glass, 88

Thermodynamic temperature, 181

Thermometer
accuracy, 215
selection, 209
types, 211
capacitance, 211
diode, 211
gas, 211
mechanical, 211
resistance, 211
thermocouple, 211

Thermometry, 179
magnetic effect, 216
Thermometric reference points, 186
helium $\lambda$-transition, 193
solid-solid transition, 194
superconducting transition, 192
triple point, 188
Thermonuclear bomb, 21
Titanium alloys
elastic modulus, 62
fatigue crack-growth rates, 65
fracture toughness, 62
tensile strength, 62
Tonnage oxygen production, 24, 147
Transfer line analysis, 106
Transient heat transfer, 106
Schmidt method, 106
Transitional cell death, 347

Tungsten carbide
elastic modulus, 88
Turbo-Brayton refrigerator, 244, 267
Vacuum insulation, 121
Vacuum-pressure impregnation, see Resin-transfer molding
Vapor cooling in storage containers, 116
Vuilleumir coolers, 235, 255, 273
Weld properties of austenitic steels, 69
Wroblewski, 8
X-ray detector, 228
XBCO, see Superconductors
Young’s modulus, see Elastic properties
Zirconium oxide
specific heat, 88