PARTICLE ACCELERATORS

I. BIBLIOGRAPHY

II. LIST OF ACCELERATOR INSTALLATIONS

Gerald A. Behman

January 1, 1958
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
PARTICLE ACCELERATORS

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>3</td>
</tr>
<tr>
<td>Bibliography</td>
<td>4</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>General</td>
<td>6</td>
</tr>
<tr>
<td>D. C. Machines</td>
<td>8</td>
</tr>
<tr>
<td>Betatrons</td>
<td>15</td>
</tr>
<tr>
<td>Linear Accelerators</td>
<td>20</td>
</tr>
<tr>
<td>Cyclotrons</td>
<td>34</td>
</tr>
<tr>
<td>Synchrotrons</td>
<td>50</td>
</tr>
<tr>
<td>Ion Sources</td>
<td>74</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>79</td>
</tr>
<tr>
<td>Author Index</td>
<td>84</td>
</tr>
</tbody>
</table>

List of Accelerator Installations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>108</td>
</tr>
<tr>
<td>I. Direct-Current Machines</td>
<td>113</td>
</tr>
<tr>
<td>II. Induction Machines: Betatrons</td>
<td>132</td>
</tr>
<tr>
<td>III. Resonance Machines</td>
<td></td>
</tr>
<tr>
<td>Linear Accelerators</td>
<td>137</td>
</tr>
<tr>
<td>Magnetic Accelerators</td>
<td></td>
</tr>
<tr>
<td>Cyclotrons</td>
<td>141</td>
</tr>
<tr>
<td>Synchrotrons</td>
<td>149</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>153</td>
</tr>
</tbody>
</table>
PARTICLE ACCELERATORS: I. BIBLIOGRAPHY.
II. LIST OF ACCELERATOR INSTALLATIONS.

Gerald A. Behman
Radiation Laboratory
University of California
Berkeley, California
January 1, 1958

ABSTRACT

References to accelerators and accelerator technology in the technical literature from July 1954 through June 1957 are listed in Section I, the bibliography. Most of the references are taken from Nuclear Science Abstracts, Chemical Abstracts, Physics Abstracts, and Electrical Engineering Abstracts.

In Section II, accelerator installations throughout the world are listed together with the types of particles accelerated and the energy and other characteristics of the machines.
PARTICLE ACCELERATORS
I. BIBLIOGRAPHY

Gerald A. Behman
Radiation Laboratory
University of California
Berkeley, California
January 1, 1958

INTRODUCTION

This bibliography supplements the following compilations:

2. Bonnie E. Cushman, Bibliography of Particle Accelerators July 1948 to December 1950, UCRL-1238 (March 1951).

For this compilation, the literature searched includes Nuclear Science Abstracts, Chemical Abstracts, Physics Abstracts (Science Abstracts A), and Electrical Engineering Abstracts (Science Abstracts B) for the period from July 1954 through June 1957. Also included are certain articles and references not derived from the above abstracts. References are arranged in groups according to the accelerator classification and are arranged alphabetically within the accelerator group by author's surname. An author index listing all authors is provided, and each bibliography entry is numbered to facilitate searching for the work of individual authors with the aid of the author index. Articles by companies, societies, organizations, and institutions are arranged alphabetically by source in the author index.

The abbreviations used here include NSA for Nuclear Science Abstracts, CA for Chemical Abstracts, SA A for Physics Abstracts, and SA B for Electrical Engineering Abstracts. Typical examples of the notation system used in this report to describe entries in these publications are:
UCRL-8050 Notation	Explanation
NSA 8, 3873 (54) | This is Abstract 3873 of Volume 8 of Nuclear Science Abstracts issued in 1954.
CA 48, 9821e (54) | This Abstract is located in Section e of Column 9821 in Volume 48 of Chemical Abstracts for 1954.
SA A57, 6671 (54) | This is Abstract 6671 of Volume 57 of Physics Abstracts (Science Abstracts A) issued in 1954.
SA B57, 6671 (54) | This is Abstract 6671 of Volume 57 of Electrical Engineering Abstracts (Science Abstracts B) issued in 1954.
G. B. | This entry has been noted directly from the literature by the author of this bibliography.

In the preparation of this bibliography every effort has been made to include pertinent publications in the correct categories. Articles of a general nature in the accelerator field are grouped under the heading General. Those articles that discuss more than one type of machine are included in each of the appropriate accelerator groups. Publications that could not readily be classified in any of the aforementioned groups are listed under Miscellaneous.

The author will appreciate notification of duplications, omissions, or other shortcomings in this bibliography.
BIBLIOGRAPHY

GENERAL

1. Burshtein, Veksler, and Kolomenskii
 SA A59, 2184 (56)

2. Burshtein, Veksler, and Kolomenskii
 NSA 10, 1589 (56)

3. D. R. Chick and C. W. Miller
 SA A60, 885 (57)

4. J. D. Cockcroft and T. G. Pickavance
 CA 50, 686g (56)

 NSA 11, 6181 (57)

6. Frederick E. Frost and Jane M. Putnam
 NSA 10, 1585 (56)

7. J. W. Gallop
 NSA 11, 5635 (57)

8. A. A. Kolomemskii and N. B. Rubich
 NSA 10, 1591 (56)

9. E. H. Krause
 G. B.
10 Ernest O. Lawrence
NSA 10, 2185 (56)

11 H. K. Lewis
The annual review of nuclear science II. Stanford: Annual Reviews;
SA A57, 1544 (54)

12 Stanley M. Livingston
157 p. (1954)
NSA 2, 3992 (55)

13 W. K. H. Panofsky and W. A. Wenzel
Some considerations concerning the transverse deflection of charged
SA B60, 3006 (57)

14 G. Perona, and A. Persano
Technical aspects of particle accelerators. Energia Nucleare 6, 161-
8 (1953) (In Italian).
NSA 3, 6315 (54)

15 Pickavance, Skyrme, and Stafford
SA A59, 8951 (56)

16 E. P. Rosenbaum
(1956).
G. B.

17 K. Simonyi
Some problems of construction and design of a nuclear physics accel­
eration mechanism for particle energies of several Mev. Nuovo
Cimento (10) 3, Suppl. 3, 345-62 (1956)
NSA 10, 10602 (56)

18 H. Stamm
Modern methods for the production of high voltages and high (particle)
accelerations. Wiss. Z. Hochsch. Elektrotech. Ilmenau 2, 33-49
(1956) (In German).
SA B60, 306 (57)

19 V. I. Veksler
Principles of acceleration of charged particles. Soviet J. Atomic
Energy 1, 77-83 (1956).
NSA 10, 11544 (56)
20 W. Walkinshaw
 NSA 9, 6781 (55)

D. C. MACHINES

21 Ageno, Cortellessa, and Querzoli
 Some installations and auxiliary devices for research in nuclear
 (1953) (In Italian).
 SA A57, 6668 (54) and CA 48, 9823h (54)

22 Katarina Ahnlund
 Determination of the radiation hazards from a 1.5-Mev high-voltage
 CA 48, 5661i (54) and SA A57, 7950 (54)

23 Alvarez, Bradner, Franck, Gordon, Gow, Marshall, Oppenheimer,
 Panofsky, Richman, and Woodyard
 (1955).
 SA A58, 4732 (55); SA B58, 2526 (55); and CA 49, 12143c (55)

24 G. J. Atchison and W. H. Beamer
 Neutron activation analysis with the Van de Graaff accelerator. Ap­
 CA 50, 6969b (56)

25 Baev, Vorotnikov, Gokhberg, Sidorov, Shuf, and Yan'kov
 High-voltage electrostatic generator in compressed gas. Doklady
 NSA 9, 5169 (55) and SA A58, 7129 (55)

26 Baev, Vorotnikov, Gokhberg, Sidorov, Shuf, and Yan'kov
 High-voltage electrostatic generator in compressed gas. AEG-tr-
 2178 (In English) translated from Doklady Akad. Nauk S.S.S.R. 101,
 NSA 9, 5511 (55).

27 R. Barjon and J. Schmouker
 Recent modifications to the 2-Mev Van de Graaff at the Polytechnical
 NSA 10, 10607 (56) and SA A60, 1381 (57).

28 J. Bergstein and R. D. Birkhoff
 91, 223 (1953).
 CA 49, 10069h (55)
29 E. J. Bertomeu and C. A. Mallmann
NSA 9, 4583 (55).

30 T. W. Bonner
CA 50, 12667a (56).

31 Brovchenko, Gokhberg, and Morozov
NSA 9, 5170 (55).

32 Brovchenko, Gokhberg, and Morozov
NSA 10, 1590 (56).

33 H. Bruck and G. Gendreau
NSA 11, 724 (57) and SA A59, 5946 (56).

34 Bumiller, Meyer, Straub, and Winkler
SA A59, 414 (56) and SA B58, 5277 (55).

35 D. R. Chick and D. P. R. Petrie
SA B58, 3368 (55) and SA B59, 1947 (56).

36 M. Clark
CA 48, 10441c (54).

37 C. J. Cook and W. A. Barrett
CA 48, 9821b (54).
38 B. Cork
SA America 58, 4733 (55); SA B58, 2527 (55); and CA 49, 12143h (55).

39 Cottingham, Plotkin, and Raka
NSA 10, 1592 (56).

40 J. D. Craggs and J. M. Meek
SA B57, 3706 (54).

41 Cranberg, Aiello, Beauchamp, Lang, and Levin
NSA 11, 5054 (57).

42 de Boer, Kley, and Makkink
NSA 10, 11540 (56) and SA A59, 8247 (56).

43 Dunning, Bondelid, Fagg, Kennedy, and Wolicki
G. B.

44 D. T. Eggen and H. Kenworthy
The NAA statatron as a facility for solid-state research. Phys. Rev. 92, 531 (1953).
CA 49, 10073e (55).

45 Noel J. Felici
CA 48, 4909i (54).

46 T. R. Foord
SA America 58, 994 (55) and SA B58, 683 (55).

47 A. Gabet
NSA 11, 725 (57).
A. Gabet and J. Taieb
NSA 11, 727 (57) and SA B59, 2254 (56).

Gatti, Perona, and Persano
NSA 9, 3307 (55).

Godsin, Simon, Solomon, and Weber
NSA 11, 4900 (57).

Goldie, Wright, Anson, Cloud, and Trump
NSA 9, 1368 (55).

Gorlov, Gokhberg, Morozov, and Otroshchenko
NSA 9, 5513 (55).

Maurice Guegen
The one Mev generator and the ion accelerator of the Centre de Physique Nucleare de Liege. Bull. sci. A.I.M. (Belg.) 67, 39-64 (1954) (In French).
NSA 9, 6779 (55) and SA B57, 3358 (54).

Walter Heilpern
NSA 10, 1936 (56); SA A59, 3782 (56); and CA 50, 6942b (56).

Janner, Magun, and Schopper
NSA 10, 6003 (56); SA A59, 413 (56); and SA B58, 5179 (55).

Kansas, University
NSA 9, 5782 (55).
57 J. Kessler
SA A58, 8811 (55) and SA B58, 5180 (55).

58 J. A. H. Kersten
SA B57, 4232 (54).

59 Kostka, Mérey, and Schmidt
Studies on Van de Graaff type generators operated under high gas pressure. Elektrotechnika 48, 201-10 (1955) (In Hungarian).
SA B58, 4789 (55).

60 Chris E. Kuyatt
NSA 11, 5402 (57).

61 Lafferty, Biggerstaff, Kern, and Hahn
CA 49, 10069h (55).

62 Gérard Lehmann
NSA 11, 723 (57) and SA B59, 2255 (56).

63 Lorrain, Béique, Gilmore, Girard, Breton, and Piché
NSA 11, 5634 (57).

64 B. G. Maglie
CA 48, 8070e (54).

65 D. Magnac-Valette and M. M. Liess
NSA 10, 10606 (56); SA A60, 2322 (57); and CA 50, 12674f (56).

66 B. Marsicanin and M. Rakic
NSA 9, 1654 (55).
67 W. Messerschmidt
CA 49, 731d (55).

68 B. Millar
NSA 9, 2467 (55); SA A58, 1912 (55); and SA B58, 1117 (55).

69 Moreau, Prevot, and Vienet
NSA 11, 730 (57).

70 J. E. Morgan and F. Ellinger
SA A60, 445 (57).

71 A. J. Moses, and J. Saldick
Electron accelerator used for producing neutrons. Nucleonics 14,
No. 9, 118-19 (1956).
NSA 10, 12064 (56) and SA A60, 3346 (57).

72 N. Narayan and K. S. Parahhu
Production of standard waves with a 3000-kv impulse generator. J.
SA B57, 4231 (54).

73 H. Neuert and U. Timm
A simple lens system for variable-voltage Van de Graaff generators.
SA A59, 1299 (56).

74 Nuclear Engineering 1, 250-1 (1956)
A versatile Van de Graaff. Flexible operation a feature of new S. T. L.
unit.
NSA 10, 12063 (56).

75 J. Pech
A survey of the developments of Van de Graaff generators. Electro-
SA B58, 2787 (55).

76 R. A. Peck, Jr. and H. P. Eubank
High-current Cockcroft-Walton accelerator for neutron production.
NSA 9, 5172 (55); CA 49, 12143e (55); and SA A58, 6531 (55).
77 R. A. Peck, Jr.
Characteristics of a high-frequency Cockcroft-Walton voltage source.
SA A58, 7132 (55).

78 M. Peter
Lecture demonstration of relativistic behavior of electrons. Amer.
SA A59, 395 (56).

79 D. Pinet
Regulation of the beam position in the Saclay Van de Graaff. L'Onde
NSA 11, 726 (57) and SA B59, 2253 (56).

80 F. Prévot and R. Vienet
Production of an intense pulsed beam of deuterons. J. phys. radium
16, 238 (1955) (In French).
NSA 9, 3666 (1955); CA 49, 12979d (55); and SA A58, 6224 (55).

81 Edwin J. Rogers
Current regulator for Van de Graaff magnet. Electronics 28, No. 10,
151-3 (1955).
NSA 9, 7559 (55).

82 A. W. Simon
NSA 8, 3871 (54); SA A57, 6588 (54); and SA B57, 3705 (54).

83 O. Specchio and A. Cambieri
A 560-e.k.v. particle accelerator. Rend. ist. lombardo sci., Pt. I,
Classe sci. mat. e. nat. 90, 14-22 (1956).
CA 51, 877d (57).

84 Strumski, Cooper, Frisch, and Zimmerman
Hydrogen supply and beam focusing for electrostatic generator. Rev.
NSA 8, 4428 (54) and CA 48, 13283b (54).

85 A. C. van Dorsten and J. H. Spaa
A high output d-d neutron generator for biological research. Nuclear
Instr. 1, 259 (1957).
G. B.

86 R. Ray Weeks
An alignment procedure for an electrostatic analyzer. IRE Trans.
NSA 9, 6782 (55).
87 H. C. Whitby
SA A59, 5945 (56) and SA B59, 3264 (56).

88 John M. Wilcox
NSA 10, 3045 (56).

89 S. D. Winter
NSA 11, 722 (57) and SA B59, 2252 (56).

90 Peter Wootton
NSA 11, 720 (57).

BETATRONS

91 F. T. Adler and D. Baroncini
NSA 11, 2158 (57) and SA A60, 2289 (57).

92 Allen, Ashworth, and Siddal
CA 51, 4061h (57).

93 Asada, Furuta, Masuda, Koga, Okamura, Hiraoka, Ookuma, and Fujita
CA 50, 4655h (56).

94 E. Bagge
The measurement of current impulses of free atomic charge carriers with the inductometer. Naturwissenschaften 42, No. 5, 120 (1955). (In German).
SA A58, 7997 (55)

95 G. C. Baldwin
CA 50, 10549i (56).
96 G. C. Baldwin
CA 51, 7184d (57).

97 Baldwin, Elder, and Westendorp
NSA 9, 1370 (55) and SA A58, 2783 (55).

98 E. B. Bas
NSA 8, 5728 (54) and CA 49, 66f (55).

99 R. Basile and C. Schuhl
NSA 9, 6090 (55); SA A58, 7095 (55); and CA 50, 3098a (56).

100 Birnbaum, Harth, Seren, and Tobin
Determining betatron energy by activity ratios. Nucleonics 13, No. 4, 64-6 (1955).
NSA 9, 3990 (55) and SA A58, 7998 (55).

101 Birnbaum, Harth, Seren, and Tobin
CA 48, 8064b (54).

102 Georges Boulegue
NSA 10, 1937 (56) and SA A59, 1588 (56).

103 G. Boulegue and P. Chanson
NSA 10, 10608 (56) and SA A60, 1357 (57).

104 Bureau, Austerheim, and Zaffarano
NSA 8, 5373 (54).

105 Cole, Jones, Pruett, and Terwilliger
NSA 11, 1674 (57).
106 W. Dallenbach
SA A58, 8002 (55) and SA B58, 4389 (55).

107 W. Dallenbach
SA A58, 4713 (55) and SA B58, 2884 (55).

108 R. S. Foote and B. Petree
NSA 8, 5729 (54); SA A57, 10240 (54); and SA B57, 4751 (54).

109 Kamhara, Imai, Kimura, and Wajima
SA B59, 4285 (56).

110 F. S. Kirn and R. J. Kennedy
SA A57, 9867 (54) and CA 48, 13451b (54).

111 H. W. Koch and R. S. Foote
SA A57, 6651 (54) and CA 48, 6850e (54).

112 A. A. Kolomenskii and A. N. Lebedev
SA A59, 8230 (56).

113 A. A. Kolomenskii and A. N. Lebedev
NSA 11, 4141 (57).

114 Von P. Kunze
NSA 11, 2157 (57).

115 Laughlin, Ovadis, Beattie, Henderson, Harvey, and Haas
SA A57, 6205 (54).
116 Major, Perry, and Phillips
 SA B57, 339 (56).

117 A. N. Matveev
 The motion of electrons in cyclic accelerators as a stochastic process.
 SA A60, 1365 (57).

118 Moller, Grimm, and Weeber
 Tests of the capacity of a 31-Mev betatron in the irradiation of steel.
 CA 48, 11204f (1954).

119 V. A. Moskalev
 SA A60, 4438 (57).

120 V. A. Moskalev
 Spatial distribution of betatron radiation at 10 Mev. Zhur. Tekh.
 SA A60, 4461 (57).

121 National Bureau of Standards
 Protection against betatron-synchrotron radiations up to 100 million
 52 p., United States Department of Commerce, Washington D. C.
 CA 50, 3118c (56).

122 K. Phillips
 An apparatus for the accurate control of the peak x-ray energy of a
 NSA 10, 8697 (56); SA A59, 5138 (56); and SA B59, 3382 (56).

123 Richardson, Van Roosenbeek, and Morgan
 Field localization for betatron therapy. Am. J. Roentgenol. Radium
 Therapy Nuclear Med. 76, 934-8 (1956).
 NSA 11, 721 (57).

124 Dane T. Scag (to Allis-Chalmers Mfg. Co.)
 Lead-pellet absorptive shield for betatrons. U. S. Pat. 2,675,485
 (April 13, 1954).
 CA 48, p9236c (1954).

125 R. Schittenhelm
 A 15-Mev betatron x-ray source for nondestructive testing of materials.
 SA B59, 1160 (56).
126 R. Schittenhelm and J. Urlaub
A 15-Mev betatron for the nondestructive testing of materials, IV.
Exposure technique and resolution. Arch. tech. Messen. 240 (Ref.
v9114-16) 9-12 (1956) (In German).
SA B59, 3926 (56).

127 M. Seidl
Orbital accelerators of electrons. Slaboproudly obzor 17, 698-702
SA B60, 2985 (57).

128 Seren, Birnbaum, Harth, and Tobin
The effect of magnetic flux amplitude on the flux-integrator energy
CA 49, 10072f (55).

129 Č. Simáne
Elementary theory of accelerators II - III. Elektrotech. obzor. 42,
No. 10, 550-7; No. 12, 676-85 (1953) (In Czech)
SA A57, 10260 (54) and SA B57, 4748 (54).

130 Skarsgard, Cormack, and Johns
Measurement of the ratio E_m/J_m for betatron radiation. Radiology
68, 257-8 (1957).
NSA 11, 4726 (57).

131 B. M. Spicer and A. S. Penfold
Energy stability of the 22-Mev betatron at the University of Illinois.
NSA 10, 420 (56); CA 51, 2411e (57); and SA A59, 396 (56).

132 H. Steinwedel
Particle orbits in circular accelerators. European Council for Nuclear
NSA 10, 10595 (56).

133 Lee C. Teng
27, 106-7 (1956).
NSA 10, 4960 (56); CA 51, 7882b (57); and SA A59, 5944 (56).

134 R. M. Warner, Jr. and E. F. Schrader
Angle—energy distribution of radiation from high-energy electron
CA 48, 13448d (1954).

135 E. V. Weinstock and J. Halpern
Bremsstrahlung spectrum from the internal target of a 22-Mev betatron.
NSA 10, 2182 (56).
LINEAR ACCELERATORS

136 J. H. Adlam
NSA 11, 6128 (57).

137 Allan, Carey, McGahon, and Poole
SA A58, 9903 (55).

138 Alvarez, Bradner, Franck, Gordon, Gow, Marshall, Oppenheimer, Panofsky, Richman, and Woodyard
SA A58, 4732 (55); SA B58, 2526 (55); and CA 49, 12143c (55).

139 Atomics 6, 139-43 (1955)
NSA 9, 4882 (55).

140 C. F. Bareford and M. G. Kelliher
SA 57, 6658 (54).

141 J. S. Bell
NSA 9, 3988 (55) and SA A58, 5450 (55).

142 J. S. Bell
SA A57, 6672 (54).

143 M. Bell
NSA 10, 1075 (56) and CA 50, 3098b (56).

144 M. Bell and W. Walkinshaw
NSA 9, 1097 (55); SA A58, 6227 (55); and SA A58, 2886 (55).
Michel-Yves Bernard
Strong focusing in linear ion accelerators. Ann. phys. 9, 633-82 (1954).
NSA 9, 2024 (55); SA A58, 1918 (55); and CA 49, 10081e (55).

Michel-Yves Bernard
Importance of the divergence created by the accelerating slits in a linear ion accelerator. Compt. rend. 238, 675-7 (1954); cf CA 48, 459c (54).
CA 48, 6850d (54).

Michel-Yves Bernard
A simple theoretical model for the study of ion motion in a linear accelerator. J. phys. radium 16, 121A-32A (1954). (In French).
NSA 9, 397 (54) and SA A58, 2797 (55).

Michel-Yves Bernard
NSA 9, 4880 (55) and SA A58, 7133 (55).

F. Bertein and W. Chadid
On the production of slow electromagnetic waves by the use of cylindrical current sheets. Compt. rend. 242, 2918-20 (1956) (In French).
SA A59, 7470 (56).

J. Billing and P. Murray
NSA 9, 1096 (55).

Blackstock, Birkhoff, and Slater
NSA 9, 3665 (55); SA A58, 4716 (55); and SA B58, 2525 (55).

G. A. Blanc
NSA 8, 5374 (54).

E. Blomsjo and G. F. Von Dardel
SA A57, 19538 (54).
154 R. L. F. Boyd and D. Morris
CA 49, 6721b (55).

155 California, University, Berkeley, Radiation Lab.
NSA 11, 4136 (57).

156 Wassek Chahid
Shunt resistance of linear accelerators. Compt. rend. 242, 244-7 (1956) (In French).
NSA 10, 4962 (56) and SA B59, 2350 (56).

157 Wassek Chahid
NSA 8, 5727 (54); SA A57, 11132 (54); and SA B57, 5204 (54).

158 Raymond Chastel
A study of photodisintegrations by means of nuclear emulsions. I. Apparatus and preliminary measurements. J. phys. radium 14, 707-16 (1953); cf CA 47, 7924i (1953).
CA 48, 4992d (54).

159 Chodorow, Ginzton, Hansen, Kyhl, Neal, and Panofsky
NSA 9, 3308 (55); CA 49, 12143d (55); SA A58, 6199 (55); and SA B58, 3370 (55).

160 E. L. Chu and E. L. Ginzton
NSA 10, 1079 (56).

161 Clark, Jopson, Lamb, Smith, and Van Atta
NSA 10, 4109 (56).

162 S. A. Colgate
NSA 11, 717 (57).
R. Combe
SA A57, 8454 (54).

R. Combe
SA A57, 10352 (54).

Conference on physics of high-energy particles.
NSA 11, 6181 (57).

Bruce Cork
NSA 8, 6563 (54).

Bruce Cork
SA A58, 4733 (55); SA B58, 2527 (55); and CA 49, 12143h (55).

Dazey, Nielsen, Robertson, and Sewell
NSA 10, 1584 (56).

Dewey, Nygard, and Kelliher
NSA 9, 1369 (55) and CA 49, 10078h (55).

P. D. Dunn
NSA 11, 6129 (57).

Dunn, Hadden, and Thompson
CA 51, 5578i (57).

Electronic Engineering 26, 527-8 (1954)
A 15-Mev linear accelerator for medical use.
NSA 9, 1102 (55)
173 Engineer 197, 782-3 (1954)
Gantry-mounted linear accelerator for x-ray therapy. (Also in
Engineering, [London] 177, 694-5 (1954)).
SA B57, 3357 (54)

174 European Council for Nuclear Research
Linac focusing by means of a pulsed axial magnetic field. CERN-
NSA B, 7151 (54)

175 Frelot, Combe, and Feix
A linear accelerator for 2.3-Mev electrons. J. phys. radium 17,
598-9 (1956) (In French).
NSA 10, 10609 (56) and SA A60, 1358 (57)

176 C. S. Gardner
Correction for magnet failure by strengthening adjacent magnets in a
solenoidally focused linear accelerator. California Research and
Development Co., Livermore Research Lab., Livermore, Calif.,
NSA 10, 6428 (56)

177 Alper A. Garren
Space charge expansion of ion bunches drifting down a conducting
(1951).
NSA 10, 10981 (56)

178 Myron L. Good
Phase-reversal focusing in linear accelerators. Phys. Rev. 92,
538 (1953).
CA 49, 10073f (55)

179 M. Good and L. Smith
Limitations on bore, entering beam, and voltage gradients in the strong-
focusing linear accelerator. California, Univ., Berkeley, Rad. Lab.,
UCRL-2203, 2 p. (1943).
NSA 10, 5413 (56)

180 M. Good and L. Smith
Limitations on bore, entering beam and voltage gradients in the
strong-focusing linear accelerator. Part II. California, Univ.,
NSA 10, 5413 (56)

181 P. Grivet
A linear electron accelerator for medical applications. Ann. Radio-
élect. 9, 37-43 (1954) (In French).
SA A57, 11109 (54) and SA B58, 356 (55)
182 C. L. Hsieh
NSA 10, 8019 (56)

183 C. L. Hsieh
SA B59, 785 (56)

184 C. L. Hsieh and E. M. Uhlmann
NSA 10, 11543 (56) and SA A60, 1556 (57)

185 I. Jacobs and E. S. Akeley
SA A57, 7482 (54)

186 M. R. Jeppson and R. F. Post
CA 49, 15516b (55)

187 Kjell Johnsen
NSA 8, 6561 (54)

188 Kjell Johnsen
NSA 9, 6493 (55)

189 Kjell Johnsen
NSA 9, 7164 (55)

190 L. H. Johnston and S. Schuldt
NSA 10, 6000 (56)

191 Johnston, Day, and Williams
CA 50, 10543h (56)
I. Kaufman
Theoretical and experimental evaluation of the Rebatron-a relativistic
electron bunching accelerator. Illinois, Univ., Urbana, Electrical
NSA 11, 5053 (57)

Kimura, Kumabe, Nakatsu, Ueyanagi, and Kusumegi
Research, Kyoto Univ. 23, 56 (1950).
CA 48, 6272b (54)

Kimura, Sakisaka, and Miyashiro
Kyoto Univ. 29, 67-8 (1952).
CA 48, 8663d (54)

N. M. King
Proton dynamics in the linear accelerator. I. Grid-focused section.
Atomic Energy Research Establishment, Harwell, England, AERE-
NSA 8, 7150 (54)

N. M. King
Proton dynamics in the linear accelerators. II. A/G-focused section,
10-50 Mev. Atomic Energy Research Establishment, Harwell, England,
NSA 9, 5161 (55) and SA A59, 412 (56)

N. M. King
Random errors and misalignments in the A/G (alternating-gradient)
proton linear accelerator. Atomic Energy Research Establishment,
SA A58, 9706 (55)

King, Hobbis, and Harrison
Trajectories in the accelerating and drift spaces of a proton injector.
Atomic Energy Research Establishment, Harwell, England, AERE-
CA 50, 7607b (56)

Kitchen, Schelberg, Hill, and Smits
Cavity design data for high-energy linear accelerators. U. S. Atomic
CA 48, 10442a (1954)

R. L. Kyhl
A study of multi-Bev linear electron accelerators. Microwave Lab.,
NSA 9, 772 (55)
201 Louis H. La Forge, Jr.
Application of ceramic sections in high-power pulsed klystrons. Am.
NSA 10, 9640 (56)

202 Lapitskii, Levintov, Slivkov, and Shamshev
Focusing system of an ion acceleration tube. Zhur. Tekh. Fiz. 26,
NSA 10, 7026 (56) and CA 50, 14373d (56)

203 Leuba, Salin, Thibaud, and Verzaux
The 1-million-volt particle accelerator at Lyons, used as a neutron
CA 49, 144951 (55) and SA A58, 8244 (55)

204 B. G. Loach
Vacuum equipment for the 4-Mev linear electron accelerator. Atomic
Energy Research Establishment, Harwell, England, AERE-EL/R 229,
18 p. (1949).
CA 50, 14382f (56)

205 D. Luffman
Proton acceleration with electron bunches. Atomic Energy Research
NSA 11, 6127 (57)

206 Kenneth B. Mallory
A comparison of the predicted and observed performance of a billion-
volt electron accelerator (thesis). Stanford Univ., Calif., High-
NSA 9, 5165 (55)

207 J. F. Marshall and M. A. Pomerantz
Development of a linear electron accelerator and application to solid-
state problems. Final report. Bartol Research Foundation, Franklin
NSA 9, 3989 (55)

208 R. L. McKisson
Fraction of total beam current as a function of A-12 beam radius.
California Research and Development Co., Livermore AECD-4005,
NSA 10, 6427 (56)

209 Millar, Firth, and Chick
A versatile top-terminal equipment for an electrostatic generator.
SA A58, 5453 (55)
210 C. W. Miller
NSA 8, 6845 (54).

211 C. W. Miller
SA B57, 3796 (54)

212 C. W. Miller
CA 50, 671 (56)

213 C. W. Miller
CA 50, 671 (56)

214 C. W. Miller
CA 49, 6735d (55)

215 C. W. Miller
SA B58, 2155 (55)

216 L. B. Mullett
NSA 9, 4878 (55) and SA A58, 5451 (55)

217 L. B. Mullett
NSA 10, 1582 (56)

218 L. B. Mullett and J. R. Day
NSA 8, 7148 (54)
Craig S. Nunan
Full-scale 48-Mc cavity for sparking tests of gaps corresponding to 0.45- to 4.5-Mev beam energy. California, Univ., Berkeley, Rad. Lab., UCRL-2229, 10 p. (1953).
NSA 11, 2745 (57)

Old, Steinhaus, and Wright
NSA 8, 6842 (54)

F. Ollendorff
SA A58, 2798 (55)

W. K. H. Panofsky, and J. A. McIntyre
SA A57, 6674 (54); SA B57, 2961 (54); and CA 48, 13448h (54)

M Papoular
SA A57, 8332 (54) and SA B57, 3794 (54)

M. Papoular
SA A57, 8333 (54) and SA B57, 3795 (54)

E. Picard
The electron linear accelerator of the C.E.N. at Saclay. J. phys. radium 17, 600-1 (1956) (In French).
NSA 10, 10610 (56) and SA A60, 1359 (57)

T. G. Pickavance
NSA 10, 414 (56) and SA A59, 1297 (56)

T. G. Pickavance
NSA 10, 418 (56)
228. J. M. Ponce de Leon
NSA 10, 406 (56)

229. M. J. Poole
NSA 10, 10593 (56)

230. R. F. Post and N. S. Shiren
SA A58, 4715 (55); SA B58, 2524 (55); and CA 49, 12143d (55)

231. Post, Shiren, and Brown
NSA 8, 5043 (54)

232. Jaques Pottier
NSA 9, 5171 (55); SA A58, 7999 (55); and SA B58, 3820 (55)

233. Jaques Pottier
NSA 8, 4427 (54) and SA A57, 8352 (54)

234. R. O. Ridley
SA A57, 11128, (54)

235. J. Rotblat
NSA 9, 4881 (55) and SA B58, 3369 (55)

236. G. Saxon
NSA 8, 7153 (54); SA A57, 11108 (54); and SA B57, 5203 (54)
Albert Septier
NSA 9, 6499 (55) and SA B58, 4857 (55)

Albert Septier
NSA 9, 1373 (54); SA A58, 1916 (55); and SA B58, 1179 (56)

Albert Septier
NSA 9, 1372 (55); SA A58, 1916 (55); and SA B58, 1178 (55)

Albert Septier
NSA 11, 2156 (57) and CA 51, 4159b (57)

R. Servranckx
SA A57, 8356 (54) and CA 48, 11943e (54)

R. Servranckx
NSA 9, 6498 (55) and SA A58, 8023 (55)

R. B. Shersby-Harvie
NSA 11, 5632 (57)

Shersby-Harvie, Mullett, Walkinshaw, Bell, and Loach
SA B59, 3927 (56)

Shersby-Harvie, Mullett, Walkinshaw, Bell, and Loach
SA B60, 3679 (57)
246 Skaggs, Nygard, and Lanzl
NSA 9, 2025 (55)

247 Erik A. Smårs
NSA 9, 3660 (55)

248 Erik A. Smårs
NSA 11, 1354 (57)

249 L. Smith and R. L. Gluckstern
NSA 9, 2465 (55); CA 49, 12143e (55); SA A58, 4734 (55); and SA B58, 2528 (55)

250 L. Smith and R. L. Gluckstern
G. B.

251 J. Sommeria-Klein
NSA 10, 9641 (56); SA A59, 6716 (56); and CA 51, 877e (57)

252 O. Specchio and A. Gambieri
CA 51, 877d (57)

253 Stanford University
NSA 8, 4424 (54)

254 Stanford University
NSA 8, 4425 (54)

255 Warren F. Stubbins
NSA 9, 395 (55)
Warren F. Stubbins
SA B58, 3814 (55)

L. C. Teng
CA 48, 13448g (54); SA A57, 6673 (54); and SA B57, 2960 (54)

Thibaud, Verzaux, and Salin
NSA 9, 1374 (55); SA A58, 1911 (55); and CA 49, 44151 (55)

E. M. Uhlman and C. L. Hsieh
SA A58, 7096 (55) and SA B58, 3819 (55)

R. K. Wakerling
NSA 10, 2547 (56)

W. Walkinshaw and M. Ross
NSA 8, 7149 (54)

Walkinshaw, Sabel, and Outram
NSA 8, 5725 (54) and SA A57, 11129 (54)

Walkinshaw, Sabel, and Outram
NSA 8, 5726 (54) and SA A57, 11130 (54)

Robert A. Weir
NSA 10, 1586 (56)
265 J. J. Wilkins
NSA 10, 1074 (56); CA 49, 12141d (55); SA A59, 415 (56); and SA B59, 289 (56)

266 O. Yonts and S. Bashkin
A 100-kev positive-ion accelerator. Phys. Rev. 87, 175 (1952).
CA 48, 8061b (54)

CYCLOTRONS

267 J. B. Adams
CA 50, 67h (56)

268 F. Amman and L. Dadda
Design of the pole faces for circular particle accelerators with the electrolytic tank. Nuovo cimento (10) 3, 184-7 (1956).
NSA 10, 7023 (56) and SA A59, 3783 (56)

269 F. A. Aschenbrenner
Particle selection technique used at the Massachusetts Institute of Technology cyclotron. Phys. Rev. 95, 600 (1954).
CA 50, 10543h (56)

270 Hugo Atterling
NSA 8, 4730 (54); SA A57, 8351 (54); and CA 48, 11943d (1954)

271 Bach, Childs, Hockney, Hough, and Parkinson
NSA 10, 11539 (56) and SA A59, 7473 (56)

272 A. Bariaud
NSA 11, 729 (57)

273 Stewart D. Bloom
CA 50, 10548a (56)
274 Bluemel, Carroll, and Stahelin
NSA 11, 5052 (57)

275 A. L. Boch and E. D. Hudson
CA 49, 10069h (55)

276 E. Brannen and H. I. S. Ferguson
SA A60, 1360 (57)

277 D. A. Bromley and J. A. Bruner
NSA 9, 394 (55)

278 J. J. Burgerjon
NSA 8, 4429 (54) and CA 48, 13448a (54)

279 Calame, Cooper, Engelsberg, Gerstein, Koehler, Kuckes, Meadows, Strauch, and Wilson
G. B.

280 California, University, Radiation Laboratory
NSA 9, 773 (54)

281 Caro, Martin, and Rouse
SA A59, 416 (56) and SA B59, 331 (56)

282 M. Clark
CA 48, 10441c (54)

283 Bernard L. Cohen
NSA 10, 6430 (56)
284 Bernard L. Cohen
CA 48, 9821d (54)

285 S. A. Colgate and A. J. Schwemin
NSA 10, 10982 (56)

286 William F. Coombs, Jr.
A study of the neutron hazard at the 130" synchrocyclotron (thesis).
NSA 10, 4108 (56)

287 Frank S. Crawford, Jr.
NSA 10, 10600 (56) and CA 51, 878a (57)

288 F. S. Crawford, Jr. and W. F. Stubbins
NSA 10, 11538 (56)

289 A. V. Crewe and K. J. Le Couteur
NSA 9, 6497 (55); CA 50, 16423h (56); and SA A59, 411 (56)

290 A. V. Crewe and J. W. G. Gregory
The extraction of the beam from the Liverpool synchrocyclotron.
SA A58, 9711 (55) and CA 50, 4656b (56)

291 A. V. Crewe and U. E. Kurse
CA 51, 7171a (57) and SA A59, 2186 (56)

292 P. Debraine
NSA 11, 728 (57)

293 Debraine, Lažanski, and Boyadjian
NSA 10, 7012 (56)
Delbecq, Ramler, Rocklin, and Yuster
NSA 9, 5786 (55) and SA A58, 8027 (55)

C. E. Dixon and D. B. Bowen
CA 49, 10078f (55)

M. R. Donaldson
NSA 10, 9643 (1956) and SA B60, 3675 (57)

Donaldson, Worsham, and Ziegler
A study of a variable frequency cyclotron resonant system. IRE Convention Record 3, Part 10, 191-8 (1955)
NSA 9, 7945 (55)

Dzhelepov, Dmitrievsky, Katyshev, Kozodaev, Mescheryakov, Tarakanov, and Chestnoi
NSA 11, 5643 (57)

A. O. Edmunds and F. Uridge
NSA 11, 4135 (57)

K. E. A. Effot and J. H. Fremlin
SA A58, 9708 (55)

Efremov, Mescheryakov, Mints, Dzhelepov, Ivanov, Katyshev, Komar, Malyshev, Monoszon, Nevyashsky, Polyakov, and Chestnoi
NSA 11, 5642 (57)

E. Fawcett
CA 50, 16363h (56)
303 J. H. Fremlin and V. M. Spiers
NSA 9, 4879 (55) and CA 49, 13794e (55)

304 Fulbright, Bromley, Bruner, Hawrylak, and Hamann
Preliminary report on the new 8-Mev variable-energy cyclotron of
the University of Rochester. Rochester, Univ., NYO-6541, 6 p.
(1954).
NSA 9, 1653 (55)

305 Gallop, Vonberg, Post, Powell, Sharp, and Waterton
SA B60, 2237 (57)

306 Galt, Yager, and Dail
Cyclotron resonance effects in graphite. Phys. Rev. 103, 1586-7
(1956).
CA 50, 16363g (56)

307 W. S. Gilbert and A. Andrew
The use of cyclotron irradiation in the study of radiation effects on
materials; techniques developed since 1948. Atomics International
Div., North American Aviation, Inc., Canoga Park, Calif., NAA-
NSA 10, 3322 (56)

308 W. S. Gilbert and J. H. Pepper
Some experimental facilities and techniques used at the Berkeley 60-
inch cyclotron for irradiation-effect studies. Phys. Rev. 96, 862
(1954).
CA 50, 10547f (56)

309 L. Gillon and Y. Hecq
Thyratron control of the direct current supply of a 100-kw cyclotron
French).
NSA 9, 2925 (55) and SA B57, 2779 (54)

310 Farno L. Green
Electromagnetic shims for focusing in a fixed-frequency cyclotron.
CA 49, 10069h (55)

311 Farno L. Green
Proton beam study in a fixed-frequency cyclotron. I.R.E. Trans.
NSA 10, 9644 (56) and SA B60, 3676 (57)
312 Guseva, Filippova, Gerlit, Druin, Myasoedov, and Tarantin
Experiments on the production of einsteinium and fermium with a
CA 51, 7184h (57)

313 H. J. Hausman
Development of the modified Ohio State University cyclotron. Final
report. Part 2. Ohio State Univ., Research Foundation, AECU-2907,
NSA 8, 5041 (54)

314 Bengt Hedin
Design of CERN synchrocyclotron magnet. European Council for
Nuclear Research, Synchrocyclotron Div., Geneva, CERN-55-3,
NSA 9, 3306 (55)

315 Heusinkveld, Jakobson, Ruby, and Wright
A report on the three-dee, three-phase 20-inch cyclotron. California,
NSA 9, 6778 (55)

316 Heusinkveld, Jakobson, Ruby, Smith, and Wright
Studies with a three-dee, three-phase proton cyclotron. California,
NSA 10, 1587 (56)

317 F. T. Howard, Ed.
Electronuclear research division semiannual progress report for
period ending March 20, 1956. Oak Ridge Nat'l. Lab., ORNL-2139,
NSA 10, 12062 (56)

318 E. L. Hubbard and E. L. Kelly
SA A57, 10263 (54); SA B57, 4750 (54); and CA 48, 13447i (54)

319 M. J. Jakobson and J. H. Manley
Phase properties of the deflected ion beam from a fixed-frequency
CA 50, 10543i (56)

320 M. J. Jakobson and F. H. Schmidt
93, 303-5 (1954).
CA 48, 6271c (54)

321 Jakobson, Heusinkveld, and Ruby
NSA 11, 1361 (57); CA 51, 4159g (57); and SA A60, 1382 (57)
322 Louis K. Jensen
A timing circuit for the U.C.L.A. fm cyclotron. California, Univ.,
Los Angeles, AECU-3145, 8 p. (1956).
NSA 10, 3044 (56)

323 Lawrence W. Jones
The Ohkawa intersecting-beams machine. Michigan, Univ., Ann
Arbor and Midwestern Universities Research Assn., Urbana, Ill.,
MURA-LWJ-12, 10 p. (1956).
NSA 10, 10596 (56)

324 Royce J. Jones
CA 49, 10069h (55)

325 Jones Terwilliger, and Haxby
Experimental test of the fixed-field alternating-gradient principle of
NSA 10, 11541 (56) and SA A60, 446 (57)

326 H. F. Kaiser
An electron cyclotron (microtron) for 3-cm rf operation. Phys. Rev.
87, 183 (1952).
CA 48, 8061e (54)

327 H. F. Kaiser
SA B58, 2464 (55)

328 H. F. Kaiser
The microtron, a nuclear and electronic research instrument. I.R.E.
NSA 10, 9645 (56)

329 H. F. Kaiser
NSA 9, 396 (55) and SA A58, 979 (55)

330 H. F. Kaiser
Microtrons (electron cyclotrons) for x- and k-band operation. J.
SA A57, 7478 (54) and SA B57, 3354 (54)

331 H. F. Kaiser
Microtrons (electron cyclotrons for x- and k-band operation) II.
Phys. Rev. 95, 600 (1954).
CA 50, 10543i (56)
332 H. F. Kaiser
CA 49, 10073c (55)

333 H. F. Kaiser and W. T. Mayes
NSA 9, 5788 (55); SA A58, 8003 (55); and SA B58, 3815 (55)

334 I. Kaufman and P. D. Coleman
SA A60, 3345 (57)

335 Kelly, Pyle, Thornton, Richardson, and Wright
NSA 10, 3240 (56)

336 Kelly, Pyle, Thornton, Richardson, and Wright
SA A59, 8818 (56) and SA B59, 4564 (56)

CA 50, 4655i (56)

338 E. Kisdi-Koszo
SA A58, 8812 (55) and SA B58, 5226 (55)

339 J. Kokame and S. Yamashita
NSA 10, 7021 (56); SA A59, 5156 (56); and CA 50, 9891b (56)

340 A. A. Kolomenskii
NSA 10, 7027 (56); SA A60, 469 (57); and CA 50, 14373e (56)
A. A. Kolomenskii and A. N. Lebedev

Kolomenskii, Pelukhov, and Rabinovich

L. Kornblith

L. Kornblith

Von P. Kunze

Glen R. Lambertson

K. J. Le Couteur

K. J. Le Couteur and S. Lipton

Levis, Greer, and Bolton

Robert S. Livingston
351 R. S. Livingston and A. Boch
The Oak Ridge 86-inch cyclotron. Oak Ridge National Lab., Tenn.,
NSA 10, 6429 (56)

352 R. S. Livingston and R. J. Jones
NSA 8, 4732 (54); SA A57, 10275 (54); and CA 48, 13448h (54)

353 R. S. Livingston and R. J. Jones
CA 49, 10078f (55)

354 Livingston, Howard, and Rudolph
Bibliography of cyclotron literature. Oak Ridge National Lab., Tenn.,
NSA 10, 3954 (56)

355 John S. Luce
NSA 10, 10977 (56)

356 J. H. Manley and M. J. Jakobson
NSA 8, 3874 (54); CA 48, 9821f (54); and SA A57, 7498 (54)

357 D. E. Mapother and F. E. L. Witt
NSA 9, 7947 (55) and SA A58, 9615 (55)

358 Marshall, Nedzel, and Marshall
CA 49, 10073g (55)

359 J. A. Martin and F. L. Green
NSA 10, 10604 (56)

360 Martin, Livingston, Murray, and Rankin
CA 49, 8710g (55)
361 A. N. Matveev
The motion of electrons in cyclic accelerators as a stochastic pro­
SA A60, 1365 (57)

362 M. G. Meshcheryakov
Investigation of nuclear processes at high energies in accelerators.
CA 50, 69b (56)

363 M. G. Meshcheryakov
Accelerator studies of high energy processes. Session of the Academy
of Sciences of the U.S.S.R. on the Peaceful Uses of Atomic Energy
NSA 9, 7908 (55)

364 M. G. Meshcheryakov
High-energy accelerators in research on nuclear processes. AEC-
tr-2435, 14 p. (1955) from p. 15-28 of Conference of the Academy
of Sciences of the U.S.S.R. on the Peaceful Uses of Atomic Energy,
July 1-5, 1955. Session of the division of physical and mathematical
sciences (Translation).
NSA 10, 4111 (56)

365 W. Messerschmidt
CA 49, 731d (55)

366 M. J. Moore
CA 49, 11427h (55)

367 E. M. Moroz
On some processes of electron acceleration in a microtron. Doklady
NSA 10, 9642 (56) and SA A59, 7455 (56)

368 E. M. Moroz
NSA 11, 1359 (57) and SA A60, 4434 (57)

369 L. B. Mullett
Phase stability in cyclotrons with the fixed-frequency field law.
2071, 9 p. (1956).
CA 51, 5579b (57)
L. B. Mullett
NSA 11, 4721 (57) and CA 51, 7164i (57)

Nature 175, 1012-15 (1955)
The 156-inch cyclotron at Liverpool.
NSA 9, 6087 (55)

Petrovich, Preskitt, and Hamann
NSA 11, 1675 (57)

T. G. Pickavance
NSA 10, 413 (56); SA A59, 9712 (55); and SA B59, 332 (56)

W. B. Powell
SA A59, 6717 (56)

Robert Pyle
NSA 9, 6496 (55)

Robert Pyle
NSA 9, 5783 (55)

H. L. Reynolds and A. Zucker
NSA 9, 7948 (55); SA A59, 423 (56); and CA 51, 877i (57)

Richard B. Rhody
CA 51, 4169g (57)

Fred L. Ribe
NSA 11, 6131 (57)
380 G. B. Rossi (to U. S. Atomic Energy Commission)
Cyclotron square-wave rf system. U. S. Patent 2,778,937 issued to
NSA 11, 5115 (57)

381 Ruby, Heusinkveld, Jakobson, Smith, and Wright
Instr. 27, 490-3 (1956).
NSA 11, 733 (57); SA A59, 7472 (56); and SA B59, 3924 (56)

382 Schmidt, Farwell, Henderson, Morgan and Strieb
CA 48, 13443g (54); SA A57, 10261 (54); and SA B57, 4749 (54)

383 Glen Schrank
An energy control for external cyclotron beams. Palmer Physical
NSA 9, 2924 (55)

384 G. E. Schrank
Energy control for external cyclotron beams. Rev. Sci. Instr. 26,
677-80 (1955).
SA A58, 8028 (55); SA B58, 3621 (55); and CA 50, 16423i (56)

385 R. H. Schuler and A. O. Allen
Absolute measurement of cyclotron beam currents for radiation-
chemical studies. Brookhaven National Lab., Upton, N. Y., BNL-
NSA 9, 6777 (55)

386 R. H. Schuler and A. O. Allen
Absolute measurement of cyclotron beam currents for radiation-
CA 51, 6372a (57) and SA A59, 2935 (56)

387 Shull, MacFarland, and Bretscher
Concentration of a cyclotron beam by strong-focusing lenses. Rev.
NSA 8, 3873 (54); CA 48, 9821e (54); SA A57, 6671 (54); and SA B57,
2957 (54)

388 Bob H. Smith
A 90-inch cyclotron with an adjustable-energy external beam.
NSA 8, 5963 (54)

389 Bob H. Smith
The cloverleaf three-phase radiofrequency system. California, Univ.,
NSA 9, 6495 (55)
Bob H. Smith
A three-phase radiofrequency system for cloverleaf cyclotrons.
NSA 10, 1082 (56)

B. H. Smith and K. R. MacKenzie
Three-phase radiofrequency system for Thomas cyclotrons. Rev.
SA A59, 7471 (56) and SA B59, 3923 (56)

P. Stahelin
The radial stability of orbits in a spiral-ridge cyclotron. University
NSA 11, 5051 (57)

H. Steinwedel
Particle orbits in circular accelerators. European Council for
NSA 10, 10595 (56)

W. J. Stephan
184"-cyclotron deuterium electrolyzer tests. California, Univ.,
NSA 10, 3735 (56)

Warren F. Stubbins
An experimental ion source for the 184-inch cyclotron. California,
NSA 9, 3662 (55)

Warren F. Stubbins
CA 50, 10549d (54)

Warren F. Stubbins
Extraction of synchrocyclotron beams near the maximum energy.
NSA 11, 1358 (57) and CA 51, 2411d (57)

W. J. Sturm and R. J. Jones
Application of thermocouples to target temperature measurement in
CA 48, 13447i (54) and SA A57, 6670 (54)

Symon, Kerst, Jones, Laslett, and Terwilliger
103, 1837-59 (1956).
NSA 11, 731 (57); CA 50, 16423f (56); and SA A60, 1382 (57)
K. R. Symon and A. M. Sessler
Methods of radiofrequency acceleration in fixed-field accelerators
with applications to high-current and intersecting-beam accelerators.
Wisconsin, Univ., Madison; Ohio State Univ., Columbus; and Midwestern Universities Research Assn., Urbana, Ill., MURA-KRS/AMS-1, 55 p. (1956).

A. E. Taylor
Report on research work with the cyclotron at Gustaf Werner Institute
for Nuclear Chemistry in Uppsala during the period from April 1 to

A. E. Taylor
Report on research work with the cyclotron at Gustaf Werner Institute
for Nuclear Chemistry in Uppsala during the period from May 1 to

A. E. Taylor
Report on research work with the cyclotron at Gustaf Werner Institute

A. E. Taylor
Report on research work with the cyclotron at Gustaf Werner Institute

A. E. Taylor

Lee C. Teng

Lee C. Teng
Thornton, Boyer, Peterson, Taylor, Stahl, Hernandez, and Putnam
Cyclotrons designed for precision fast-neutron cross-section measure-
CA 50, 12867e (56)

Yatendra Pal Varshni
G. B.

R. K. Wakerling and A. Guthrie
Electrical circuits for calutrons. U. S. Atomic Energy Comm., TID-
CA 50, 1473e (56)

Walker, Fremlin, Link, and Stephens
The acceleration of heavy ions in a fixed-frequency cyclotron. Brit.
NSA 8, 4430 (54); CA 48, 10441i (54); and SA A57, 6669 (54)

W. Walkinshaw and N. M. King
Linear dynamics in spiral-ridge cyclotron design. Atomic Energy
(1956).
NSA 11, 5633 (57)

N. S. Wall and J. W. Irvine, Jr.
24, 1146-47 (1953).
CA 48, 5662b (54)

L. F. Wouters
Considerations on the effect of beam-dee coupling in a cyclotron rf
(1952).
NSA 10, 9639 (56)

H. P. Yockey
Cyclotron techniques in studies of radiation effects. North American
NSA 10, 5411 (56)

N. F. Ziegler
An rf system for a variable-energy cyclotron. Oak Ridge National
NSA 10, 10978 (56)

N. F. Ziegler
Electrical measurements on a multiple-particle cyclotron model. Oak
NSA 10, 10979 (56)
SYNCHROTRON

418 N. F. Ziegler
NSA 11, 2743 (57)

419 J. B. Adams
NSA 10, 410 (56); SA A58, 9713 (55); and SA B59, 337 (56)

420 J. B. Adams
NSA 11, 1356 (57)

421 J. B. Adams
CA 50, 67h (56)

422 J. B. Adams and F. K. Goward
NSA 8, 5955 (54)

423 Yu M. Ado
SA A60, 4435 (57)

424 Yu M. Ado and P. A. Cherenkov
SA A60, 5399 (57)

425 Edward S. Akeley
NSA 10, 7014 (56)

426 G. G. Alway
SA B59, 1948 (56)
427 G. M. Anderson and D. J. Zaffarano
 Determination of the angular spreads of the x-ray beam from the
 I. S. C. 70-Mev synchrotron. Ames Lab., Ames, Iowa. ISC-588,
 NSA 10, 2180 (56)

428 Argonne National Laboratory
 Particle Accelerator Division, summary report for April through
 September 1956. Argonne National Lab., Lemont, Ill., ANL-5630,
 NSA 11, 1355 (57)

429 Australian National University
 The Canberra air-cored proton synchrotron. Australian National
 Univ., Research School of Physical Sciences, NP5240, 14 p. (1954).
 NSA 8, 5375 (54)

430 C. J. Bakker
 (In Dutch).
 NSA 10, 410 (56)

431 S. E. Barden
 93, 1378-80 (1954).
 CA 48, 6850a (54)

432 J. S. Bell
 Stability of perturbed orbits in the synchrotron. Atomic Energy
 (1954).
 NSA 8, 4423 (54) and SA B57, 5202 (54)

433 M. Bell
 Perturbation formulae for Hill's equation. Atomic Energy Research
 Establishment, Harwell, Berkshire, England, AERE-T/M-139, 10 p.
 (1956).
 NSA 10, 10594 (56)

434 M. Bell
 Nonlinear equations of motion in the synchrotron. Atomic Energy
 (1955).
 NSA 9, 7161 (55) and SA A58, 8810 (55)

435 J. W. Blamey
 The orbital magnet and power supply of the 10 Gev proton synchrotron
 at the Australian National University. Proc. CERN Symposium (1956),
 G. B.
Augustin Blaquiere
NSA 9, 1371 (55); SA A58, 1914 (55); and SA B58, 1229 (55)

John P. Blewett
NSA 11, 732 (57) and SA A59, 8831 (56)

John P. Blewett
NSA 9, 3991 (55) and CA 49, 2195h (55)

E. Bodenstedt
SA A58, 992 (55)

N. E. Booth and G. W. Hutchinson
NSA 11, 5637 (57)

W. M. Brobeck and W. C. Struven
Betheatron frequency measurement system. Electronics 29, No. 5, 182-7 (1956).
SA B59, 4563 (56)

F. G. Brockman and M. W. Louwerse
CA 48, 6271f (54)

Brunca, Bruck, Hamelin, Neyret, and Bolzinger

G. B.

H. Bruck and R. Levy-Mandel
NSA 10, 415 (56); SA A59, 2187 (56); and SA B59, 1508 (56)

Bureau, Austerheim, and Zaffarano
NSA 8, 5373 (54)
446 Bureau, Austerheim, and Zaffarano
An electron injector for a 70 Mev synchrotron. Rev. Sci. Instr. 25,
SA A58, 4714 (55) and SA B58, 2885 (55)

447 E. L. Burshtein and L. S. Solov'ev
SA A60, 1380 (57)

448 A. Citron and M. G. N. Hine
Experimental facilities of the CERN proton synchrotron. Nuovo cimento
(10) 2, Suppl. 1, 375-91 (1955).
NSA 10, 411 (56); SA A58, 9714 (55); and SA B59, 338 (56)

449 Citron, Gentner, and Sittkus
Considerations for a radiation shield for a 24-Bev proton synchrotron.
NSA 8, 5376 (54) and CA 48, 11202h (54)

450 F. T. Cole
NSA 10, 5999 (56)

451 Bruce Cork
The Bevatron 9. 9-Mev proton linear accelerator. California, Univ.,
Berkeley, Rad. Lab., UCRL-2385, 35 p. (54).
NSA 8, 6563 (54)

452 B. Cork
26, 210-19 (1955).
SA A58, 4733 (55); SA B58, 2527 (55); and CA 49, 12143h (55)

453 Cork, Chupp, and Lofgren
Bевatron operation and development. Part IV. California, Univ.,
NSA 9, 5509 (55)

454 Cottingham, Plotkin, and Raka
Electronic equipment for an electron analogue accelerator. I.R.E.
NSA 10, 1592 (56)

455 E. D. Courant
Field inhomogeneities in alternating-gradient synchrotrons. Phys.
Rev. 91, 456 (1953).
CA 49, 10071h (55)
456 E. A. Crosbie and M. Hamermesh
CA 50, 105471 (56)

457 W. K. Dawson
Energy and distribution of photoprotons produced by 70 Mev x-rays.
CA 51, 3315d (57)

458 J. de Boer
NSA 8, 4735 (54)

459 Denis, De Raad, Petrucci, Resegotti, and Sarazin
NSA 9, 391 (55)

460 Denis, Germain, De Raad, Petrucci, Resegotti, Sarazin, Stroot, and Brianti
NSA 9, 770 (54)

461 Harry Denman
NSA 11, 716 (57)

462 D. C. dePackh
NSA 10, 1081 (56)

463 Duke, Lack, March, Gibson, McKeague, Hughes, and Muirhead
CA 51, 2414g (57)

464 European Council for Nuclear Research
NSA 8, 6314 (54)
European Council for Nuclear Research

European Council for Nuclear Research

European Council for Nuclear Research
Etude préliminaire du modèle AC V avec alimentation continue.
NSA 9, 4581 (55)

European Council for Nuclear Research
NSA 9, 5162 (55)

European Council for Nuclear Research
NSA 9, 5163 (55)

European Council for Nuclear Research
NSA 9, 6084 (55)

European Council for Nuclear Research
NSA 9, 6085 (55)

European Council for Nuclear Research
NSA 9, 6494 (55)

European Council for Nuclear Research
NSA 9, 7557 (55)

European Council for Nuclear Research
NSA 10, 409 (56)

European Council for Nuclear Research
NSA 10, 1076 (56)
European Council for Nuclear Research, Proton Synchrotron Group
NSA 10, 1077 (56)

European Council for Nuclear Research, Proton Synchrotron Group
NSA 10, 8012 (56)

European Council for Nuclear Research
NSA 9, 771 (55)

European Council for Nuclear Research
NSA 9, 4582 (55)

European Council for Nuclear Research
NSA 9, 5164 (55)

Fowler, Shutt, Thorndike, and Whittemore
Pions and protons from a target bombarded by 2.3-Bev protons in the cosmotron. Phys. Rev. 91, 479 (1953).
CA 49, 10072f (55)

Christian Fronsdal
NSA 9, 2461 (55)

R. Gabillard
Use of the Hall effect for the production of frequencies associated with the value of a magnetic field by the functions

\[f = k[B], \quad f = \frac{k}{B}, \quad f = \frac{k}{\sqrt{B^2 + B_0^2}} \]

NSA 9, 392 (55)

L. L. Goldin and D. G. Koskarev
SA A59, 2919 (56)
492 G. Ghigo and I. F. Quercia
Field stabilization in a dc-ac excited magnet of a synchrotron. Nuclear
Instr. 1, 57-61 (1957).
NSA 11, 5636 (57)

493 L. L. Goldin and D. G. Koskarev
Synchrotron oscillations in strong-focusing accelerators. Nuovo
Cimento (10) 2, 1251-68 (1955) (In English).
NSA 10, 4963 (56)

494 S. J. Goldsack
Two-target operation of a proton synchrotron. Nucl. Instr. 1, 90-1
(1957).
NSA 11, 5639 (57)

495 P. Grivet
The giant synchrotrons or cosmotrons. Rev. gén. elec. 64, 239-62
(1955) (In French).
CA 49, 11429d (55) and SA B58, 3813 (55)

496 F. Grutter
General considerations on the power supply for the magnets of high-
energy proton synchrotrons. European Council for Nuclear Research,
NSA 9, 1098 (55)

497 F. Grutter
Magnetic power supply. Pool-cathode mercury-arc converters for
high-energy proton-synchrotron magnet power supplies. European
NSA 10, 408 (56)

498 R. Hagedorn
Relations between survey and stacking of magnets and statistical
distribution of F-type perturbations. European Council for Nuclear
NSA 9, 7165 (55)

499 Peter Hall and S. Legvold
Remanent magnetism in toroids. Ames Lab., Ames, Iowa, ISC-630,
NSA 9, 7166 (55)

500 Hammer, Pidd, and Terwilliger
(1955).
NSA 9, 5787 (55); SA A58, 8000 (55); and SA B58, 3818 (55)
C. L. Hammer and A. J. Bureau
NSA 9, 2022 (55)

C. L. Hammer and A. J. Bureau
NSA 9, 2023 (55)

C. L. Hammer and A. J. Bureau
SA A58, 8004 (55) and SA B58, 3816 (55)

C. L. Hammer and A. J. Bureau
SA A58, 8005 (55) and SA B58, 3817 (55)

Walter Hartsough
NSA 10, 3239 (56)

Walter Hartsough
NSA 10, 8018 (56)

Walter Hartsough
NSA 11, 1357 (57)

Walter Hartsough
NSA 11, 4724 (57)

Harry G. Heard
NSA 10, 10598 (56) and CA 51, 877f (57)
510 Harry G. Heard
NSA 11, 718 (57) and CA 51, 2411c (57)

511 Harry G. Heard
NSA 10, 2181 (56)

512 Harry G. Heard and Edward J. Lofgren
NSA 10, 1081 (56)

513 Harry G. Heard
NSA 11, 4723 (57) and CA 51, 8542a (57)

514 L. U. Hibbard
SA A57, 11127 (54) and SA B58, 355 (55)

515 K. Huke and G. Iwata
NSA 8, 4151 (54) and SA A57, 11126 (54)

516 H. Humbach
NSA 10, 6002 (56); SA A58, 9707; and CA 50, 5415g (56)

517 H. Humbach
SA A58, 7130 (55)

518 J. V. Jelley
CA 50, 9165b (56)

519 Kjell Johnsen
NSA 8, 5956 (54)
Kjell Johnsen
NSA 8, 5957 (54)

Kjell Johnsen
NSA 9, 1099 (55)

Kjell Johnsen
NSA 8, 5958 (54)

Kjell Johnsen
NSA 9, 1100 (55)

Kjell Johnsen
Some numerical data for eight different alternatives of a strong-focusing synchrotron having an average radius of 150 m and giving 30 Gev protons. European Council for Nuclear Research, CERN-PS/KJ-17, 4 p. (1953).
NSA 9, 1101 (55)

Kjell Johnsen
NSA 8, 5959 (54)

Kjell Johnsen
NSA 8, 5960 (54)

Lawrence W. Jones
NSA 10, 7017 (56)

Jones, Kratz, Lawson, Miller, Miller, Ragan, Rouvina, and Voorhies
NSA 9, 7558 (55)
Jones, Kratz, Lawson, Miller, Miller, Ragan, Rouvina, and Voorhies
Vacuum system for 300-Mev nonferromagnetic synchrotron. General
(1955).
NSA 9 6086 (55)

Jones, Kratz, Lawson, Miller, Miller, Ragan, Rouvina, and Voorhies
26, 809-26 (1955).
SA A58, 9692 (55); SA B59, 336 (56); and CA 51, 877f (57)

Kerst, Cole, Crane, Jones, Laslett, Ohkawa, Sessler, Symon, Terwilliger,
and Vogt-Nilsen
Attainment of very high energy by means of intersecting beams of
NSA 10, 8696 (56) and SA A59, 5157 (56)

A. A. Kolomenskii
Excitation of synchrotron oscillation due to electron radiation fluctua-
tion in strong-focusing accelerators. Soviet Phys. JETP 3, 132-3
(1956) (In English) and Zhur. Eksper.' i Teoret. Fiz. 30, 207-9 (1956)
(In Russian).
NSA 10, 11545 (56) and SA A59, 6689 (56)

A. A. Kolomenskii
On the influence of radiative quantum fluctuations on the motion of
SA A59, 7456 (56)

A. A. Kolomenskii and A. N. Lebedev
The role of radiational losses in cyclic accelerators. Soviet Phys.
JETP 3, 946-7 (1957).
NSA 11, 4141 (57)

A. A. Kolomenskii and L. L. Sabsovich
On passage through the critical energy in a strong-focusing accelerator.
SA A60, 465 (57)

Korolev, Markov, Akimov, and Kulikov
Experimental investigation of angular distribution and polarization of
optical radiation of electrons in a synchrotron. Doklady Akad. Nauk
SA A60, 5400 (57)

Von p. Kunze
NSA 11, 2157 (57)
538 Glen R. Lambertson
 NSA 9, 2663 (55)

539 P. Lapostolle
 NSA 10, 1078 (56)

540 L. Jackson Laslett
 NSA 10, 7016 (56)

541 L. Jackson Laslett
 NSA 11, 1362 (57) and CA 51, 4827g (57)

542 L. Jackson Laslett
 NSA 10, 8017 (56)

543 B. Ledley and L. Riddiford
 SA A58, 9709 (55) and CA 50, 686h (56)

544 E. J. Lofgren and H. G. Heard
 NSA 9, 3664 (55)

545 Gerhart Lüders
 NSA 9, 2462 (55)

546 Gerhart Luderer
 NSA 8, 5962 (54)
Gerhart Luders
NSA 8, 5053 (54)

Gerhart Luders
NSA 8, 5954 (54)

Gerhart Luders
NSA 10, 412 (56); SA A58, 9693 (55); and SA B59, 333 (56)

Gerhart Luders
On the effect of magnetic field errors on the betatron oscillations in the strong-focusing synchrotron. Nuovo cimento (10) 2, Suppl. 4, 1075-1146 (1955) (In German).
NSA 10, 4964 (56); SA A59, 4435 (56); and SA B59, 2349 (56)

Gerhart Lüders
NSA 10, 7013 (56)

Dick A. Mack
NSA 9, 7946 (55)

Madey, Bandtel, and Frank
SA A57, 10253 (54)

Madey, Bandtel, and Frank
The radiofrequency fine structure of the photon beam from the Berkeley synchrotron. Phys. Rev. 92, 537 (1953).
CA 49, 10073f (55)

John Marshall
NSA 10, 12060 (56)
A. N. Matveev
NSA 10, 7020 (56) and SA A59, 7457 (56)

A. N. Matveev
SA A60, 464 (57)

A. N. Matveev
NSA 11, 4143 (57)

A. N. Matveev
SA A60, 1356 (57)

McFarlane, Barden, and Oldroyd
NSA 10, 421 (56); SA A59, 4434 (56); and SA B59, 2348 (56)

L. R. McMurray and D. J. Zaffarano
NSA 10, 8013 (56)

Midwestern Universities Research Assn.
NSA 11, 4722 (57)

P. B. Moon
NSA 10, 8021 (56); SA A59, 3784 (56); and CA 50, 16423e (56)

Moon, Riddiford, and Symonds
SA A58, 6226 (55) and CA 49, 14495i (55)

M. J. Moravcsik and J. M. Sellen, Jr.
NSA 10, 2184 (56); CA 51, 6368d (57); and SA A59, 2918 (56)
566 L. B. Mullett
Gas scattering in proton synchrotrons. Atomic Energy Research
CA 51, 5579c (57)

567 National Bureau of Standards
Protection against betatron-synchrotron radiations up to 100 million
CA 50, 3118c (56)

568 J. S. Nodvick and D. S. Saxon
On the suppression of coherent radiation by electrons in a synchrotron.
NSA 8, 4426 (54)

569 J. S. Nodvick and D. S. Saxon
Suppression of coherent radiation by electrons in a synchrotron. Phys.
SA A57, 11125 (54)

570 Tihiro Ohkawa
Mark V with scalloped motion in the axial direction. Midwestern
Univs. Research Assn. and Illinois, Univ., Urbana, MURA-TO-5,
7 p. (nd).
NSA 10, 6001 (56)

571 Tihiro Ohkawa
A scaled radial sector FFAG for intersecting beams. Illinois, Univ.,
Urbana, and Midwestern Univs. Research Assn., Urbana, MURA-TO-
6, 4 p. (1956).
NSA 10, 8694 (56)

572 M. L. Oliphant
The acceleration of protons to energies above 10 Bev. Proc. Roy.
NSA 10, 8022 (56); SA A59, 5943 (56); and CA 50, 9891a (56)

573 Gerard K. O'Neill
Storage-ring synchrotron: Device for high-energy physics research.
NSA 10, 9646 (56); CA 50, 14382d (56); and SA A59, 6718 (56)

574 Yu F. Orlov
The nonlinear theory of betatron oscillations in the strong-focusing
NSA 10, 7024 (56) and SA A59, 4433 (56)
575 Iu F. Orlov
SA A60, 5403 (57)

576 Iu F. Orlov
SA A59, 8819 (56)

577 Iu F. Orlov
NSA 11, 4142 (57)

578 G. D. Palazzi
SA A59, 4483 (56)

579 D. Park
SA A58, 2796 (55)

580 E. Persico
NSA 10, 417 (56); SA A58, 9695 (55); and SA B59, 335 (56)

581 E. Persico
NSA 9, 6089 (55) and SA A58, 8024 (55)

582 Piccioni, Clark, Cool, Friedlander, and Kassner
NS A 9, 1366 (55)

583 Piccioni, Clark, Cool, Friedlander, and Kassner
SA A58, 5452 (55)
Piccioni, Clark, Cool, Friedlander, and Kassner
CA 50, 10549d (57)

Purdue Research Foundation
NSA 8, 7152 (54)

Purdue Research Foundation
NSA 9, 7944 (55)

C. M. Ramm
NSA 10, 7022 (56); CA 50, 7607c (56); SA A59, 2937 (56); and SA B59, 3125 (56)

Ramm, Coe, and Vaughan
NSA 10, 8020 (56); SA A59, 2936 (56); and CA 50, 9166c (57)

E. Regenstreif
NSA 9, 2661 (55)

E. Regenstreif
NSA 9, 393 (55)

E. Regenstreif
NSA 9, 388 (55)

E. Regenstreif
NSA 9, 4295 (55)
E. Regenstreif
NSA 10, 1935 (56)

E. Regenstreif
NSA 10, 407 (56)

Riddiford, van de Raay, and Coe
NSA 9, 5785 (55); CA 49, 13800e (55); and SA A58, 6225 (55)

G. Salvini
NSA 8, 4731 (54) and SA A57, 6656 (54)

G. Salvini
The Italian project for an electron synchrotron. Nuovo cimento (9) 12, Suppl. 1, 77-100 (1954) (In Italian).
SA A58, 319 (55) and SA B58, 354 (55)

G. Salvini
The 1000-Mev electron synchrotron of Frascati and possible research with it. Energia nucleare (Milan) 3, 435-49 (1956) (In Italian).
NSA 11, 4725 (57); SA A60, 5372 (57); and SA B60, 3677 (57)

G. Salvini
NSA 10, 416 (56); SA A58, 9694 (55); and SA B59, 334 (56)

Matthew Sands
NSA 9, 2466 (55) and SA A58, 2784 (55)

G. Sasson
SA A57, 8354 (54)

A. Schoch
NSA 10, 2179 (56)
603 Joseph Seiden
CA 50, 5415h (56) and SA A58, 8835 (55)

604 Joseph Seiden
NSA 9, 398 (54) and SA A58, 993 (55)

605 Joseph Seiden
NSA 9, 399 (54); SA A58, 1913 (55); and SA B58, 1228 (55)

605 Joseph Seiden
NSA 9, 4584 (55) and SA A59, 7131 (55)

607 Joseph Seiden
CA 69, 42c (56) and SA A59, 5155 (56)

608 Joseph Seiden
Diffusion of protons through the residual gas in a convergent cosmotron. Compt. rend. 237, 1075-7 (1953).
CA 48, 4322i (54)

609 Joseph Seiden
SA A57, 8355 (54) and SA B57, 3792 (54)

610 J. Seiden and F. Lurcat
NSA 9, 6091 (55) and SA A58, 8025 (55)

611 M. Seidl
SA B60, 2985 (57)

612 Thorbjorn Sigurgeirsson
NSA 9, 2463 (55)
613 Thorbjorn Sigurgeirsson

614 E. Smars and O. Wernholm
Design study of a strong-focusing electron synchrotron. Arkiv Fysik 7, 463-72 (1954). NSA 8, 3872 (54); CA 48, 6843g (54); SA A57, 7479 (54); and SA B57, 3355T (54)

615 Lloyd Smith

616 Sokolov, Ternov, and Strakhovskii
Investigation of stability of electron motion in cyclic accelerators when quantum effects are included. Soviet Phys. JETP 4, 251-8 (1957). NSA 11, 5646 (57)

617 H. Steinwedel

618 Warren C. Struve
Bevatron magnet pulse-timing system. Electronics 24, No. 6, 160-3 (1956). SA B60, 886 (57)

619 Warren F. Stubbins

620 Warren F. Stubbins

621 Warren F. Stubbins
Rapid placement of a synchrotron beam on an internal target. IRE Trans. on Nuclear Sci. NS-2, 3-8 (1955). SA B60, 3678 (57)
622 Symon, Kerst, Jones, Laslett, and Terwilliger
NSA 11, 731 (57); CA 50, 16423f (56); and SA A60, 1382 (57)

623 K. R. Symon and A. M. Sessler
Methods of radiofrequency acceleration in fixed-field accelerators
with applications to high-current and intersecting-beam accelerators.
Wisconsin, Univ., Madison; Ohio State Univ., Columbus; and Midwestern Universities Research Assn., Urbana, Ill., MURA-KRS/AMS-1, 55 p. (1956).
NSA 10, 7015 (56)

624 Taieb, Guillon, Gabet, and Mey
SA B59, 2205 (56)

625 Lee C. Teng
NSA 10, 4960 (56); CA 51, 7882b (57); and SA A59, 5944 (56)

626 Thibaud, Verzaux, and Salin
First results obtained with the 1-Mev particle accelerator installed
NSA 9, 1374 (55); CA 49, 4415i (55); and SA A58, 1911 (55)

627 D. H. Tomboulian and P. L. Hartman
Spectral distribution curves of the far-ultraviolet radiation from the
CA 50, 10543i (56)

628 D. H. Tomboulian and P. L. Hartman
Spectral and angular distribution of ultraviolet radiation from the 300-
SA A59, 5939 (56)

629 L. E. H. Trainor and S. B. Brown
NSA 9, 2468 (55); CA 49, 4415i (55); and SA A58, 3812 (55)

630 Veksler, Efremov, Mints, Veisbin, Bodopyanov, Gashev, Zeidlits, Ivanov, Kolomensky, Komar, Malyshev, Monoszon, Nevya zhsky, Petukhov, Rabinovich, Rubchinsky, Sinelnikov, and Stolov
The 10-Bev proton synchrotron of the Academy of Sciences, U.S.S.R.
NSA 11, 5645 (57)
631 V. V. Vladimirskii and E. K. Tarasov

NSA 10, 1588 (56)

632 V. V. Vladimirskii and E. K. Tarasov

SA A59, 2939 (56) and SA B59, 1507 (56)

633 Vladimirsky, Komar, Mints, Goldin, Koshkarev, Monoszon, Nikitin, Rubchinsky, Skachkov, Streltsov, and Tarasov

NSA 11, 5644 (57)

634 Nils Vogt-Nilsen

NSA 10, 8695 (56)

635 R. K. Wakerling

NSA 10, 2547 (56)

636 W. Walkinshaw

CA 51, 5579c (57)

637 Robert H. West

NSA 9, 5167 (55)

638 C. Norman Winningstad

NSA 8, 6844 (54)

639 C. Norman Winningstad

SA B58, 2523 (55)
640 B. T. Wright
(1954).
SA B57, 2959 (54)

ION SOURCE

641 Andrade, Losada, Fernández, and Gómez
A radiofrequency ionization chamber. Rev. Mexicana Fis. 3, No. 2,
SA A58, 348 (55)

642 H. R. Allan and N. Sarma
An improved design of radiofrequency ion sources. J. Sci. Instr. 33,
447-8 (1956).
NSA 11, 1360 (57)

643 S. K. Allison and E. Norbeck, Jr.
(1956).
SA A59, 5162 (56)

644 C. E. Anderson and K. W. Ehlers
Ion source for the production of multiply charged heavy ions.
NSA 10, 3046 (56)

645 Jean de Beauregard
High-frequency ion source for generating 250-kv neutrons. J. phys.
radium 14, 547-8 (1953).
CA 48, 10442b (54)

646 L. Beckman
Experiments with an ion source having magnetic analysis of the ion
SA A58, 1925 (55)

647 F. Bertein and A. Pozwalski
On the analogy between the operation of ion sources and probes at
SA A59, 6741 (56)

648 Bing, Gardner, and Northrop
Effect of a decelerating grid on current from an ion source. California,
NSA 10, 10601 (56)
J. J. Burgerjon
NSA 8, 4429 (54) and CA 48, 13448a (54)

Cornides, Roosz, and Siegler
Two lithium-ion sources for accelerators. I. Nuclear Instr. 1, 94 (1957).
NSA 11, 5640 (57)

K. K. Damodaran
NSA 11, 5641 (57)

de Boer, Kley, and Makkink
NSA 10, 11540 (56) and SA 59, 8247 (56)

Desjonquieres, Geller, Prevot, and Vienet
The pulsing of an h.f. discharge with a zirconium filament. J. phys. radium 17, 166-7 (1956) (In French).
SA 59, 5128 (56)

J. Ero
SA 60, 1399 (57)

Harold P. Eubank
CA 49, 10073h (55)

Eubank, Peck, and Truell
SA 58, 347 (55)

J. S. Foster, Jr. and F. Martina
NSA 10, 11537 (56)

Gatti, Perona, and Persano
NSA 9, 3307 (55)
R. Geller and F. Prevot
SA A57, 7503 (54)

J. D. Gow and J. S. Foster, Jr.
CA **48**, 6271h (54)

Harry G. Heard
NSA 11, 2744 (57)

H. Hintenberger and C. Lang
SA A59, 5961 (56)

Hoyaux, Lemaitre, and Gans
SA A58, 1929 (55)

Hoyaux, Lemaitre, and Gans
CA **48**, 11907g (54) and SA A57, 9321 (54)

M. Hoyaux
SA A57, 9320 (54) and CA **48**, 11179a (54)

R. J. Jones and A. Zucker
NSA 8, 4733 (54); SA A57, 9322 (54); and CA **48**, 13491a (54)

Marc de Lacoste-Lareymondie
CA **48**, 13448i (54)

Lewis, Dain, Holmes, and Craston
NSA 8, 5042 (54)
669 C. B. Mills and C. F. Barnett
 SA A58, 1927 (55)

670 G. Mongodin
 A tube for the continuous acceleration of ions under 200 kev. French
 NSA 10, 4959 (56) and CA 50, 13624h (56)

671 V. M. Morozov
 High-frequency ion source. Doklady Akad. Nauk S.S.S.R. 102, 61-4
 NSA 9, 5512 (55)

672 M. Pahl and W. Kleinmann
 The homogeneous-energy ion stream from the glow of a hollow cathode.
 CA 48, 9180c (54)

673 G. Perona and A. Persano
 A model of a magnetic-field type deuteron source. Nuovo cimento
 (10) 1, 501-3 (1955) (In Italian).
 SA A58, 4745 (55)

674 J. A. Phillips and J. L. Tuck
 Negative hydrogen-ion source. Rev. Sci. Instr. 27, No. 2, 97-8
 (1956).
 SA A59, 2955 (56)

675 F. Prévot and R. Vienet
 Production of an intense pulsed beam of deuterons. J. phys. radium
 16, 238 (1955) (In French).
 NSA 9, 3666 (55); CA 49, 12979d (55); and SA A58, 6224 (55)

676 H. L. Reynolds and A. Zucker
 26, 889 (1955).
 NSA 9, 7948 (55); SA A59, 423 (56); and CA 51, 877i (57)

677 O. A. Schaffer
 An improved mass-spectrometer ion source. Rev. Sci. Instr. 25,
 CA 48, 1344g (54) and SA A57, 9323 (54)

678 J. Sommeria-Klein
 Preliminary results of experiments with an annular ion source. J.
 phys. radium 14, 555 (1953); cf CA 47, 2034d (1953).
 CA 48, 10422h (54)
679 J. Sommeria-Klein
NSA 10, 9641 (56); SA A59, 6716 (56); and CA 51, 877e (57)

680 O. Specchio and A. Cambieri
CA 51, 877d (57)

681 Troy E. Stone
NSA 9, 5510 (55)

682 Warren F. Stubbins
NSA 9, 3662 (55)

683 Warren F. Stubbins
CA 50, 10549d (54)

684 J. S. Swingle, Jr. and C. P. Swann
An rf ion source with transverse magnetic field. Phys. Rev. 87, 184 (1952).
CA 48, 8023i (54)

685 E. Thomas
Recent research concerning ion sources for accelerators. Le Vide 8, 1407-14 (1953).
CA 48, 6850d (54)

686 P. C. Thonemann and E. R. Harrison
NSA 9, 7160 (55) and SA A58, 9816 (55)

687 R. K. Wakerling and A. Guthrie
CA 50, 3910g (56)

688 J. A. Weinman and J. R. Cameron
SA A59, 5163 (56)
MISCELLANEOUS

689 J. H. Adlam and P. D. Dunn
Notes on coupled pill-box resonators operating in the π-mode. Atomic
NSA 9, 3987 (55)

690 V. S. Anastasevich
SA A60, 2324 (57)

691 S. E. Barden
NSA 8, 4734 (54); SA A57, 10262 (54); and SA B57, 5200 (54)

692 M. Bell
Twist resonances. Atomic Energy Research Establishment, Harwell,
NSA 11, 6130 (57)

693 I. J. Billington and W. R. Randorf
Electronic-ram experiments. Wireless Engr. 31, No. 11, 287-92
(1954).
SA B58, 744 (55)

694 E. Breitenberger
NSA 11, 4138 (57)

695 K. L. Brown and G. W. Taufest
SA A60, 447 (57)

696 Bruck, Bronca, Hamelin, Neyret, and Parain
Correction of the constant-gradient field. AEC-tr-2641, translation of
NSA 11, 719 (57)

697 M. L. Bullock
SA A58, 5454 (55) and SA B58, 2566 (55)
698 S. Cohen and A. V. Crewe
NSA 11, 4137 (57)

NSA 11, 6181 (57)

700 H. R. Crane
Maintaining the geometrical alignment of a large accelerator. Midwest­
NSA 10, 8016 (56)

701 A. Decae
Measurements on the site. European Council for Nuclear Research,
NSA 10, 5998 (56)

702 Daniel F. Dempsey
Third-order aberration and focusing with sector-shaped magnetic
NSA 10, 2183 (56)

703 European Council for Nuclear Research
Investigation of nonlinear orbit theory. European Council for Nuclear
NSA 8, 5061 (54)

704 W. Fishwick
SA A57, 11134 (54)

705 M. D. Gabovich
Effect of space charge during propagation of intense beams of charged
NSA 9, 6780 (55)

706 C. S. Gardner
Charge distribution in the beam of charged particles in a constant
magnetic field. California Research and Development Co., Livermore
Research Lab., Livermore, Calif., LRL-122, 10 p. (56).
NSA 10, 8015 (56)

707 Konrad Grund (inventor) to Siemens-Reiniger-Werke A.G.
Apparatus for accelerating electrically charged particles, particularly
electrons. Ger. patent 823,165, Dec. 3, 1951 (Cl. 21g, 36).
CA 48, 6290e (54)
708 H. G. Hereward
NSA 8, 5372 (54)

709 C. B. Jones and R. B. Neal
NSA 10, 8011 (56)

710 P. Levy
Chart for solution of a problem with electric or magnetic alternating-gradient lenses. J. phys. radium 17, Suppl. 6, 60A-61A (1956).
SA A60, 2325 (57)

711 Likhachev, Kutsenko, and Boronkov
NSA 10, 10605 (56)

712 Losada, Fernández, and Velázquez
NSA 8, 5964 (54) and SA A58, 330 (55)

713 Gerhart Lüders
NSA 9, 389 (55)

714 Kenneth R. MacKenzie
SA A60, 2323 (57)

715 C. W. Miller
SA A58, 4388 (55)

716 Moore, O'Briain, and Lindner
NSA 10, 7018 (56)
717 Raymond Murray
 Velocity and energy modulation by rf and g slits. Carbide and Carbon
 (1949).
 NSA 11, 2747 (57)

718 B. D. Nag and A. M. Sayied
 Electrodynamics of moving media and the theory of the Cerenkov
 NSA 10, 7025 (56)

719 Nuclear Engineering 1, 200-2 (1956)
 NSA 10, 11542 (56)

720 N. J. Palladine and C. E. Clifford, Jr.
 Gamma-ray attenuation tests on steel plates and 1″-diameter steel
 NSA 10, 4461 (56)

721 F. M. Piplein and D. R. Hamilton
 CA 51, 6370g (57)

722 Reznik, Laforgerie, and Dupré
 On a heavy-water electrolyser for the production of deuterium for use
 SA A60, 5576 (57)

723 L. Riddiford
 The importance of high vacua to high-energy nuclear physics. Vacuum
 3, 231-44 (1953).
 NSA 9, 5784 (55)

724 Leon A. Rovelsky
 Interphase transformers for parallel inverters (thesis). California,
 NSA 8, 6843 (54)

725 G. Sacerdoti
 Study of the influence of the type of excitation on the configuration of
 magnetic field in the air gap of a magnet. Electrotecnica 42, 212-16
 (1955) (In Italian).
 SA B58, 4781 (55)

726 F. Salzman and A. Roberts
 On the effect of sector flare in fixed-field segmented accelerators.
 NSA 10, 12061 (56)
M. Sangster
NSA 9, 5168 (55)

Solon, McLaughlin, and Blatz
NSA 10, 7019 (56)

P. A. Sturrock
SA A59, 1284 (56)

Yu. V. Vandakurov
NSA 10, 4961 (56)

V. I. Veksler
NSA 10, 10597 (56)

R. K. Wakerling
CA 50, 16189i (56)

R. K. Wakerling
CA 50, 16189i (56)

R. K. Wakerling and A. C. Helmholz
CA 50, 16190d (56)

H. F. Weaver and R. K. Wakerling
CA 50, 16190b (56)

J. J. Wilkins
CA 50, 1473e (56)
AUTHOR INDEX

-A-

Adlam, J. H. -136, 689 (with P. D. Dunn).
Adler, F. T. -91 (with D. Baroncini).
Ado, Yu M. -423, 424 (with P. A. Cherenkov).
Ageno, M. -21 (with Cortellessa and Querzoli).
Ahnlund, K. -22.
Aiello, W. P. -41 (with Cranberg, Beauchamp, Lang, and Levin).
Akeley, E. S. -185 (with I. Jacobs), 425.
Akimov -536 (with Korolev, Markov, and Kulikov).
Allen, D. L. -137 (with Carey, McCahon, and Poole).
Allen, H. R. -642 (with N. Sarma).
Allen, K. R. -92 (with Ashworth and Siddal).
Allison, S. K. -643 (with E. Norbeck, Jr.).
Alway, G. G. -426.
Amman, F. -268 (with L. Dadda).
Anastasevich, V. S. -690.
Anderson, G. M. -427 (with D. J. Zaffarano).
Andrade, F. Alba -641 (with Losada, Fernández, and Gómez).
Andrew, A. -307 (with W. S. Gilbert).
Anson -51 (with Goldie, Wright, Cloud, and Trump).
Argonne National Laboratory -428.
Asada -93 (with Furuta, Masuda, Koga, Okamura, Hiraoka, Ookuma, and Fujita).
Aschenbrenner, F. A. -269.
Ashworth -92 (with Allen and Siddal).
Atchison, G. J. -24 (with W. H. Beamer).
Atomsics -139.
Atterling, Hugo -270.
Austerheim -104 (with Bureau and Zaffarano), 445 (with Bureau and Zaffarano), 446 (with Bureau and Zaffarano).
Australian National University -429.

-B-

Bach -271 (with Childs, Hockney, Hough, and Parkinson).
Baev -25 (with Vorontnikov, Gokhberg, Sidorov, Shuf, and Yan'kov), 26 (with Vorontnikov, Gokhberg, Sidorov, Shuf, and Yan'kov).
Bagge, E. -94.
Bakker, C. J. -430.
Baldwin, G. C. -95, 96, 97 (with Elder and Westendorp).
Bandtel -553 (with Madey and Frank), 554 (with Madey and Frank).
Barden, S. E. -431, 560 (with McFarlane and Oldroyd), 691.
Bareford, C. F. -140 (with M. G. Kelliher).
Bariaud, A. -272.
Barjon, R. -27 (with J. Schmouker).
Baroncini, D. -91 (with F. T. Adler).
Barrett, W. A. -37 (with C. J. Cook).
Baš, E. B. -98.
Bashkin, S. -266 (with O. Yonts).
Basile, R. -99 (with G. Schuhl).
Beattie -115 (with Laughlin, Ovadis, Henderson, Harvey, and Haas).
Beauregard, Jean de -645.
Beckman, L. -646.
Béique -63 (with Lorrain, Gilmore, Girard, Breton, and Piché).
Bell, J. S. -141, 142, 432.
Bell, M. -143, 144 (with W. Walkinshaw), 244 (with Loach, Mullett, Shersby-
Harvie, and Walkinshaw), 245 (with Loach, Mullett, Shersby-Harvie, and
Walkinshaw), 433, 434, 692.
Bergstein, J. -28 (with R. D. Birkhoff).
Bernard, Michel-Yves -145, 146, 147, 148.
Bertomeu, E. J. -149 (with W. Chadid), 647 (with A. Pozwalski).
Blaquiere, A. -436.
Blatz -728 (with Solon and McLaughlin).
Blewett, J. P. -437, 438.
Blumel -274 (with Carroll and Stahelin).
Boch, A. L. -275 (with E. D. Hudson), 351 (with R. S. Livingston).
Boguslavsky, E. -439.
Bodopyanov -630 (with Veksler, Efremov, Mints, Veisbin, Gashev, Zeidlits,
Ivanov, Kolomensky, Komar, Malyshev, Monoszon, Nevyszhsky,
Petukhov, Rabinovich, Rubchinsky, Sinelnikov, and Stolov).
Bolton -349 (with Levis and Greer).
Bolzinger -443 (with Bronca, Bruck, Hamelin, and Neyret).
Bondelid -43 (with Dunning, Fagg, Kennedy, and Wolicki).
Bonner, T. W. -30.
Booth, N. E. -440 (with G. W. Hutchinson).
Borokov -711 (with Likhachev and Kutsenko).
Boulegue, G. -102, 103 (with P. Chanson).
Boyadjian -293 (with Debraine and Lazanski).
Brannen, E. -276 (with H. I. S. Ferguson).
Breitenberger, E. -694.
Breton -63 (with Lorrain, Beique, Gilmore, Girard, and Piche).
Bretscher -387 (with Shull and MacFarland).
Brianti -460 (with Denis, Germain, De Raad, Petrucci, Resegotti, Sarazin, and Stroot).
Brobeck, W. M. -441 (with W. C. Struven).
Brockman, F. G. -442 (with M. W. Louwerse).
Bromley, D. A. -277 (with J. A. Bruner), 304 (with Fulbright, Bruner, Hawrylak, and Hamann).
Bronca -443 (with Bruck, Hamelin, Neyret, and Bolzinger), 696 (with Bruck, Hamelin, Neyret, and Parain).
Browchenko -31 (with Gokhberg and Morozov), 32 (with Gokhberg and Morozov).
Brown, K. L. -231 (with Post and Shiren), 695 (with G. W. Tautfest).
Bruck, H. -33 (with G. Gendreau), 443 (with Bronca, Hamelin, Neyret, and Bolzinger), 444 (with R. Levy-Mandel), 696 (with Bronca, Hamelin, Neyret, and Parain).
Bruner, J. A. -277 (with D. A. Bromley), 304 (with Fulbright, Bromley, Hawrylak, and Hamann).
Bullock, M. L. -697.
Bumiller -34 (with Meyer, Staub, and Winkler).
Bureau, A. J. -104 (with Austerheim and Zaffarano), 445 (with Austerheim and Zaffarano), 446 (with Austerheim and Zaffarano), 501 (with C. L. Hammer), 502 (with C. L. Hammer), 503 (with C. L. Hammer), 504 (with C. L. Hammer).
Burgerjon, J. J. -278, 649.

-C-
Calame -279 (with Cooper, Engelsberg, Gerstein, Koehler, Kuckes, Meadows, Strauch, and Wilson).
California, University, Berkeley, Radiation Laboratory -155, 280.
Cambieri, A. -83 (with O. Specchio), 252 (with O. Specchio), 680 (with O. Specchio).
Cameron, J. R. -688 (with J. A. Weinman).
Carey -137 (with Allan, McCahon, and Poole).
Caro, D. E. -281 (with Martin and Rouse).
Carroll -274 (with Bluemel and Stahelin).
Chadid, W. -149 (with F. Bertein).
Chanson, P. -103 (with G. Boulegue).
Chastel, R. -158.
Cherenkov, P. A. -424 (with Yu M. Ado).
Cheshnovi -298 (with Dzhelepov, Dmitrievsky, Katyshev, Kozodaev, Tarakanov, and Mescheryakov), 301 (with Efremov, Mescheryakov, Mints, Dzhelepov, Ivanov, Katyshev, Komar, Malyshev, Monoszon, Nevyszhsky, and Polyakov).
Chick, D. R. - 3 (with C. W. Miller), 35 (with D. P. R. Petrie), 209 (with Millar and Firth).
Childs - 271 (with Bach, Hockney, Hough, and Parkinson).
Chodorow - 159 (with Ginzton, Hansen, Kyhl, Neal, and Panofsky).
Chu, E. L. - 160 (with E. L. Ginzton).
Chupp - 453 (with Cork and Lofgren).
Citron, A. - 448 (with M. G. N. Hine), 449 (with Gentner and Sittkus).
Clark, A. F. - 161 (with Jopson, Lamb, Smith, and Van Atta).
Clark, M. - 36, 282.
Clifford, C. E., Jr. - 720 (with N. J. Palladine).
Cloud - 51 (with Goldie, Wright, Anson, and Trump).
Cockcroft, J. D. - 4 (with T. G. Pickavance).
Coe - 588 (with Ramm and Vaughan), 595 (with Riddiford and Van de Raay).
Cohen, B. L. - 283, 284.
Cohen, S. - 698 (with A. V. Crewe).
Cole, F. T. - 105 (with Jones, Pruett, and Terwilliger), 450, 531 (with Kerst, Crane, Jones, Laslett, Ohkawa, Sessler, Symon, Terwilliger, and Vogt-Nilsen).
Coleman, P. D. - 334 (with I. Kaufman).
Combe, R. - 163, 164, 175 (with Frelot and Feix).
Cook, C. J. - 37 (with W. A. Barrett).
Cool - 582 (with Piccioni, Clark, Friedlander, and Kassner), 583 (with Piccioni, Clark, Friedlander, and Kassner), 584 (with Piccioni, Clark, Friedlander, and Kassner).
Coombs, W. F., Jr. - 286.
Cooper, D. I. - 84 (with Strumski, Frisch, and Zimmerman).
Cooper, P. F. - 279 (with Calame, Engelsberg, Gerstein, Koehler, Kuckes, Meadows, Strauch, and Wilson).
Cork, B. - 38, 166, 167, 451, 452, 453 (with Chupp and Lofgren).
Cormack - 130 (with Skarsgard and Johns).
Cornides - 650 (with Roosz and Siegler).
Cortellessa, G. - 21 (with Ageno and Querzoli).
Cottingham, J. G. - 39 (with Plotkin and Raka), 454 (with Plotkin and Raka).
Courant, E. D. - 455.
Craggs, J. D. - 40 (with J. M. Meek).
Cranberg, L. - 41 (with Aiello, Beauchamp, Lang, and Levin).
Crane, H. R. - 531 (with Kerst, Cole, Jones, Laslett, Ohkawa, Sessler, Symon, Terwilliger, and Vogt-Nilsen), 700.
Crasston - 668 (with Lewis, Dain, and Holmes).
Crosbie, E. A. - 456 (with M. Hamermesh).
Dadda, L. -268 (with F. Amman).
Dail -306 (with Galt and Yager).
Dain -668 (with Lewis, Holmes, and Craston).
Damodaran, K. K. -651.
Dawson, W. K. -457.
Day, J. R. -218 (with L. B. Mullett).
Dazey -168 (with Nielsen, Robertson, and Sewell).
de Boer, A. G. -42 (with Kley and Makkink), 652 (with Kley and Makkink).
de Boer, J. -458.
Debraine, P. -292, 293 (with Lažanski and Boyadjian).
Decae, A. -701.
Delbecq -294 (with Ramler, Rocklin, and Yuster).
Dempsey, D. F. -702.
Denis -459 (with De Raad, Petrucci, Resegotti, and Sarazin), 460 (with
Germain, Brianti, De Raad, Petrucci, Resegotti, Sarazin, and Stroot).
Denman, H. -461.
dePackh, D. C. -462.
De Raad -459 (with Denis, Petrucci, Resegotti, and Sarazin), 460 (with
Brianti, Denis, Germain, Petrucci, Resegotti, Sarazin, and Stroot).
Desjonquières -653 (with Geller, Prévot, and Vienet).
Dewey -169 (with Nygard and Kelliher).
Díaz-Losada -641 (with Andrade, Fernandez, and Gomez), 712 (with
Velazquez and Fernandez).
Dmitrievsky -298 (with Dzhelepov, Katyshev, Kozodaev, Mescheryakov,
Tarakanov, and Chestnoi).
Donaldson, M. R. -296, 297 (with Worsham and Ziegler).
Druin -312 (with Filippova, Gerlit, Guseva, Myasoedov, and Tarantin).
Duke -463 (with Lack, March, Gibson, McKeague, Hughes, and Muirhead).
Dunn, P. D. -170, 171 (with Hadden and Thompson), 689 (with J. H. Adlam).
Dunning -43 (with Bondelid, Fagg, Kennedy, and Wolicki).
Dupré -722 (with Reznik and Laforgerie).
Dzhelepov -298 (with Dmitrievsky, Katyshev, Kozodaev, Mescheryakov,
Tarakanov, and Chestnoi), 301 (with Efremov, Mescheryakov, Mints,
Ivanov, Katyshev, Komar, Malyshev, Monoszon, Nevyszhsky, Polyakov,
and Chestnoi).

Edmunds, A. O. -299 (with F. Uridge).
Effot, K. E. A. -300 (with J. H. Fremlin).
Efremov -301 (with Mescheryakov, Mints, Dzhelepov, Ivanov, Katyshev,
Komar, Malyshev, Monoszon, Nevyszhsky, Polyakov, and Chestnoi),
630 (with Veksler, Mints, Veisbin, Bodopyanov, Gashev, Zeidlits, Ivanov,
Kolomensky, Komar, Malyshev, Monoszon, Nevyszsky, Petukhov,
Rabinovich, Rubchinsky, Sinelnikov, and Stolov).
Eggen, D. T. -44 (with H. Kenworthy).
Ehlers, K. W. -644 (with C. E. Anderson).
Elder -97 (with Bladwin and Westendorp).
Electronic Engineering -172.
Ellinger, F. -70 (with J. E. Morgan).
Engelsberg -279 (with Calame, Cooper, Gerstein, Koehler, Kuckes, Meadows, Strauch, and Wilson).
Engineer -173.
Erö, J. -654.
Eubank, H. P. -76 (with R. A. Peck, Jr.), 655, 656 (with Peck and Truell).

-F-
Fagg -43 (with Dunning, Bondelid, Kennedy, and Wolički).
Farwell -382 (with Schmidt, Henderson, Morgan, and Strieb).
Fawcett, E. -302.
Feix -175 (with Frelot and Combe).
Felici, N. J. -45.
Ferguson, H. I. S. -276 (with E. Brannen).
Fernández -641 (with Andrade, Losada, and Gomez), 712 (with Losada and Velázquez).
Filippova -312 (with Guseva, Gerlit, Druin, Myasoedov, and Tarantin).
Firth -209 (with Millar and Chick).
Fishwick, W. -704.
Foord, T. R. -46.
Foote, R. S. -108 (with B. Petree), 111 (with H. W. Koch).
Foster, J. S., Jr. -657 (with E. F. Martina), 660 (with J. D. Gow).
Fowler -488 (with Shutt, Thorndike, and Whittermore).
Frank -553 (with Madey and Bandtel), 554 (with Madey and Bandtel).
Frelot -175 (with Combe and Feix).
Friedlander -582 (with Clark, Cool, Kassner, and Piccioni), 583 (with Piccioni, Clark, Cool, and Kassner), 584 (with Piccioni, Clark, Cool, and Kassner).
Frisch, D. H. -84 (with Strumski, Cooper, and Zimmerman).
Fronsdal, C. -489.
Frost, F. E. -6 (with J. M. Putnam).
Fujita -93 (with Asada, Furuta, Hiraoka, Koga, Masuda, Okamura, and Ookuma).
Fulbright -304 (with Bromley, Bruner, Hawrylak, and Hamann).
Furuta -93 (with Asada, Fujita, Hiraoka, Koga, Masuda, Okamura, and Ookuma).

-G-
Gabet, A. -47, 48 (with J. Taieb), 624 (with Taieb, Guillon, and Mey).
Gabillard, R. -490.
Gabovich, M. D. -705.
Gallop, J. W. -7, 305 (with Vonberg, Post, Powell, Sharp, and Waterton).
Galt -306 (with Yager and Dail).
Gans -663 (with Hoyaux and Lemaitre), 664 (with Hoyaux and Lemaitre).
Gardner, C. S.-176, 648 (with Bing and Northrop), 706.
Garren, A. A. -177.
Gatti -49 (with Perona and Persano), 658 (with Perona and Persano).
Geller, R. -653 (with Desjonquieres, Prévot, and Vienet), 659 (with F. Prevot).
Gendreau, G. -33 (with H. Bruck).
Gentner -449 (with Citron and Sittkus).
Gerlit -312 (with Guseva, Filippova, Druin, Myasoedov, and Tarantin).
Germain -460 (with Brianti, Denis, De Raad, Petrucci, Resegotti, Sarazin, and Stroot).
Gerstein -279 (with Calame, Cooper, Engelsberg, Koehler, Kuckes, Meadows, Strauch, and Wilson).
Ghigo, G. -492 (with I. F. Quercia).
Gibson -463 (with Duke, Lack, March, McKeague, Hughes, and Muirhead).
Gilbert, W. S. -307 (with A. Andrew), 308 (with J. H. Pepper).
Gillon, L. -309 (with Y. Hecq).
Gilmore -63 (with Lorrain, Béique, Girard, Breton, and Piché).
Ginzton -159 (with Chodorow, Hansen, Kyhl, Neal, and Panofsky), 160 (with E. L. Chu).
Girard -63 (with Lorrain, Béique, Gilmore, Breton, and Piché).
Gluckstern, R. L. -249 (with L. Smith), 250 (with L. Smith).
Godsin -50 (with Simon, Solomon, and Weber).
Gokhberg -25 (with Baev, Vorotnikov, Sidorov, Shuf, and Yan'kov), 26 (with Baev, Vorotnikov, Sidorov, Shuf, and Yan'kov), 31 (with Brovchenko and Morozov), 32 (with Brovchenko and Morozov), 52 (with Gorlov, Morozov, and Otroshchenko).
Goldie -51 (with Wright, Anson, Cloud, and Trump).
Goldin, L. L. -491 (with D. G. Koskarev), 493 (with D. G. Koskarev), 633 (with Vladimirsky, Komar, Mints, Koskharev, Monoszon, Nikitin, Rubchinsky, Skachkov, Streltsov, and Tarasov).
Goldsack, S. J. -494.
Gómez -641 (with Andrade, Losada, and Fernández).
Good, M. L. -178, 179 (with L. Smith), 180 (with L. Smith).
Gorlov -52 (with Gokhberg, Morozov, and Otroshchenko).
Gow, J. D. -23 (with Alvarez, Bradner, Franck, Gordon, Marshall, Oppenheimer, Panofsky, Richman, and Woodyard), 138 (with Alvarez, Bradner, Franck, Gordon, Marshall, Oppenheimer, Panofsky, Richman, and Woodyard), 660 (with J. S. Foster, Jr.).
Goward, F. K. -422 (with J. B. Adams).
Green, F. L. -310, 311, 359 (with J. A. Martin).
Greer -349 (with Levis and Bolton).
Grimm -118 (with Moller and Weeber).
Grivet, P. -181, 495.
Grund, K. -707.
Grutter, F. -496, 497.
Guégen, M. -53.
Guillon -624 (with Taieb, Gabet, and Mey).
Guseva -312 (with Druin, Filippova, Gorlit, Myasoedov, and Tarantin).

-H-
Haas -115 (with Laughlin, Ovadis, Beattie, Henderson, and Harvey).
Hadden -171 (with Dunn and Thompson).
Hagedorn, R. -498.
Hahn -61 (with Lafferty, Biggerstaff, and Kern).
Hall, P. -499 (with S. Legvold).
Halpern, J. -135 (with E. V. Weinstock).
Hamann -304 (with Fulbright, Bromley, Bruner, and Hawrylak), 372 (with Petrovich and Preskitt).
Hamelin -443 (with Bronca, Bruck, Neyret, and Bolzinger), 696 (with Bruck, Bronca, Neyret, and Parain).
Hamermesh, M. -456 (with E. A. Crosbie).
Hamilton, D. R. -721 (with F. M. Pipkin).
Hammer -500 (with Pidd and Terwilliger), 501 (with A. J. Bureau), 502 (with A. J. Bureau), 503 (with A. J. Bureau), 504 (with A. J. Bureau).
Hansen -159 (with Chodorow, Ginzton, Kyhl, Neal, and Panofsky).
Harrison -198 (with King and Hobbis), 686 (with P. C. Thonemann).
Harth -100 (with Birnbaum, Seren, and Tobin), 101 (with Birnbaum, Seren, and Tobin), 128 (with Seren, Birnbaum, and Tobin).
Hartsough, W. -505, 506, 507, 508.
Harvey -115 (with Laughlin, Ovadis, Beattie, Henderson, and Haas).
Hausman, H. J. -313.
Hawrylak -304 (with Fulbright, Bromley, Bruner, and Hamann).
Haxby -325 (with Jones and Terwilliger).
Heard, H. G. -509, 510, 511, 512 (with E. J. Lofgren), 513, 544 (with E. J. Lofgren), 661.
Hecq, Y. -309 (with L. Gillon).
Hedin, B. -314.
Heilpern, W. -54.
Helmholz, A. C. -734 (with R. K. Wakerling).
Henderson -115 (with Laughlin, Ovadis, Beattie, Harvey, and Haas), 382 (with Schmidt, Farwell, Morgan, and Strieb).
Hereward, H. G. -708.
Hernandez -408 (with Boyer, Peterson, Putnam, Stahl, Stahl, Taylor, and Thornton).
Heusinkveld -315 (with Jakobson, Ruby, and Wright), 316 (with Jakobson, Ruby, Smith, and Wright), 321 (with Jakobson and Ruby), 381 (with Ruby, Jakobson, Smith, and Wright).
Hibbard, L. U. -514.
Hill -199 (with Kitchen, Schelberg, and Smits).
Hine, M. G. N. -448 (with A. Citron).
Hintenberger, H. -662 (with C. Lang).
Hiraoka -93 (with Asada, Fujita, Furuta, Koga, Masuda, Okamura, and Ookuma).
Hobbis -198 (with King and Harrison).
Hockney -271 (with Bach, Childs, Hough, and Parkinson).
Holmes -668 (with Lewis, Dain, and Craston).
Hough -271 (with Bach, Childs, Hockney, and Parkinson).
Hoyaux -663 (with Lemaitre and Gans), 664 (with Lemaitre and Gans), 665.
Hsien, C. L. -182, 183, 184 (with E. M. Uhlmann), 259 (with E. M. Uhlman).
Hubbard, E. L. -318 (with E. L. Kelly).
Huke, K. -515 (with G. Iwata).
Humbach, H. -516, 517.
Hutchinson, G. W. -440 (with N. E. Booth).

Imai -109 (with Kambara, Kimura, and Wajima).
Irvine, J. W., Jr. -413 (with N. S. Wall).
Ivanov -301 (with Efremov, Mescheryakov, Mints, Dzhelepov, Katyshev, Komar, Malyshev, Monoszon, Nevyazhsky, Polyakov, and Chestnoi), 630 (with Veksler, Efremov, Mints, Veisbin, Bodojyanov, Gashev, Zeidlits, Kolomensky, Komar, Malyshev, Monoszon, Nevyazhsky, Petuhkov, Rabinovich, Rubchinsky, Sinelnikov, and Stolov).
Iwata, G. -515 (with K. Huke).

Jacobs, I. -185 (with E. S. Akeley).
Jakobson -315 (with Heusinkveld, Ruby, and Wright), 316 (with Heusinkveld, Ruby, Smith, and Wright), 319 (with J. H. Manley), 320 (with F. H. Schmidt), 321 (with Heusinkveld and Ruby), 356 (with J. H. Manley), 381 (with Ruby, Heusinkveld, Smith, and Wright).
Janner -55 (with Magun and Schopper).
Jelley, J. V. -518
Jensen, L. K. -322.
Johns -130 (with Skarsgard and Cormack).
Johnsen, K. -187, 188, 189, 519, 520, 521, 522, 523, 524, 525, 526.
Johnston, L. H. -190 (with S. Schuldt), 191 (with Day and Williams).
Jones, C. B.-709 (with R. B. Neal).
Jones, L. W. -105 (with Cole, Pruett, and Terwilliger), 323, 325 (with Terwilliger and Haxby), 399 (with Symon, Kerst, Laslett, and Terwilliger), 527, 531 (with Kerst, Cole, Crane, Laslett, Ohkawa, Sessler, Symon, Terwilliger, and Vogt-Nilsen), 622 (with Symon, Kerst, Laslett, and Terwilliger).
Jones, R. J. -324, 353 (with R. S. Livingston), 398 (with W. J. Sturm), 666 (with A. Zucker), 352 (with R. S. Livingston).
Jones, W. B. -528 (with Kratz, Lawson, Miller, Miller, Ragan, Rouvina, and Voorhies), 529 (with Kratz, Lawson, Miller, Miller, Ragan, Rouvina, and Voorhies), 530 (with Kratz, Lawson, Miller, Miller, Ragan, Rouvina, and Voorhies).
Jopson -161 (with Clark, Lamb, Smith, and Van Atta).
Kamhara -109 (with Imai, Kimura, and Wajima).
Kansas, University -56.
Kassner -582 (with Clark, Cool, Friedlander, and Piccioni), 583 (with Clark, Cool, Friedlander, and Piccioni), 584 (with Clark, Cool, Friedlander, and Piccioni).
Katyshev -298 (with Dzhelepov, Dmitrievsky, Kozodaev, Mescheryakov, Tarakanov, and Chestnoi), 301 (with Efremov, Mescheryakov, Mints, Dzhelepov, Ivanov, Komar, Malyshev, Monoszon, Nevyaszhsky, Polyakov, and Chestnoi).
Kaufman, I. -192, 334 (with P. D. Coleman).
Kelliher, M. G. -140 (with C. F. Bareford), 169 (with Dewey and Nygard).
Kelly, E. L. -318 (with E. L. Hubbard), 335 (with Pyle, Thornton, Richardson, and Wright), 336 (with Pyle, Thornton, Richardson, and Wright).
Kennedy -43 (with Dunning, Bondelid, Fagg, and Wolicki), 110 (with F. S. Kirn).
Kenworthy, H. -44 (with D. T. Eggen).
Kern -61 (with Lafferty, Biggerstaff, and Hahn).
Kerst -399 (with Jones, Laslett, Symon, and Terwilliger), 531 (with Cole, Crane, Jones, Laslett, Okhawa, Sessler, Symon, Terwilliger, and Vogt-Nilsen), 622 (with Symon, Jones, Laslett, and Terwilliger).
Kersten, J. A. H. -58.
Kessler, J. -57.
Kimura -109 (with Kamhara, Imai, and Wajima), 193 (with Kumabe, Nakatsu, Ueyanagi, and Kusumegi), 194 (with Sakisaka and Miyashiro).
King, N. M. -195, 196, 197, 198 (with Hobbis and Harrison), 412 (with W. Walkinshaw).
Kirn, F. S. -110 (with R. J. Kennedy).
Kisdi-Koszó, E. -338.
Kitchen -199 (with Schelberg, Hill, and Smits).
Kleinmann, W. -672 (with M. Pahl).
Kley, J. -42 (with de Boer and Makkink), 652 (with de Boer and Makkink).
Koch, H. W. -111 (with R. S. Foote).
Koehler -279 (with Calame, Cooper, Engelsberg, Gerstein, Kuckes, Meadows, Strauch, and Wilson).
Koga -93 (with Asada, Fujita, Furuta, Hiraoka, Masuda, Okamura, and Ookuma).
Kokame, J. -339 (with S. Yamashita).
Kolomenskii -1 (with Burshtein and Veksler), 2 (with Burshtein and Veksler),
6 (with N. B. Rubich), 112 (with A. N. Lebedev), 113 (A. N. Lebedev),
340, 341 (with A. N. Lebedev), 342 (with Pelukhov and Rabinovich), 532,
533, 534 (with A. N. Lebedev), 535 (with L. L. Sabsovich), 630 (with
Veksler, Efremov, Mints, Veisbin, Bodopyanov, Gashev, Zeidlis,
Ivanov, Komar, Malyshev, Monoszon, Nevyszhsy, Petukhov, Rabinovich,
Rubchinsky, Sinelnikov, and Stolov).
Komar -301 (with Efremov, Mescheryakov, Mints, Dzhelepov, Ivanov,
Katyshev, Malyshev, Monoszon, Nevyszhsy, Polyakov, and Chestnoi),
630 (with Veksler, Efremov, Mints, Veisbin, Bodopyanov, Gashev,
Zeidlis, Ivanov, Kolomensky, Malyshev, Monoszon, Nevyszhsy,
Petukhov, Rabinovich, Rubchinsky, Sinelnikov, and Stolov), 633 (with
Vladimirsky, Mints, Goldin, Koshkarev, Monoszon, Nikitin, Rubchinsky,
Skachkov, Streltsov, and Tarasov).
Kondo -337 (with Kikuchi, Watatsuki, Yamaguchi, Oda, Sanada, Yamabe,
Yoshizawa, Takeda, Nozawa, Okada, Hirao, Kabayashi, Ozaki, Kato,
Kornblith, L., Jr. -343, 344.
Korolev -536 (with Markov, Akimov, and Kulikov).
Koshkarev -633 (with Vladimirsky, Komar, Mints, Goldin, Monoszon,
Nikitin, Rubchinsky, Skachkov, Streltsov, and Tarasov).
Kostka -59 (with Mérey and Schmidt).
Kozodaev -298 (with Dzhelepov, Dmitrievsky, Katyshev, Mescheryakov,
Tarakanov, and Chestnoi).
Kratz -528 (with Jones, Lawson, Miller, Miller, Ragan, Rouvina, and
Voorhies), 529 (with Jones, Lawson, Miller, Miller, Ragan, Rouvina,
and Voorhies), 530 (with Jones, Lawson, Miller, Miller, Ragan, Rouvina,
and Voorhies).
Kruse, U. E. -291 (with A. V. Crewe).
Kuckes -279 (with Calame, Cooper, Engelsberg, Gerstein, Koehler, Meadows,
Strauch, and Wilson).
Kulikov -536 (with Korolev, Markov, and Akimov).
Kumabe -193 (with Kimura, Nakatsu, Ueyanagi, and Kusumegi).
Kunze, V. P. -114, 345, 537.
Kusumegi -193 (with Kimura, Kumabe, Nakatsu, and Ueyanagi).
Kutsenko -711 (with Likhachev and Boronkov).
Kuyatt, C. E. -60.
Kyhl, R. L. -159 (with Chodorow, Ginzton, Hansen, Neal, and Panofsky),
200.

Lack -463 (with Duke, March, Gibson, McKeague, Hughes, and Muirhead).
Lacoste-Lareymondie, M. de -667.
Lafferty -61 (with Biggerstaff, Kern, and Hahn).
La Forge, L. H., Jr. -201.
Laforgerie -722 (with Reznik and Dupré).
Lamb -161 (with Clark, Jopson, Smith, and Van Atta).
Lamberton, G. R. -346, 538.
Lang, C. -662 (with H. Hintenberger).
Lang, H. J. -41 (with Cranberg, Aiello, Beauchamp, and Levin).
Lanzl -246 (with Skaggs and Nygard).
Lapitskii -202 (with Levintov, Slivkov, and Shamshev).
Lapostolle, P. -539.
Laslett -399 (with Symon, Kerst, Jones, and Terwilliger), 531 (with Kerst, Cole, Crane, Jones, Ohkawa, Sessler, Symon, Terwilliger, and Vogt-Nilsen), 540, 541, 542, 622 (with Symon, Kerst, Jones, and Terwilliger).
Laughlin -115 (with Ovadis, Beattie, Henderson, Harvey, and Haas).
Lawrence, E. O. -10.
Lawson -528 (with Jones, Kratz, Miller, Ragan, Rouvina, and Voorhies), 529 (with Jones, Kratz, Miller, Ragan, Rouvina, and Voorhies), 530 (with Jones, Kratz, Miller, Ragan, Rouvina, and Voorhies).
Lazanski -293 (with Debraine and Boyadjian).
Lebedev, A. N. -112 (with A. A. Kolomenskii), 113 (with A. A. Kolomenskii), 341 (with A. A. Kolomenskii), 534 (with A. A. Kolomenskii).
Le Couteur, K. J. -289 (with A. V. Crewe), 347, 348 (with S. Lipton).
Ledley, B. -543 (with L. Riddiford).
Legvold, S. -499 (with P. Hall).
Lehmann, G. -62.
Lemaitre -663 (with Hoyaux and Gans), 664 (with Hoyaux and Gans).
Leuba -203 (with Salin, Thibaud, and Verzaux).
Levin -41 (with Cranberg, Aiello, Beauchamp, and Lang).
Levintov -202 (with Lapitskii, Slivkov, and Shamshev).
Lévy, P. -710.
Levy-Mandel, R. -444 (with H. Bruck).
Levis, K. H. -349 (with Greer and Bolton).
Lewis, H. K. -11.
Lewis, I. A. D. -668 (with Dain, Holmes, and Craston).
Liess, M. M. -65 (with D. Magnac-Valette).
Likhachev -711 (with Kutsenko and Boronkov).
Linder -716 (with Moore and O'Briain).
Link -411 (with Walker, Fremlin, and Stephens).
Lipton, S. -348 (with K. J. Le Couteur).
Livingston, M. S. -12.
Livingston, R. S. -350, 351 (with A. Boch), 352 (with R. J. Jones), 353 (with R. J. Jones), 354 (with Howard and Rudolph), 360 (with Martin, Murray, and Rankin).
Loach, B. G. -204, 244 (with Bell, Mullett, Shersby-Harvie, and Walkinshaw), 245 (with Bell, Mullett, Shersby-Harvie, and Walkinshaw).
Lofgren, E. J. -453 (with Cork and Chupp), 512 (with H. G. Heard), 544 (with H. G. Heard).
Lorrain -63 (with Béique, Gilmore, Girard, Breton, and Piché).
Losada -641 (with Andrade, Fernández, and Gómez), 712 (with Fernández and Velázquez).
Louwense, M. W. -442 (with F. G. Brockman).
Luce, J. S. -355.
Luders, G. -545, 546, 547, 548, 549, 550, 551, 713.
Luffman, D. -205.
Lurcat, F. -610 (with J. Seiden).
McCahon -137 (with Allan, Carey, and Poole).
MacFarland, C. E. -387 (with Shull and Bretscher).
McFarlane, W. -560 (with Barden and Oldroyd).
McIntyre, J. A. -222 (with W. K. H. Panofsky).
Mack, D. A. -552.
McKeage -463 (with Duke, Lack, March, Gibson, Hughes, and Muirhead).
McKisson, R. L. -208.
McLaughlin -728 (with Solon and Blatz).
McMurray, L. R. -561 (with D. J. Zaffarano).
Mader -553 (with Bandtel and Frank), 554 (with Bandtel and Frank).
Magie, B. G. -64.
Magnac-Valette, D. -65 (with M. M. Liess).
Magun -65 (with Janner and Schopper).
Major -116 (with Perry and Phillips).
Makkink -42 (with De Boer and Kley), 652 (with De Boer and Kley).
Mallmann, C. A. -29 (with E. J. Bertomeu).
Mallory, K. B. -206.
Malyshchev -301 (with Efremov, Meshcheryakov, Mints, Dzhelepov, Ivanov, Katyshev, Komar, Monoszon, Nevyazhsksky, Polyakov, and Chestnoi), 630 (with Veksler, Efremov, Mints, Veisbin, Bodopyanov, Gashev, Zeidlits, Ivanov, Kolomensky, Komar, Monoszon, Nevyazhsksky, Petukhov, Rabinovich, Rubchinsky, Sinelnikov, and Stolov).
Manley, J. H. -319 (with M. J. Jakobson), 356 (with M. J. Jakobson).
Mapother, D. E. -357 (with F. E. L. Witt).
March -463 (with Duke, Lack, Gibson, McKeage, Hughes, and Muirhead).
Markov -536 (with Korolev, Akimov, and Kulikov).
Marsicanin, B. -66 (with M. Rakic).
Martin, J. A. -359 (with F. L. Green), 360 (with Livingston, Murray, and Rankin).
Martin, L. H. -281 (with Caro and Rouse).
Martina, E. F. -657 (with J. S. Foster, Jr.).
Masuda -93 (with Asada, Fujita, Furuta, Hiraoka, Koga, Okamura, and Ookuma).
Mayes, W. T. -333 (with H. F. Kaiser).
Meadows -279 (with Calame, Cooper, Engelsberg, Gerstein, Koehler, Kuckes, Strauch, and Wilson).
Meek, J. M. -40 (with J. D. Craggs).
Mérey -59 (with Kostka and Schmidt).
Meshcheryakov -298 (with Dzhelepov, Dmitrievsky, Katyshev, Kozodaev, Tarakanov, and Chestnoi), 301 (with Efremov, Mints, Dzhelepov, Ivanov, Katyshev, Komar, Malyshchev, Monoszon, Nevyazhsksky, Polyakov, and Chestnoi), 362, 363, 364.
Messerschmidt, W. -67, 365.
Mey -624 (with Taieb, Guillon, and Gabet).
Meyer -34 (with Bumiller, Winkler, and Straub).
Midwestern Universities Research Association -562.
Millar, B. -68, 209 (with Firth and Chick).
Miller, C. W. -3 (with D. R. Chick), 210, 211, 212, 213, 214, 215, 715.
Miller, D. H. -528 (with Jones, Kratz, Lawson, Miller, Ragan, Rouvina,
and Voorhies), 529 (with Jones, Kratz, Lawson, Miller, Ragan, Rouvina,
and Voorhies), 530 (with Jones, Kratz, Lawson, Miller, Ragan, Rouvina,
and Voorhies).
Miller, R. D. -528 (with Jones, Kratz, Lawson, Miller, Ragan, Rouvina,
and Voorhies), 529 (with Jones, Kratz, Lawson, Miller, Ragan, Rouvina,
and Voorhies), 530 (with Jones, Kratz, Lawson, Miller, Ragan, Rouvina,
and Voorhies).
Mints -301 (with Efremov, Meshcheryakov, Dzhelepov, Ivanov, Katyshev,
Komar, Malyshev, Monoszon, Nevyaszhsky, Polyakov, and Chestnoi),
630 (with Vekslor, Efremov, Veisbin, Bodopyanov, Gashe, Zedlits,
Ivanov, Kolomensky, Komar, Malyshev, Monoszon, Nevyaszhsky,
Petukhov, Rabinovich, Rubchinsky, Sinelnikov, and Stolov), 633 (with
Vladimirsky, Komar, Goldin, Koshkarev, Monoszon, Nikitin, Rubchinsky,
Skachkov, Streltsov, and Tarasov).
Miyashiro -194 (with Kimura and Sakisaka).
Mölter -118 (with Grimm and Weber).
Mongodin, G. -670.
Monoszon -301 (Efremov, Meshcheryakov, Mints, Dzhelepov, Ivanov,
Katyshev, Komar, Malyshev, Nevyaszhsky, Polyakov, and Chestnoi),
630 (with Vekslor, Efremov, Mints, Veisbin, Bodopyanov, Gashe, Zedlits,
Ivanov, Kolomensky, Komar, Malyshev, Nevyaszhsky, Petukhov,
Rabinovich, Rubchinsky, Sinelnikov, and Stolov), 633 (with Vladimirsky,
Komar, Mints, Goldin, Koshkarev, Nikitin, Rubchinsky, Skachkov,
Streltsov, and Tarasov).
Moon, P. B. -563, 564 (with Riddiford and Symonds).
Moore, M. J. -366.
Moore, W. J. -716 (with O'Briain and Lindner).
Moravcsik, M. J. -565 (with J. M. Sellen, Jr.).
Moreau -69 (with Prevot and Vienet).
Morgan, J. E. -70 (with F. Ellinger).
Morgan, J. M. -123 (with Richardson and Van Roosenbeek).
Morgan, T. J. -382 (with Schmidt, Farwell, Henderson, and Strieb).
Moroz, E. M. -367, 368.
Morozov, V. M. -31 (with Brovchenko and Gokhberg), 32 (with Brovchenko and
Gokhberg), 52 (with Gorlov, Gokhberg, and Otroshchenko), 671.
Moses, A. J. -71 (with J. Saldick).
Moskalev, V. A. -119, 120.
Muirhead -463 (with Duke, Lack, March, Gibson, McKeague, and Hughes).
Mullett, L. B. -216, 217, 218 (with J. R. Day), 244 (with Bell, Loach,
Shersby-Harvie, and Walkinshaw), 245 (with Bell, Loach, Shersby-Harvie,
and Walkinshaw), 369, 370, 566.
Murray, P. -150 (with J. Billing).
Murray, R. -717, 360 (with Martin, Livingston, and Rankin).
Myasoedov -312 (with Druin, Filippova, Gerlit, Guseva, and Tarantin).
Nag, B. D. -718 (with A. M. Sayied).
Nakatsu -193 (with Kimura, Kumabe, Ueyanagi, and Kusumegi).
Narayan, N. -72 (with K. S. Parahhu).
National Bureau of Standards -121, 567.
Neal, R. B. -159 (with Chodorow, Ginzton, Hansen, Kyhle, and Panofsky),
709 (with C. B. Jones).
Nedzel -358 (with Marshall and Marshall).
Nevyaszhsky -301 (with Efremov, Mescheryakov, Mints, Dzhelepov, Ivanov,
Katyshov, Komar, Malyshev, Monoszon, Polyakov, and Chestnoi), 630
(with Veksler, Efremov, Mints, Veisbin, Bodopyanov, Gashev, Zeidlits,
Ivanov, Kolomensky, Komar, Malyshev, Monoszon, Petukhov, Rabinovich,
Rubchinsky, Sinelnikov, and Stolov).
Neyret -443 (with Bronca, Bruck, Hamelin, and Bolzinger), 696 (with Bruck,
Bronca, Hamelin, and Parain).
Nielsen -168 (with Dazey, Robertson, and Sewell).
Nikitin -633 (with Vladimirsky, Komar, Mints, Goldin, Koshkarev, Monoszon,
Rubchinsky, Skachkov, Streltsov, and Tarasov).
Nodvick, J. S. -568 (with D. S. Saxon), 569 (with D. S. Saxon).
Norbeck, E., Jr. -643 (with S. K. Allison).
Northrop -648 (with Bing and Gardner).
Nozawa -337 (with Kikuchi, Watatsuki, Yamaguchi, Oda, Sanada, Yamabe,
Yoshizawa, Takeda, Okada, Hirao, Kabayashi, Kondo, Ozaki, Kato,
Nuclear Engineering -74, 719.
Nygard -169 (with Dewey and Kelliher), 246 (with Skaggs and Lanzl).

-O-

O'Briain -716 (with Moore and Lindner).
Oda -337 (with Kikuchi, Watatsuki, Yamaguchi, Sanada, Yamabe, Yoshizawa,
Takeda, Nozawa, Okada, Hirao, Kabayashi, Kondo, Ozaki, Kato, Okano,
Ohkawa, T. -531 (with Kerst, Cole, Crane, Jones, Laslett, Sessler, Symon,
Terwilliger, and Vogt-Nilsen), 570, 571.
Okada -337 (with Kikuchi, Watatsuki, Yamaguchi, Oda, Sanada, Yamabe,
Yoshizawa, Takeda, Nozawa, Hirao, Kabayashi, Kondo, Ozaki, Kato,
Okamura -93 (with Asada, Furuta, Masuda, Koga, Hiraoka, Ookuma, and
Fujita).
Okano -337 (with Kikuchi, Watatsuki, Yamaguchi, Oda, Sanada, Yamabe,
Yoshizawa, Takeda, Nozawa, Okada, Hirao, Kabayashi, Kondo, Ozaki,
Old -220 (with Steinhaus and Wright).
Oldroyd -560 (with McFarlane and Barden).
Oliphant, M. L. -572.
Ollendorff, F. -221.
O'Neill, G. K. -573.
Ookuma -93 (with Asada, Furuta, Masuda, Koga, Okamura, Hiraoka, and
Fujita).

Orlov, I. F. -574, 575, 576, 577.

Ortoschenko -52 (with Gorlov, Gokhberg, and Morozov).

Outram -262 (with Walkinshaw and Sabel), 263 (with Walkinshaw and Sabel).

Ovadis -115 (with Laughlin, Beattie, Henderson, Harvey, and Haas).

-O-

Pahl, M. -672 (with W. Kleinmann).

Palazzi, G. D. -578.

Palladine, N. J. -720 (with C. E. Clifford).

Panofsky, W. K. H. -13 (with W. A. Wenzel), 23 (with Alvarez, Bradner, Franck, Gordon, Gow, Marshall, Oppenheimer, Richman, and Woodyard), 138 (with Alvarez, Bradner, Franck, Gordon, Gow, Marshall, Oppenheimer, Richman, and Woodyard), 159 (with Chodorow, Ginzton, Hansen, Kyhle, and Neal), 222 (with J. A. McIntyre).

Papoular, M. -223, 224.

Parahhu, K. S. -72 (with N. Narayan).

Parain -696 (with Bruck, Bronca, Hamelin, and Neyret).

Park, D. 579.

Parkinson -271 (with Bach, Childs, Hockney, and Hough).

Peck, R. A., Jr. -76 (with H. P. Eubank), 77, 656 (with Eubank and Truell).

Pelukhov -342 (with Kolomenskii and Rabinovich).

Penfold, A. S. -131 (with B. M. Spicer).

Pepper, J. H. -308 (with W. S. Gilbert).

Perona, G. -14 (with A. Persano), 49 (with Gatti and Persano), 658 (with Gatti and Persano), 673 (with A. Persano).

Perry -116 (with Major and Phillips).

Persano, A. -14 (with G. Perona), 49 (with Gatti and Perona), 658 (with Gatti and Perona), 673 (with G. Perona).

Persico, E. -580, 581.

Peter, M. -78.

Petree, B. -108 (with R. S. Foote).

Petrie, D. P. R. -35 (with D. R. Chick).

Petrovich -372 (with Preskitt and Hamann).

Petrucci - 459 (with Denis, De Raad, Resegotti, and Sarazin), 460 (with Brianti, Denis, Germain, De Raad, Resegotti, Sarazin, and Stroot).

Petukhov -630 (with Vekslar, Efremov, Mints, Veisbin, Bodopyanov, Gashev, Zeidlits, Ivanov, Kolomensky, Komar, Malyshev, Monoszon, Rabinovich, Rubchinsky, Sinelnikov, and Stolov).

Phillips, J. A. -674 (with J. L. Tuck).

Phillips, K. -116 (with Major and Perry), 122.

Picard, E. -225.

Piccioni -582 (with Clark, Cool, Friedlander, and Kassner), 583 (with Clark, Cool, Friedlander, and Kassner), 584 (with Clark, Cool, Friedlander, and Kassner).
Piche -63 (with Lorrain, Béique, Gilmore, Girard, and Breton).
Pickavance, T. G. -4 (with J. D. Cockcroft), 15 (with Skyrme and Stafford), 226, 227, 373.
Pidd -500 (with Hammer and Terwilliger).
Pinet, D. -79.
Pipkin, F. M. -721 (with D. R. Hamilton).
Plotkin -39 (with Cottingham and Raka), 454 (with Cottingham and Raka).
Polyakov -301 (with Efremov, Meshcheryakov, Mints, Dzhelepov, Ivanov, Katyshev, Komar, Malyshev, Monoszon, Nevyszhsky, and Chestnoi).
Ponce de Leon, J. M. -228.
Poole, M. J. -137 (with Allan, Carey, and McCahon), 229.
Post, R. F. -186 (with M. R. Jeppson), 230 (with N. S. Shiren), 231 (with Shiren and Brown), 305 (with Gallop, Vonberg, Powell, Sharp, and Waterton).
Powell, W. B. -305 (with Gallop, Vonberg, Post, Sharp, and Waterton), 374.
Pozwalski, A. -647 (with F. Bertein).
Preskitt -372 (with Petrovich and Hamann).
Prévot -69 (with Moreau and Vienet), 80 (with R. Vienet), 653 (with Geller, Desjonquières, and Vienet), 659 (with R. Geller), 675 (with R. Vienet).
Pruiett -105 (with Cole, Jones, and Terwilliger).
Purdue Research Foundation -585, 586.
Putnam, J. M -6 (with F. E. Frost).
Pyle, R. V. -335 (with Kelly, Thornton, Richardson, and Wright), 336 (with Kelly, Thornton, Richardson, and Wright), 375, 376.

-Quercia, I. F. -492. (with G. Ghigo).
Querzoli, R. -21 (with Ageno and Cortellessa).

-R-
Rabinovich -342 (with Kolomenskii and Pelukhov), 630 (Veksler, Efremov, Mints, Veisbin, Bodopyanov, Gashev, Zeidlits, Ivanov, Kolomensky, Komar, Malyshev, Monoszon, Nevyszhsky, Petukhov, Rubchinsky, Sinelnikov, and Stolov).
Ragan -528 (with Jones, Kratz, Lawson, Miller, Miller, Rouvina, and Voorhies), 529 (with Jones, Kratz, Lawson, Miller, Miller, Rouvina, and Voorhies), 530 (with Jones, Kratz, Lawson, Miller, Miller, Rouvina, and Voorhies).
Raka -39 (with Cottingham and Plotkin), 454 (with Cottingham and Plotkin).
Rakic, M. -66 (with B. Marsicanin).
Ramler -294 (with Delbecq, Rocklin, and Yuster).
Ramm, C. M. -587, 588 (with Coe and Vaughan).
Randorf, W. R. -693 (with I. J. Billington).
Rankin -360 (with Martin, Livingston, and Murray).
Regenstreif, E. -589, 590, 591, 592, 593, 594.
Resegotti -459 (with Denis, De Raad, Petrucci, and Sarazin), 460 (with Brianti, Denis, Germain, De Raad, Petrucci, Sarazin, and Stroot).
Reynolds, H. L. -377 (with A. Zucker), 676 (with A. Zucker).
Reznik -722 (with Laforgerie and Dupré).
Rhody, R. B. -378.
Ribe, F. L. -379.
Richardson, J. E. -123 (with Van Roosenbeek and Morgan).
Richardson, J. R. -335 (with Kelly, Pyle, Thornton, and Wright), 336 (with Kelly, Pyle, Thornton, and Wright).
Riddiford, L. -543 (with B. Ledley), 564 (with Moon and Symonds), 595 (with van de Raay and Coe), 723.
Ridley, R. O. -234.
Roberts, A. -726 (with F. Salzman).
Robertson -168 (with Dazey, Nielsen, and Sewell).
Rocklin -294 (with Delbecq, Ramler, and Yuster).
Rogers, E. J. -81.
Roosz -650 (with Cornides and Siegler).
Rosenbaum, E. P. -16.
Ross, M. -261 (with W. Walkinshaw).
Rossi, G. B. -380.
Rotblat, J. -235.
Rouse -281 (with Caro and Martin).
Rouvina -528 (with Jones, Kratz, Lawson, Miller, Miller, Ragan, and Voorhies), 529 (with Jones, Kratz, Lawson, Miller, Miller, Ragan, and Voorhies), 530 (with Jones, Kratz, Lawson, Miller, Miller, Ragan, and Voorhies).
Rubich, N. B. -8 (with A. A. Kolomenskii).
Ruby, L. -315 (with Heusinkveld, Jakobson, and Wright), 316 (with Jakobson, Heusinkveld, Smith, and Wright), 321 (with Jakobson and Heusinkveld), 381 (with Heusinkveld, Jakobson, Smith, and Wright).
Rudolph -354 (with Livingston and Howard).

-S-

Sabel -262 (with Walkinshaw and Outram), 263 (with Walkinshaw and Outram).
Sabsovich, L. L. -535 (with A. A. Kolomenskii).
Sacerdoti, G. -725.
Sakisaka -194 (with Kimura and Miyashiro).
Sallick, J. -71 (with A. J. Moses).
Salin -203 (with Leuba, Thibaud, and Verzaux), 258 (with Thibaud and Verzaux), 626 (with Thibaud and Verzaux).
Salvini, G. -596, 597, 598, 599.
Salzman, F. -726 (with A. Roberts).
Sands, M. -600.
Sangster, M. -727.

Sarazin -459 (with Denis, De Raad, Petrucci, and Resegotti), 460 (with
Denis, Germain, Brianti, De Raad, Petrucci, Resegotti, and Stroot).

Sarma, N. -642 (with H. R. Allan).
Sasson, G. -601.
Saxon, D. S. -568 (with J. S. Nodvick), 569 (with J. S. Nodvick).
Saxon, G. -236.
Sayied, A. M. -718 (with B. D. Nag).
Schaffer, O. A. -677.

Schelberg -199 (with Kitchen, Hill, and Smits).
Schittenhelm, R. -125, 126 (with J. Urlaub).
Schmidt, F. H. -320 (with M. J. Jakobson), 382 (with Farwell, Henderson,
Morgan, and Strieb).

Schmidt, G. -59 (with Kostka and Mérey).
Schmouker, J. -27 (with R. Barjon).
Schoch, A. -602.
Schopper -55 (with Janner and Magun).
Schrader, E. F. -134 (with R. M. Warner, Jr.).

Schuh, C. -99 (with R. Basile).
Schultz, S. -190 (with L. H. Johnston).
Schuler, R. H. -385 (with A. O. Allen), 386 (with A. O. Allen).

Seidl, M. -127, 611.
Septier, A. -237, 238, 239, 240.

Seren -100 (with Birnbaum, Harth, and Tobin), 101 (with Birnbaum, Harth,
and Tobin), 128 (with Birnbaum, Harth, and Tobin).

Servranckx, R. -241, 242.
Sessler, A. M. -400 (with K. R. Symon), 531 (with Kerst, Cole, Crane,
Jones, Laslett, Okawa, Symon, Terwilliger, and Vogt-Nilsen), 623 (with
K. R. Symon).

Sewell -168 (with Dazey, Nielsen, and Robertson).
Shamshev -202 (with Lapitskii, Levintov, and Slivkov).

Sharp -305 (with Gallop, Vonberg, Post, Powell, and Waterton).
Shersby-Harvie, R. B. -243, 244 (with Mullett, Walkinshaw, Bell, and
Loach), 245 (with Mullett, Walkinshaw, Bell, and Loach).
Shire -231 (Post and Brown), 230 (R. F. Post).

Shuf -25 (with Baev, Vorotnikov, Gokhberg, Sidorov, and Yan'kov), 26
(with Baev, Vorotnikov, Gokhberg, Sidorov, and Yan'kov).

Shull -387 (with MacFarland and Bretsch).
Shutt -488 (with Fowler, Thorndike, and Whittemore).
Siddal -92 (with Allen and Ashworth).

Sidorov -25 (with Baev, Vorotnikov, Gokhberg, Shuf, and Yan'kov), 26 (with
Baev, Vorotnikov, Gokhberg, Shuf, and Yan'kov).
Siegler -650 (with Cornides and Roösz).

Sigurgeirsson, T. -612, 613.

Símané, G. -129.
Simon, A. W. -82.

Simonyi, K. -17.
Sinelnikov -630 (with Veksler, Efremov, Mints, Veisbin, Bodopyanov, Gashev, Zeidlits, Ivanov, Kolomensky, Komar, Malyshev, Monoszon, Nevyszhsky, Petukhov, Rabinovich, Rubchinsky, and Stolov).
Sittkus -449 (with Citron and Gentner).
Skachkov -633 (with Vladimirsky, Komar, Mints, Goldin, Koshkarev, Monoszon, Nikitin, Rubchinsky, Streltsov, and Tarasov).
Skaggs -246 (Nygard and Lanzl).
Skarsgard -130 (with Cormack and Johns).
Skyrme -15 (with Pickavance and Stafford).
Slater -151 (with Blackstock and Birkhoff).
Slivkov -202 (with Lapitskii, Levintov, and Shamshev).
Smith, L. -161 (with Clark, Jopson, Lamb, and Van Atta), 179 (with M. Good), 180 (with M. Good), 249 (with R. L. Gluckstern), 250 (with R. L. Gluckstern), 615.
Smits -202 (with Kitchen, Schelberg, and Hill).
Sokolov -616 (with Ternov and Strakhovskii).
Solomon -50 (with Godsin, Simon, and Weber).
Solow -728 (with McLaughlin and Blatz).
Solov'ev, L. S. -447 (with E. L. Burshtein).
Spaa, J. H. -85 (with A. C. van Dorsten).
Specchio, O. -83 (with A. Gambieri), 252 (with A. Gambieri), 680 (with A. Gambieri).
Spicer, B. M. -131 (with A. S. Penfold).
Spiers, V. M. -303 (with J. H. Fremlin).
Stafford -15 (with Pickavance and Skyrme).
Stähelin, P. -274 (with Bluemel and Carroll), 392.
Stahl, R. -408 (with Boyer, Hernandez, Peterson, Putnam, Stahl, Taylor, and Thornton).
Stamm, H. -18.
Stanford University -253, 254.
Steinhaus -220 (with Old and Wright).
Steinwedel, H. -132, 393, 617.
Stephan, W. J. -394.
Stephens -411 (with Walker, Fremlin, and Link).
Stolov -630 (with Veksler, Efremov, Mints, Veisbin, Bodopyanov, Gashev, Zeidlits, Ivanov, Kolomensky, Komar, Malyshev, Monoszon, Nevyszhsky, Petukhov, Rabinovich, Rubchinsky, and Sinelnikov).
Stone, T. E. -681.
Strakhovskii -616 (with Sokolov and Ternov).
Straub -34 (with Bumiller, Meyer, and Winkler).
Strauch -279 (with Calame, Cooper, Engelsberg, Gerstein, Koehler, Kuckes, Meadows, and Wilson).
Streltsov -633 (with Vladimirsky, Komar, Mints, Goldin, Koshkarev, Monoszon, Nikitin, Rubchinsky, Skachkov, and Tarasov).
Strieb -382 (with Farwell, Henderson, Morgan, and Schmidt).
Stroot -460 (with Brianti, Denis, Germain, De Raad, Petrucci, Resegotti, and Sarazin).
Strumski -84 (with Cooper, Frisch, and Zimmerman).
Struven, W. C. - 441 (with W. M. Brobeck), 618.
Sturm, W. J. - 398 (with R. J. Jones).
Sturrock, P. A. - 729.
Swann, C. P. - 684 (with J. S. Swingle, Jr.).
Swingle, J. S., Jr. - 684 (with C. P. Swann).
Symon - 399 (with Jones, Kerst, Laslett, and Terwilliger), 400 (with A. M. Sessler), 531 (with Kerst, Cole, Crane, Jones, Laslett, Ohkawa, Sessler, Terwilliger, and Vogt-Nilsen), 622 (with Kerst, Jones, Laslett, and Terwilliger), 623 (with A. M. Sessler).
Symonds - 564 (with Moon and Riddiford).

Taieb, J. - 48 (with A. Gabet), 624 (with Guillon, Gabet, and Mey).
Tarakanov - 298 (with Dzhelepov, Dmitrievsky, Katyshev, Kozodaev, Meshcheryakov, and Chestnoi).
Tarantin - 312 (with Druin, Filippova, Gerlit, Guseva, and Myasoedov).
Tarasov, E. K. - 631 (with V. V. Vladimirskii), 632 (with V. V. Vladimirskii), 633 (with Vladimirskii, Komar, Mints, Goldin, Koshkarev, Monoszon, Nikitin, Rubchinsky, Skachkov, and Streltsov).
Taylor, A. E. - 401, 402, 403, 404, 405.
Ternov - 616 (Sokolov and Strakhovskii).
Terwilliger - 105 (with Cole, Jones, and Pruett), 325 (with Jones and Haxby), 399 (with Jones, Kerst, Laslett, and Symon), 500 (with Hammer and Pidd), 531 (with Kerst, Cole, Crane, Jones, Laslett, Ohkawa, Sessler, Symon, and Vogt-Nilsen), 622 (with Symon, Kerst, Jones, and Laslett).
Thibaudeau - 203 (with Salin, Leuba, and Verzaux), 258 (with Verzaux and Salin), 626 (with Verzaux and Salin).
Thomas, E. - 685.
Thompson - 171 (with Dunn and Hadden).
Thorndike - 488 (with Fowler, Shutt, and Whittemore).
Thornton - 335 (with Kelly, Pyle, Richardson, and Wright), 336 (with Kelly, Pyle, Richardson, and Wright), 408 (with Boyer, Hernandez, Peterson, Putnam, Stahl, Stahl, and Taylor).
Tobin - 100 (with Birnbaum, Harth, and Seren), 101 (with Birnbaum, Harth, and Seren), 128 (with Seren, Birnbaum, and Harth).
Trainor, L. E. H. - 629 (with S. B. Brown).
Truell - 656 (with Eubank and Peck).
Trump - 51 (with Goldie, Wright, Anson, and Cloud).
Tuck, J. L. - 674 (with J. A. Phillips).
Uhlmann, E. M. -184 (with C. L. Hsieh), 259 (with C. L. Hsieh).
Uridge, F. -299 (with A. O. Edmunds).
Urlaub, J. -126 (with R. Schittenhelm).

Van Atta -161 (with Clark, Jopson, Lamb, and Smith).
Vandakurov, Y. V. -730.
Van de Raay -595 (with Riddiford and Coe).
Van Dorsten, A. C. -85 (with J. H. Spaa).
Van Roosenbeek -123 (with Richardson and Morgan).
Varshni, Y. P. -409.
Vaughan -588 (with Ramm and Coe).
Veisbin -630 (with Veksler, Efremov, Mints, Bodopyanov, Gashev, Zeidlits, Ivanov, Kolomensky, Komar, Malyshev, Monoszon, Nevyzhsky, Petukhov, Rabinovich, Rubchinsky, Sinelnikov, and Stolov).
Veisler, V. I. -1 (with Burshtein and Kolomenskii), 2 (with Burshtein and Kolomenskii), 19, 630 (with Efremov, Mints, Veisbin, Bodopyanov, Gashev, Zeidlits, Ivanov, Kolomensky, Komar, Malyshev, Monoszon, Nevyzhsky, Petukhov, Rabinovich, Rubchinsky, Sinelnikov, and Stolov), 731.
Velázquez -712 (with Losada and Fernández).
Verzaux -203 (with Leuba, Salin, and Thibaud), 258 (with Thibaud and Salin), 626 (with Thibaud and Salin).
Vienet, R. -69 (with Moreau and Prévot), 80 (with F. Prévot), 653 (with Desjonquières, Geller, and Prévot), 675 (with F. Prévot).
Vladimirskii, V. V. -631 (with E. K. Tarasov), 632 (with E. K. Tarasov), 633 (with Komar, Mints, Goldin, Koshkarev, Monoszon, Nikitin, Rubchinsky, Skachkov, Streltsov, and Tarasov).
Vogt-Nilsen -531 (with Kerst, Cole, Crane, Jones, Laslett, Ohkawa, Sessler, Symon, and Terwilliger), 634.
Vonberg -305 (with Gallop, Post, Powell, Sharp, and Waterton).
Von Dardel, G. F. -153 (with E. Blomsjo).
Voorhies -528 (with Jones, Kratz, Lawson, Miller, Miller, Ragan, and Rouvina), 529 (with Jones, Kratz, Lawson, Miller, Miller, Ragan, and Rouvina), 530 (with Jones, Kratz, Lawson, Miller, Miller, Ragan, and Rouvina).
Vorotnikov -25, 26.

Wakerling, R. K. -260, 410 (with A. Guthrie), 635, 687 (with A. Guthrie), 732, 733, 734 (with A. C. Helmholz), 735 (with H. F. Weaver).
Walker -411 (with Fremlin, Link, and Stephens).
Walkinshaw, W. -20, 144 (with M. Bell), 244 (with Bell, Loach, Mullett, and Shersby-Harvie), 245 (with Bell, Loach, Mullett, and Shersby-Harvie), 261 (with M. Ross), 262 (with Sabel and Outram), 263 (with Sabel and Outram), 412 (with N. M. King), 636.
Wall, N. S. -413 (with J. W. Irvine, Jr.).
Waterton -305 (with Gallop, Vonberg, Post, Powell, and Sharp).
Weaver, H. F. -735 (with R. K. Wakerling).
Weeber -118 (with Moller and Grimm).
Weeks, R. R. -86.
Weinman, J. A. -688 (with J. R. Cameron).
Weinstock, E. V. -135 (with J. Halpern).
Weir, R. A. -264.
Wernholm, O. -614 (with E. Smars).
West, R. H. -637.
Westendorp -97 (with Baldwin and Elder).
Whitby, H. C. -87.
Whittemore -488 (with Fowler, Shutt, and Thorndike).
Wilcox, J. M. -88.
Wilkins, J. J. -265, 736.
Williams, J. H. -191 (with Johnston and Day).
Wilson -279 (with Calame, Cooper, Engelsberg, Gerstein, Koehler, Kuckes, Meadows, and Strauch).
Winkler -34 (with Bumiller, Meyer, and Straub).
Winningstad, C. N. -638, 639.
Winter, S. D. -89.
Witt, F. E. L. -357 (with D. E. Mapother).
Wolicki -43 (with Dunning, Bondelid, Fagg, and Kennedy).
Wootton, P. -90.
Worsham -297 (with Donaldson and Ziegler).
Wouters, L. F. -414.
Wright, B. T. -315 (with Heusinkveld, Jakobson, and Ruby), 316 (with Smith, Heusinkveld, Jakobson, and Ruby), 335 (with Kelly, Pyle, Thornton, and Richardson), 336 (with Kelly, Pyle, Thornton, and Richardson), 381 (with Ruby, Heusinkveld, Jakobson, and Smith), 640.
Wright, K. A. -51 (with Goldie, Anson, Cloud, and Trump).
Wright, R. E. -220 (with Old and Steinhaus).

-Y-

Yager -306 (with Galt and Dail).
Yamashita, S. -339 (with J. Kokame).
Yan'kov -25 (with Baev, Vorotnikov, Gokhberg, Sidorov, and Shuf), 26 (with Baev, Vorotnikov, Gokhberg, Sidorov, and Shuf).
Yockey, H. P. -415.
Yonts, O.-266 (with S. Bashkin).
Yuster -294 (with Delbecq, Ramler, and Rocklin).

-Z-

Zaffarano, D. J. -104 (with Fureau and Austerheim), 427 (with G. Anderson), 445 (with Bureau and Austerheim), 446 (with Bureau and Austerheim), 561 (with L. R. McMurray).
Zeidlits -630 (with Veksler, Efremov, Mints, Veisbin, Bodopyanov, Gashev, Ivanov, Kolomensky, Komar, Malyshev, Monoszon, Nevyszhsky, Petukhov, Rabinovich, Rubchinsky, Sinelnikov, and Stolov).
Ziegler, N. F. -297 (with Donaldson and Worsham), 416, 417, 418.
Zimmerman -84 (with Strumski, Cooper, and Frisch).
Zucker, A. -377 (with H. L. Reynolds), 666 (with R. J. Jones), 676 (with H. L. Reynolds).
PARTICLE ACCELERATORS
II. LIST OF ACCELERATOR INSTALLATIONS
Gerald A. Behman
Radiation Laboratory
University of California
Berkeley, California
January 1, 1958

INTRODUCTION

This list is intended to include data on all accelerators throughout the world and supersedes similar lists by Bonnie E. Cushman in UCRL-1238 (March, 1951), by Sergey Shewchuck in UCRL-1951 (September, 1952), and by Frederick E. Frost and Jane M. Putnam in UCRL-2672 (November, 1954).

Data presented here have been acquired in most instances by direct response to a questionnaire sent by the author to the individual installations or, in the case of some foreign countries, to the scientific attaches of the various embassies. In a few cases, it was necessary to acquire the data indirectly through the technical literature or by reference to manufacturers' data.

Of the 411 questionnaires sent out, 224 went to installations in the United States, while 187 went to other countries. Replies were received from 89% of the installations polled in the United States, and from 74% of the foreign installations. Questionnaires submitted to Argentina, Brazil, Chile, China, Mexico, Rumania, and Turkey were not answered.

A time interval of ten months was arbitrarily set for response to the questionnaire. In some instances, not all of the desired information was furnished on the returned questionnaire; these cases are indicated in the list by n.a. (not available).

For rapid and ready reference, the information is classified, first, according to the type of accelerator and, second, according to the address of the installation. Each accelerator group is grossly separated into those machines located in the United States and those located elsewhere in the world.

The general types of accelerators included are direct-current (dc) machines, induction machines, and resonance accelerators. The dc machines comprise cascade rectifiers (Cockcroft-Walton), electrostatic generators (Van de Graaff), and certain transformer-rectifier combinations. The primary example of an accelerator operating on the principle of induction is the betatron. Resonance accelerators include both traveling- and standing-wave linear accelerators as well as magnetic accelerators of the cyclotron or synchrotron type. In this survey, the category cyclotron includes continuous-wave (CW) and frequency-modulated (FM) machines. The synchrotron group includes proton, electron, and fixed-field alternating-gradient (FFAG) machines.
For the convenience of the reader, the distribution of these machines throughout the world is summarized by type of accelerator and country in Table I. The distribution of types of establishments having accelerators in the United States is analyzed in Table II according to type of machine and primary activity of the organization.

Every effort has been made to avoid duplication or omission of information. The author will appreciate notification of such errors.
Table I

Distribution of Machines, by Type and Country

<table>
<thead>
<tr>
<th></th>
<th>D. C. Machines</th>
<th>Induction Machines</th>
<th>Resonance Machines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Betatrons</td>
<td>Linear Accelerators</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>133</td>
<td>38</td>
<td>32</td>
</tr>
<tr>
<td>Outside the United States</td>
<td>130</td>
<td>32</td>
<td>25</td>
</tr>
<tr>
<td>Argentina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>7</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Brazil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>8</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Denmark</td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Formosa</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>15</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Germany</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Great Britain</td>
<td>26</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>India</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iran</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>17</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Mexico</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table I (cont.)

Distribution of Machines, by Type and Country

<table>
<thead>
<tr>
<th>Country</th>
<th>D. C. Machines</th>
<th>Induction Machines</th>
<th>Resonance Machines</th>
<th>Magnetic Accelerators</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Betatrons</td>
<td>Linear Accelerators</td>
<td>Cyclotrons</td>
</tr>
<tr>
<td>New Zealand</td>
<td></td>
<td></td>
<td></td>
<td>Synchrotrons</td>
</tr>
<tr>
<td>Norway</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Switzerland</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Union of South Africa</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Union of Soviet Socialist</td>
<td>3</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Republics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yugoslavia</td>
<td>4</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Table II

Distribution of establishments reporting accelerators in the United States according to type of machine and activity

<table>
<thead>
<tr>
<th>Type of Machine</th>
<th>Colleges and Universities</th>
<th>Federal Government</th>
<th>Hospitals</th>
<th>Private Firms</th>
<th>Nonprofit Organizations</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. C. Machines</td>
<td>31</td>
<td>11</td>
<td>9</td>
<td>33</td>
<td>4</td>
<td>88</td>
</tr>
<tr>
<td>Betatrons</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>14</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>Linear Accelerators</td>
<td>14</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>Cyclotrons</td>
<td>20</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Synchrotrons</td>
<td>13</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>87</td>
<td>22</td>
<td>17</td>
<td>51</td>
<td>6</td>
<td>183</td>
</tr>
</tbody>
</table>

Note: AEC contractors are classified according to the type of establishment holding the contract.
LIST OF ACCELERATOR INSTALLATIONS

I. Direct Current Machines

In the United States

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Dimensions</th>
<th>Particles Accelerated</th>
<th>Energy (Mev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Argonne Cancer Research Hospital, University of Chicago, Chicago, Ill.</td>
<td>Van de Graaff</td>
<td>7-ft tank length</td>
<td>e</td>
<td>2</td>
</tr>
<tr>
<td>1 Argonne National Laboratory, Lemont, Ill.</td>
<td>Van de Graaff</td>
<td>18-ft accelerating tube</td>
<td>p, d</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>9-ft tank length</td>
<td>e</td>
<td>1.0</td>
</tr>
<tr>
<td>1 Arkansas, University, Fayetteville, Ark.</td>
<td>High-voltage rectifier</td>
<td>~10-ft accelerating tube</td>
<td>p, d, α</td>
<td>0.4</td>
</tr>
<tr>
<td>1 Atomics International, Canoga Park, Calif.</td>
<td>Van de Graaff</td>
<td>4-ft accelerating tube</td>
<td>e</td>
<td>1.6</td>
</tr>
</tbody>
</table>

*Under construction

1 Information obtained from response to questionnaire.

2 Information from High Voltage Engineering Company, Burlington, Massachusetts.

5 Information from Varian Associates, Palo Alto, California.

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Dimensions</th>
<th>Particles Accelerated</th>
<th>Energy (Mev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Austenal, Inc., Chicago, Ill</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>x-rays</td>
<td>1</td>
</tr>
<tr>
<td>2 Babcock and Wilcox, Lynchburg, Va.</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>x-rays</td>
<td>1</td>
</tr>
<tr>
<td>2 Union Carbide and Carbon Corp., Bakelite Division, Bloomfield, N. J.</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>e</td>
<td>2</td>
</tr>
<tr>
<td>1 Bartol Research Foundation of the Franklin Institute, Swarthmore, Pa.</td>
<td>Cockcroft-Walton</td>
<td>4-ft accelerating tube</td>
<td>d</td>
<td>0.135</td>
</tr>
<tr>
<td>1 Van de Graaff</td>
<td>21-ft accelerating tube</td>
<td>p</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>1 Van de Graaff</td>
<td>6-ft accelerating tube</td>
<td>d</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>2 Baylor University, College of Medicine, Houston, Tex.</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>x-rays</td>
<td>2</td>
</tr>
<tr>
<td>1, 2 Bell Telephone Laboratories, New York, N. Y.</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>e</td>
<td>1</td>
</tr>
<tr>
<td>* Van de Graaff</td>
<td>n. a.</td>
<td>e</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1, 2 Brookhaven National Laboratory, Upton, Long Island, N. Y.</td>
<td>Van de Graaff</td>
<td>8-ft accelerating tube</td>
<td>p, d, a, a, He^3</td>
<td>4</td>
</tr>
<tr>
<td>1, 2 Van de Graaff</td>
<td>3-ft accelerating tube</td>
<td>e</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1, 2 Van de Graaff</td>
<td>3-ft accelerating tube</td>
<td>e</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1, 2 Van de Graaff</td>
<td>12-ft accelerating tube</td>
<td>p</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1 California Institute of Technology, Pasadena, Calif.</td>
<td>Van de Graaff</td>
<td>2.25-ft accelerating tube</td>
<td>p, d, a, a, He^3</td>
<td>0.6</td>
</tr>
<tr>
<td>1 California Institute of Technology, Pasadena, Calif.</td>
<td>8-ft accelerating tube</td>
<td>p, d, a, a, He^3</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>1 California Institute of Technology, Pasadena, Calif.</td>
<td>9-ft accelerating tube</td>
<td>p, d, a, a, He^3</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>2 California Research Corporation, Richmond, Calif.</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>e</td>
<td>2</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>California, University, Radiation Laboratory, Berkeley, Calif.</td>
<td>Cockcroft-Walton</td>
<td>4-ft accelerating tube</td>
<td>p</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Cockcroft-Walton</td>
<td>4-ft accelerating tube</td>
<td>gasæous ions</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>27-ft tank length</td>
<td>p, d, a</td>
<td>4</td>
</tr>
<tr>
<td>California, University, Radiation Laboratory, Livermore, Calif.</td>
<td>Van de Graaff</td>
<td>1.7-ft accelerating tube</td>
<td>p, d</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cockcroft-Walton</td>
<td>6-ft accelerating tube</td>
<td>p, d, a</td>
<td>0.5</td>
</tr>
<tr>
<td>Carnegie Institution of Washington, Washington, D. C.</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>a</td>
<td>7</td>
</tr>
<tr>
<td>Chicago Bridge and Iron Company, Birmingham, Ala.</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>x-rays</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>x-rays</td>
<td>1</td>
</tr>
<tr>
<td>Chicago, University, Chicago, Ill.</td>
<td>Cockcroft-Walton</td>
<td>7.5-ft accelerating tube</td>
<td>p, d</td>
<td>0.45</td>
</tr>
<tr>
<td>College of Agriculture and Mechanics, Ames, Ia.</td>
<td>Cockcroft-Walton</td>
<td>5-ft accelerating tube</td>
<td>p, d, a</td>
<td>0.3</td>
</tr>
<tr>
<td>Columbia University, Pupin Cyclotron Laboratories, New York, N. Y.</td>
<td>Van de Graaff</td>
<td>12-ft accelerating tube</td>
<td>p, d, a</td>
<td>6.5</td>
</tr>
<tr>
<td>Connecticut, University, Storrs, Conn.</td>
<td>Cockcroft-Walton</td>
<td>3-ft accelerating tube</td>
<td>positive ions</td>
<td>0.25</td>
</tr>
<tr>
<td>Cooper Alloy Corporation, Hillside, N. Y.</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>x-rays</td>
<td>1</td>
</tr>
<tr>
<td>Cornell University, Ithaca, N. Y.</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>e</td>
<td>2</td>
</tr>
<tr>
<td>Dow Chemical Company, Midland, Mich.</td>
<td>Van de Graaff</td>
<td>4.6-ft accelerating tube</td>
<td>p, d, e</td>
<td>2</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
<td>-----------------------------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1 Dow Chemical Company, Western Division, Pittsburg, Calif.</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>e</td>
<td>2.5</td>
</tr>
<tr>
<td>1 Duke University, Durham, N. C.</td>
<td>Van de Graaff</td>
<td>25-ft tank length</td>
<td>p, d, a</td>
<td>4</td>
</tr>
<tr>
<td>2 E. I. DuPont de Nemours, Inc., Wilmington, Del.</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>e</td>
<td>2</td>
</tr>
<tr>
<td>2 Eugene Talmadge Memorial Hospital, Augusta, Ga.</td>
<td>Van de Graaff</td>
<td>2.7-ft accelerating tube</td>
<td>x-rays</td>
<td>2</td>
</tr>
<tr>
<td>1 Ethicon, Inc., Somerville, N. J.</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>e</td>
<td>2.5</td>
</tr>
<tr>
<td>1 Evans Signal Laboratory, Belmar, N. J.</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d, e</td>
<td>2</td>
</tr>
<tr>
<td>1 Florida, University, Gainesville, Fla.</td>
<td>Van de Graaff</td>
<td>5-ft accelerating tube</td>
<td>p, d</td>
<td>1</td>
</tr>
<tr>
<td>2 Florida State University, Tallahassee, Fla.</td>
<td>Van de Graaff (tandem)</td>
<td>n.a.</td>
<td>p, a</td>
<td>10</td>
</tr>
<tr>
<td>1 Foster-Wheeler Corporation, Mountaintop, Pa</td>
<td>Van de Graaff</td>
<td>3.7-ft accelerating tube</td>
<td>x-rays</td>
<td>2</td>
</tr>
<tr>
<td>1 General Electric Company, Hanford Laboratories, Richland, Wash.</td>
<td>Van de Graaff</td>
<td>5.3-ft tank length</td>
<td>e</td>
<td>2.0</td>
</tr>
<tr>
<td>1 General Electric Company, Aircraft Nuclear Propulsion Department, Cincinnati, O.</td>
<td>Van de Graaff</td>
<td>6.3-ft tank length</td>
<td>p, d</td>
<td>2.0</td>
</tr>
<tr>
<td>1 Arnold Greene, Inc., Cambridge, Mass.</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>x-rays</td>
<td>1</td>
</tr>
<tr>
<td>2 Gulf Research and Development Company, Pittsburgh, Pa.</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d, a, e</td>
<td>3</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Humble Oil and Refining Company, Houston, Tex.</td>
<td>Van de Graaff</td>
<td>3.25-ft accelerating tube</td>
<td>e</td>
<td>2</td>
</tr>
<tr>
<td>Iowa State University, Iowa City, Ia.</td>
<td>Cockcroft-Walton</td>
<td>5-ft accelerating tube</td>
<td>p, d, a</td>
<td>0.5</td>
</tr>
<tr>
<td>Van de Graaff</td>
<td>20-ft accelerating tube</td>
<td>p, d, a</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Johns Hopkins University, Baltimore, Md.</td>
<td>Van de Graaff</td>
<td>6-ft accelerating tube</td>
<td>p, d</td>
<td>3</td>
</tr>
<tr>
<td>Kansas, University, Lawrence, Kan.</td>
<td>Van de Graaff</td>
<td>7-ft accelerating tube</td>
<td>p, d</td>
<td>3</td>
</tr>
<tr>
<td>Kentucky, University, Lexington, Ky.</td>
<td>Van de Graaff</td>
<td>7.5-ft accelerating tube</td>
<td>p, d</td>
<td>2.2</td>
</tr>
<tr>
<td>Lemuel Shattuck Hospital for Chronic Diseases, Boston, Mass.</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>x-rays</td>
<td>2</td>
</tr>
<tr>
<td>Lockheed Aircraft Corporation, Missile Systems Division, Palo Alto, Calif.</td>
<td>Van de Graaff</td>
<td>3.5-ft accelerating tube</td>
<td>p, d, a</td>
<td>3</td>
</tr>
<tr>
<td>Los Alamos Scientific Laboratory, Los Alamos, N. Mex.</td>
<td>Cockcroft-Walton</td>
<td>6.3-ft accelerating tube</td>
<td>p, d</td>
<td>0.50</td>
</tr>
<tr>
<td>Van de Graaff</td>
<td>3.3-ft accelerating tube</td>
<td>p, d</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Van de Graaff</td>
<td>20-ft accelerating tube</td>
<td>p, d, a</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Van de Graaff</td>
<td>5-ft accelerating tube</td>
<td>p, d, t, He³, a</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Van de Graaff</td>
<td>5-ft accelerating tube</td>
<td>p, d, t, He³, a</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Los Angeles Tumor Clinic, Los Angeles, Calif.</td>
<td>Van de Graaff</td>
<td>3-ft accelerating tube</td>
<td>x-rays</td>
<td>2</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Magnolia Petroleum Company, Dallas, Tex.</td>
<td>Van de Graaff</td>
<td>1.2-ft accelerating tube</td>
<td>p, d</td>
<td>0.5</td>
</tr>
<tr>
<td>Mass. Institute of Technology, Labor. for Nuclear</td>
<td>Van de Graaff</td>
<td>3-ft accelerating tube</td>
<td>p, d, a, He³, α</td>
<td>2</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology, Laboratory</td>
<td>Van de Graaff</td>
<td>18-ft accelerating tube</td>
<td>p, d, α</td>
<td>8.5</td>
</tr>
<tr>
<td>Mass. General Hospital, Boston, Mass.</td>
<td>Van de Graaff</td>
<td>20-ft accelerating tube</td>
<td>p, d</td>
<td>3</td>
</tr>
<tr>
<td>Mellon Institute, Pittsburgh, Pa.</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>e</td>
<td>2</td>
</tr>
<tr>
<td>Minnesota, University, Minneapolis, Minn.</td>
<td>Van de Graaff</td>
<td>20-ft accelerating tube</td>
<td>p, d</td>
<td>3.5</td>
</tr>
<tr>
<td>Monsanto Chemical Company, Dayton, O.</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>e</td>
<td>2</td>
</tr>
<tr>
<td>National Bureau of Standards, Washington, D. C.</td>
<td>A-C Rectifier</td>
<td>2.25-ft each section</td>
<td>e</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>Cockcroft-Walton</td>
<td>5-ft accelerating tube</td>
<td>p, d</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d, α</td>
<td>2</td>
</tr>
<tr>
<td>National Institutes of Health, Public Health</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>e</td>
<td>2</td>
</tr>
<tr>
<td>Service, Bethesda, Md.</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>e</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>e</td>
<td>3</td>
</tr>
<tr>
<td>Nebraska, University, Lincoln, Neb.</td>
<td>Cockcroft-Walton</td>
<td>n.a.</td>
<td>positive ions</td>
<td>0.4</td>
</tr>
<tr>
<td>Northwestern University, Evanston, Ill.</td>
<td>Van de Graaff</td>
<td>12-ft accelerating tube</td>
<td>p, a, e</td>
<td>5</td>
</tr>
<tr>
<td>Notre Dame, University, Notre Dame, Ind.</td>
<td>Van de Graaff</td>
<td>12-ft accelerating tube</td>
<td>p, d, α, e</td>
<td>4</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------------</td>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Oak Ridge National Laboratory, Union Carbide Nuclear Company, Oak Ridge, Tenn.</td>
<td>Cascade</td>
<td>8.5-ft accelerating tube</td>
<td>p, d, a</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Cockcroft-Walton</td>
<td>3-ft accelerating tube</td>
<td>d</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>12-ft accelerating tube</td>
<td>p, d, a</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>4.7-ft accelerating tube</td>
<td>p, d</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>2.7-ft accelerating tube</td>
<td>x-rays</td>
<td>2.0</td>
</tr>
<tr>
<td>Pennsylvania, University, Philadelphia, Pa.</td>
<td>Van de Graaff</td>
<td>12-ft accelerating tube</td>
<td>p, d</td>
<td>3</td>
</tr>
<tr>
<td>Pondville State Hospital, Wrentham, Mass.</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>x-rays</td>
<td>2</td>
</tr>
<tr>
<td>Princeton University, Princeton, N. J.</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d, a</td>
<td>3</td>
</tr>
<tr>
<td>Radio Corporation of America, Princeton, N. J.</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>e</td>
<td>1</td>
</tr>
<tr>
<td>Redstone Arsenal, Huntsville, Ala.</td>
<td>Van de Graaff</td>
<td>22-ft tank length</td>
<td>p, d</td>
<td>2</td>
</tr>
<tr>
<td>Rensselaer Polytechnic Institute, Troy, N. Y.</td>
<td>Cockcroft-Walton</td>
<td>3.5-ft accelerating tube</td>
<td>p, d</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d</td>
<td>1</td>
</tr>
<tr>
<td>Rice Institute, Houston, Tex.</td>
<td>Cockcroft-Walton</td>
<td>2-ft accelerating tube</td>
<td>p, d, t, He³, a</td>
<td>6</td>
</tr>
<tr>
<td>Sandia Corporation, Albuquerque, N. Mex.</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d, e</td>
<td>2</td>
</tr>
<tr>
<td>Shell Development Company, Houston, Tex.</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d</td>
<td>2</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>-------------------------------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1. Shell Development Company, Emeryville, Calif.</td>
<td>Van de Graaff</td>
<td>7-ft accelerating tube</td>
<td>e</td>
<td>3</td>
</tr>
<tr>
<td>2. Socony-Vacuum Oil Company, Paulsboro, N. J.</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>e</td>
<td>2</td>
</tr>
<tr>
<td>1. Swedish Hospital, Seattle, Wash.</td>
<td>Van de Graaff</td>
<td>4-ft accelerating tube</td>
<td>x-rays, e</td>
<td>2</td>
</tr>
<tr>
<td>1. Stanford Research Institute, Palo Alto, Calif.</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>p, d</td>
<td>2</td>
</tr>
<tr>
<td>1. Texas, University, Austin, Tex.</td>
<td>Van de Graaff</td>
<td>10-ft accelerating tube</td>
<td>p, d, t, a</td>
<td>4</td>
</tr>
<tr>
<td>1. Texas Oil Company, New York, N. Y.</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>p, d, a</td>
<td>3</td>
</tr>
<tr>
<td>2. Texas Nuclear, Austin, Tex.</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>p, d, a</td>
<td>2</td>
</tr>
<tr>
<td>1. University Hospitals, Cleveland, O.</td>
<td>Van de Graaff</td>
<td>6.5-ft tank length</td>
<td>x-rays</td>
<td>2</td>
</tr>
<tr>
<td>1. Upjohn Company, Kalamazoo, Mich.</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>e</td>
<td>2</td>
</tr>
<tr>
<td>1. U. S. Army Chemical Center, Chemical and Radiological Laboratory, Army Chemical Center, Md.</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>e</td>
<td>0.3</td>
</tr>
<tr>
<td>1, 2. U. S. Army Quartermaster Corps, Natick, Mass.</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>p, d, a</td>
<td>1</td>
</tr>
<tr>
<td>1. U. S. Naval Hospital, Bethesda, Md.</td>
<td>Van de Graaff</td>
<td>14-ft tank length</td>
<td>e</td>
<td>2</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>U. S. Naval Postgraduate School, Monterey, Calif.</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d, a, e</td>
<td>2</td>
</tr>
<tr>
<td>U. S. Naval Radiological Defense Laboratory, San Francisco, Calif.</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d, a, e</td>
<td>2</td>
</tr>
<tr>
<td>U. S. Naval Research Laboratory, Washington, D. C.</td>
<td>Cockcroft-Walton</td>
<td>4.5-ft accelerating tube</td>
<td>p, d</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Cockcroft-Walton</td>
<td>3.3-ft accelerating tube</td>
<td>p, d</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>2.5-ft accelerating tube</td>
<td>p, d, He³, a</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>3-ft accelerating tube</td>
<td>e, p</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>4-ft accelerating tube</td>
<td>e</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>15.5-ft accelerating tube</td>
<td>p, d, He³, a</td>
<td>6.0</td>
</tr>
<tr>
<td>Virginia, University, Charlottesville, Va.</td>
<td>Van de Graaff</td>
<td>3-ft accelerating tube</td>
<td>p, d, a</td>
<td>1.5</td>
</tr>
<tr>
<td>Watertown Arsenal, Watertown, Mass.</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d</td>
<td>2</td>
</tr>
<tr>
<td>Wells Surveys, Inc., Tulsa, Okla.</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d</td>
<td>0.65</td>
</tr>
<tr>
<td>Westinghouse Electric Corporation, Commercial Atomic Power, Pittsburgh, Pa.</td>
<td>Van de Graaff</td>
<td>6-ft tank length</td>
<td>p, d, e</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>6-ft tank length</td>
<td>p, d, e</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>37-ft tank length</td>
<td>p, d, e</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>22.5-ft tank length</td>
<td>p, d, e</td>
<td>6</td>
</tr>
<tr>
<td>Wisconsin, University, Madison, Wis.</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d, a,</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d, a,</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff (tandem)</td>
<td>n.a.</td>
<td>p, a</td>
<td>10</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Australian National University, Canberra</td>
<td>Cockcroft-Walton</td>
<td>9-ft accelerating tube</td>
<td>p, d</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Cockcroft-Walton</td>
<td>14-ft accelerating tube</td>
<td>p, d, α</td>
<td>1.25</td>
</tr>
<tr>
<td>1 Melbourne, University, Victoria</td>
<td>Van de Graaff</td>
<td>10-ft accelerating tube</td>
<td>p, d</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>6.5-ft accelerating tube</td>
<td>e</td>
<td>0.7</td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Centre de Physique Nucleaire, Ecole Royale Militaire, Bruxelles</td>
<td>Cockcroft-Walton</td>
<td>n.a.</td>
<td>p</td>
<td>1.4</td>
</tr>
<tr>
<td>1 Centre de Physique Nucleaire, Louvain</td>
<td>Van de Graaff</td>
<td>3.5-m accelerating tube</td>
<td>p, d</td>
<td>1.8</td>
</tr>
<tr>
<td>1 Institut Interuniversitaire des Sciences Nucleaire, Faculte Polytechnique, Mons</td>
<td>Cockcroft-Walton</td>
<td>6-m accelerating tube</td>
<td>p, d, α</td>
<td>1.3</td>
</tr>
<tr>
<td>1 Laboratoire de Radioactivite et de Physique Nucleaire, Universite de Liège, Liège</td>
<td>Cockcroft-Walton</td>
<td>n.a.</td>
<td>p, d</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Electrostatic-charge transport by air-blown dust particles.</td>
<td></td>
<td>p, d</td>
<td>0.8</td>
</tr>
<tr>
<td>1 Universite Libre de Bruxelles, Bruxelles</td>
<td>Cockcroft-Walton</td>
<td>n.a.</td>
<td>p, d</td>
<td>0.85</td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Atomic Energy of Canada, Ltd., Chalk River, Ontario</td>
<td>*Van de Graaff (tandem)</td>
<td>Two accelerators end-to-end</td>
<td>p, d, t, α</td>
<td>10</td>
</tr>
<tr>
<td>1 British Columbia, University, Vancouver, B. C.</td>
<td>Van de Graaff</td>
<td>16-ft accelerating tube</td>
<td>p, d, α</td>
<td>2.25</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
<td>-----------------------------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Canadian Defense Research Board, Alberta</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d, a</td>
<td>2</td>
</tr>
<tr>
<td>2 Canadian Department of Defense Production, Montreal</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>e</td>
<td>3</td>
</tr>
<tr>
<td>1 Montreal, University, Montreal</td>
<td>Cockcroft-Walton</td>
<td>4.5-ft tank length</td>
<td>p, d</td>
<td>0.5</td>
</tr>
<tr>
<td>3 National Research Council, Ottawa</td>
<td>Van de Graaff</td>
<td>1.4-ft accelerating tube</td>
<td>e</td>
<td>0.6</td>
</tr>
<tr>
<td>3 Van de Graaff 9-ft accelerating tube</td>
<td>p</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Ontario Cancer Institute, Toronto</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d, a</td>
<td>3</td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Copenhagen, University, Copenhagen</td>
<td>Transformer-Rectifier</td>
<td>2.6-m accelerating tube</td>
<td>p, d</td>
<td>1</td>
</tr>
<tr>
<td>1 Copenhagen, University, Copenhagen</td>
<td>Van de Graaff</td>
<td>4.4-m accelerating tube</td>
<td>p, d, a</td>
<td>4</td>
</tr>
<tr>
<td>1 Copenhagen, University, Copenhagen</td>
<td>Van de Graaff</td>
<td>3.0-m accelerating tube</td>
<td>p, d, a</td>
<td>2.2</td>
</tr>
<tr>
<td>Formosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 National Tsing Hua University</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d, e</td>
<td>3</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Centre d'Études Nucleaires, Grenoble, Isère</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, e</td>
<td>0.6</td>
</tr>
<tr>
<td>1 Centre d'Études Nucleaires, Grenoble, Isère</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>e</td>
<td>0.6</td>
</tr>
<tr>
<td>1 Centre d'Études Nucleaires, Grenoble, Isère</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d, a, e</td>
<td>1.4</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Particles Accelerated</td>
<td>Energy (MeV)</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Centre d'Etudes Nucleaires de Saclay, Saclay</td>
<td>Van de Graaff</td>
<td>3.0-m accelerating</td>
<td>p, d</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>7.0-m accelerating</td>
<td>p, d, a</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 3 Ecole Normal Superieure, Paris</td>
<td>Cockcroft-Walton</td>
<td>2.1-m accelerating</td>
<td>d</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>2.1-m accelerating</td>
<td>p, d, e</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Ecole Polytechnique, Paris</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d</td>
<td>2</td>
</tr>
<tr>
<td>3 Institute Interuniversitaire des Sciences Nucleaire, Mons</td>
<td>Cockcroft-Walton</td>
<td>5-m accelerating</td>
<td>p, d</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Institute of Nuclear Research, University of Strasbourg, Strasbourg</td>
<td>Cockcroft-Walton</td>
<td>5-m accelerating</td>
<td>p, d, a</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*Van de Graaff</td>
<td>n.a.</td>
<td>p, d, a</td>
<td>6</td>
</tr>
<tr>
<td>1 Laboratoire de Physique Atomique et Moleculaire, College de France,</td>
<td>Van de Graaff</td>
<td>1.6-m accelerating</td>
<td>d→n</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>1.25-m accelerating</td>
<td>d→n</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Laboratoire de Synthese Atomique, Ivry</td>
<td>Cockcroft-Walton</td>
<td>n.a.</td>
<td>d</td>
<td>0.9</td>
</tr>
<tr>
<td>2 Lyons, University, Lyons</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d, a, e</td>
<td>2</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Institut für Kernphysik der Universität Frankfurt am Main</td>
<td>Cockcroft-Walton</td>
<td>n.a.</td>
<td>p, d</td>
<td>1.5</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Institut für Physik im Max-Planck-Institut für Med. Forschung, Heidelberg</td>
<td>Van de Graaff</td>
<td>3-m accelerating tube</td>
<td>p, d, a, e</td>
<td>1</td>
</tr>
<tr>
<td>2 Institut für Strahlen und Kernphysik, University of Bonn, Bonn</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>e</td>
<td>3</td>
</tr>
<tr>
<td>1, 2 Max-Planck-Institut für Chemie, Mainz</td>
<td>*Van de Graaff</td>
<td>3.5-m accelerating tube</td>
<td>p, d, a, e</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Cockcroft-Walton</td>
<td>4.25-m accelerating tube</td>
<td>p, d</td>
<td>1.5</td>
</tr>
<tr>
<td>3 Max-Planck-Institute for Physics of the Stratosphere, Hechingen</td>
<td>Van de Graaff</td>
<td>5.5-m accelerating tube</td>
<td>p, d, a, e</td>
<td>1.5</td>
</tr>
<tr>
<td>1 Physikalisches Institut der Universität Freiberg, Freiberg</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d</td>
<td>6</td>
</tr>
<tr>
<td>1 Physical Institute, Free University Berlin-Dahlen</td>
<td>Van de Graaff</td>
<td>2-m accelerating tube</td>
<td>e</td>
<td>1</td>
</tr>
<tr>
<td>Great Britain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Associated Electrical Industries, Ltd., Aldermaston, England</td>
<td>Van de Graaff</td>
<td>9-ft accelerating tube</td>
<td>p, d</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>4.5-ft accelerating tube</td>
<td>p, d</td>
<td>0.6</td>
</tr>
<tr>
<td>1 Atomic Energy Research Establishment, Harwell, England</td>
<td>Cockcroft-Walton</td>
<td>n.a.</td>
<td>p, d, t</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>*Van de Graaff (tandem)</td>
<td>14-ft accelerating tube</td>
<td>p, d, o16</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>13-ft accelerating tube</td>
<td>p, d, He3, a</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>4-ft accelerating tube</td>
<td>e</td>
<td>2.25</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Great Britain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 3 Cambridge, University, Cambridge, England</td>
<td>Cockcroft-Walton</td>
<td>12-ft accelerating tube</td>
<td>p, d</td>
<td>1</td>
</tr>
<tr>
<td>1, 3 Clarendon Laboratory, Oxford University, Oxford, England</td>
<td>Cockcroft-Walton</td>
<td>12-ft accelerating tube</td>
<td>p, d, a</td>
<td>1.1</td>
</tr>
<tr>
<td>1, 3 Edinburgh, University, Edinburgh, Scotland</td>
<td>Cockcroft-Walton</td>
<td>12-ft accelerating tube</td>
<td>p, d, a</td>
<td>1.0</td>
</tr>
<tr>
<td>1 Hammersmith Hospital, London, England</td>
<td>Van de Graaff</td>
<td>7.5-ft accelerating tube</td>
<td>d, e</td>
<td>2.0</td>
</tr>
<tr>
<td>1 Liverpool, University, Mt. Pleasant, Liverpool, England</td>
<td>Cockcroft-Walton</td>
<td>n.a.</td>
<td>p, d</td>
<td>1</td>
</tr>
<tr>
<td>3 London, University, London, England</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>e</td>
<td>2</td>
</tr>
<tr>
<td>1 Medical Research Council Radiobiological Research Unit, Harwell, England</td>
<td>Cockcroft-Walton</td>
<td>2-m accelerating tube</td>
<td>p, d</td>
<td>1</td>
</tr>
<tr>
<td>2 National Physical Laboratory, Teddington, England</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>x-rays</td>
<td>2</td>
</tr>
<tr>
<td>1 Physical Laboratories, The University, Manchester, England</td>
<td>Van de Graaff</td>
<td>12.7-ft accelerating tube</td>
<td>p, d, t, He³, α, He⁴, ++</td>
<td>6</td>
</tr>
<tr>
<td>1 Royal Cancer Hospital, London, England</td>
<td>Van de Graaff</td>
<td>4.5-ft accelerating tube</td>
<td>e</td>
<td>2</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------------</td>
<td>------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Great Britain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Royal Infirmary, Edinburgh,</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>x-rays</td>
<td>2</td>
</tr>
<tr>
<td>Scotland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Sheffield National Center for</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>x-rays</td>
<td>2</td>
</tr>
<tr>
<td>Radiotherapy, Sheffield, England</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Standard Telecommunication</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d, a, e</td>
<td>2</td>
</tr>
<tr>
<td>Laboratories, Ltd., Enfield,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middlesex, England</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Tube Investments Research</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d, a, e</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory, Cambridge, England</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Westminster Hospital, London,</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>e</td>
<td>1</td>
</tr>
<tr>
<td>England</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>India</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Atomic Energy Establishment,</td>
<td>Cockcroft-Walton</td>
<td>n.a.</td>
<td>d</td>
<td>1.2</td>
</tr>
<tr>
<td>Bombay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Tata Institute of Fundamental</td>
<td>Cockcroft-Walton</td>
<td>n.a.</td>
<td>d</td>
<td>1.2</td>
</tr>
<tr>
<td>Research, Bombay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iran</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Teheran, University, Teheran</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d, a, e</td>
<td>3.0</td>
</tr>
<tr>
<td>Israel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 2 Weizmann Institute, Rehovoth</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d, a</td>
<td>3.0</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------------</td>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Bologna, University, Bologna</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>x-rays</td>
<td>2.0</td>
</tr>
<tr>
<td>1 Instituto di Fisica Universita Catania, Catania</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d</td>
<td>2.0</td>
</tr>
<tr>
<td>3 CISE Laboratory, Milan</td>
<td>Cockcroft-Walton</td>
<td>1-m accelerating tube</td>
<td>d</td>
<td>0.4</td>
</tr>
<tr>
<td>1 Instituto Superior di Sanita, Rome</td>
<td>Cockcroft-Walton</td>
<td>3-m accelerating tube</td>
<td>p, d</td>
<td>1.0</td>
</tr>
<tr>
<td>2 Pirelli, Milan</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>e</td>
<td>2.0</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Central Research Laboratory, Hitachi, Ltd., Tokyo</td>
<td>Cockcroft-Walton</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.3</td>
</tr>
<tr>
<td>1 Electrotechnical Laboratory, Tokyo</td>
<td>Cockcroft-Walton</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.8</td>
</tr>
<tr>
<td>1, 2 Japan Atomic Energy Research Inst., (Ibaraki Pref.)</td>
<td>Cockcroft-Walton</td>
<td>n.a.</td>
<td>n.a.</td>
<td>3.0</td>
</tr>
<tr>
<td>2 Japanese Chemical and Fiber Association, Osaka</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>p, d, a, e</td>
<td>2.0</td>
</tr>
<tr>
<td>1 Konan University, Kobe</td>
<td>Cockcroft-Walton</td>
<td>n.a.</td>
<td>p, d, t, a</td>
<td>0.4</td>
</tr>
<tr>
<td>1 Kyoto University, Kyoto</td>
<td>Cockcroft-Walton</td>
<td>n.a.</td>
<td>p, d</td>
<td>0.6</td>
</tr>
<tr>
<td>1 Kyushu University, Fukuoka</td>
<td>Van de Graaff</td>
<td>9-m tank length</td>
<td>p, d</td>
<td>5.0</td>
</tr>
<tr>
<td>1 Osaka University, Osaka</td>
<td>Cockcroft-Walton</td>
<td>n.a.</td>
<td>p, d</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>n.a.</td>
<td>2.5</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>¹Rikkyo University, Tokyo</td>
<td>Cockcroft-Walton</td>
<td>n. a.</td>
<td>n. a.</td>
<td>0.2</td>
</tr>
<tr>
<td>¹Scientific Research Institute, Tokyo</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>n. a.</td>
<td>2.0</td>
</tr>
<tr>
<td>¹Tohoku University, Sendai</td>
<td>Van de Graaff</td>
<td>7-m tank length</td>
<td>p, d</td>
<td>2.0</td>
</tr>
<tr>
<td>¹Tokyo Institute of Technology, Tokyo</td>
<td>*Cockcroft-Walton</td>
<td>n. a.</td>
<td>d</td>
<td>0.44</td>
</tr>
<tr>
<td>¹Tokyo Shibaura Electric Company, Ltd., Tokyo</td>
<td>Cockcroft-Walton</td>
<td>n. a.</td>
<td>n. a.</td>
<td>0.15</td>
</tr>
<tr>
<td>¹Tokyo, University, Tokyo</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>n. a.</td>
<td>1.6</td>
</tr>
<tr>
<td>Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>², ³National University of Mexico, Mexico 20, D. F.</td>
<td>Van de Graaff</td>
<td>4.2-ft accelerating tube</td>
<td>p, d, e</td>
<td>2.0</td>
</tr>
<tr>
<td>Netherlands</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>¹Delft Institute of Technology, Delft</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>p, d</td>
<td>2.5</td>
</tr>
<tr>
<td>¹Natuurkundig Laboratorium der Rijksuniversiteit, Groningen</td>
<td>Cockcroft-Walton</td>
<td>3-m accelerating tube</td>
<td>d</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Cockcroft-Walton</td>
<td>1.6-m accelerating tube</td>
<td>p, d</td>
<td>0.6</td>
</tr>
<tr>
<td>¹State University of Utrecht, Utrecht</td>
<td>Cockcroft-Walton</td>
<td>8-ft accelerating tube</td>
<td>p, d</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>p, d, a</td>
<td>3.0</td>
</tr>
<tr>
<td>Norway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>¹Fysisk Institutt, Bergen University, Bergen</td>
<td>Van de Graaff</td>
<td>7-m accelerating tube</td>
<td>p, d, a</td>
<td>1.2</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------------</td>
<td>-------------------------------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Norway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 3 Municipal Hospital, Bergen</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>e</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>p</td>
<td>1.5</td>
</tr>
<tr>
<td>1, 3 Norges Tehniske Høgskole, Trondheim</td>
<td>Van de Graaff</td>
<td>3.6-m accelerating tube</td>
<td>p, d</td>
<td>4.0</td>
</tr>
<tr>
<td>1 Oslo, University, Blindern</td>
<td>Van de Graaff</td>
<td>3.6-m accelerating tube</td>
<td>p</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>1.5-m accelerating tube</td>
<td>p</td>
<td>0.5</td>
</tr>
<tr>
<td>Poland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Danzig, University, Danzig</td>
<td>Van de Graaff</td>
<td>1.1-m accelerating tube</td>
<td>p, d</td>
<td>0.5</td>
</tr>
<tr>
<td>Portugal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Junta de Energia Nuclear, Lisbon</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>p, d, e</td>
<td>2.0</td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 2 Junta de Energia Nuclear, Madrid</td>
<td>Cockcroft-Walton</td>
<td>n. a.</td>
<td>p, d</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>p, d, t, a</td>
<td>2.0</td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 A. B. Atomenergi, Stockholm</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>p, d, a</td>
<td>3.0</td>
</tr>
<tr>
<td>1 Chalmers University of Technology, Goteborg</td>
<td>Van de Graaff</td>
<td>4-m accelerating tube</td>
<td>p, d, t, a</td>
<td>4.0</td>
</tr>
<tr>
<td>3 Forsvarets Forskningsanstalt, Stockholm</td>
<td>Van de Graaff</td>
<td>2.25-m accelerating tube</td>
<td>p, d, e</td>
<td>5.0</td>
</tr>
<tr>
<td>3 Fysiska Institutionen, Lund</td>
<td>Van de Graaff</td>
<td>4.0-m accelerating tube</td>
<td>p, d</td>
<td>4.0</td>
</tr>
<tr>
<td>1 Nobel Institute for Physics, Stockholm</td>
<td>Cockcroft-Walton</td>
<td>7-m accelerating tube</td>
<td>p, d, a</td>
<td>1.2</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Dimensions</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Radiophysics Institute, Carolina Hospital, Stockholm</td>
<td>Cockcroft-Walton</td>
<td>3.5-m tank length</td>
<td>e→x-rays</td>
<td>1.2</td>
</tr>
<tr>
<td>1 Uppsala, University, Uppsala</td>
<td>Van de Graaff</td>
<td>1.5-m accelerating tube</td>
<td>e</td>
<td>0.8</td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Physikalisches Institut der Eidg. Technischen Hochschule, Zurich</td>
<td>Cockcroft-Walton</td>
<td>n. a.</td>
<td>p, d, a</td>
<td>1.2</td>
</tr>
<tr>
<td>1 Physikalisches Institut der Universität Basel, Basel</td>
<td>Cockcroft-Walton</td>
<td>n. a.</td>
<td>p</td>
<td>2.0</td>
</tr>
<tr>
<td>1 Physikalisches Institut der Universität Zürich, Zürich</td>
<td>Cockcroft-Walton</td>
<td>3-m accelerating tube</td>
<td>p, d</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Cockcroft-Walton</td>
<td>4-m accelerating tube</td>
<td>p, d, a</td>
<td>4.0</td>
</tr>
<tr>
<td>Union of South Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Diamond Research Laboratory, Johannesburg</td>
<td>Cockcroft-Walton</td>
<td>n. a.</td>
<td>p, d, a, e</td>
<td>2.0</td>
</tr>
<tr>
<td>Union of Soviet Socialist Republics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Physico-Technical Institute, USSR Academy of Sciences, Kharkov</td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>e</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>p, d, e</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Van de Graaff</td>
<td>n. a.</td>
<td>p, d, e, a</td>
<td>5.0</td>
</tr>
<tr>
<td>Yugoslavia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Institute "J. Stefan," Ljubljana</td>
<td>Van de Graaff</td>
<td>1.6-m accelerating tube</td>
<td>p</td>
<td>2.0</td>
</tr>
<tr>
<td>1 Institute of Nuclear Sciences, Belgrade</td>
<td>Cockcroft-Walton</td>
<td>5-m accelerating tube</td>
<td>p, d</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>Cockcroft-Walton</td>
<td>1-m accelerating tube</td>
<td>p, d</td>
<td>0.2</td>
</tr>
<tr>
<td>1 Institute "Rudjer Boskovic," Zagreb</td>
<td>Cockcroft-Walton</td>
<td>n. a.</td>
<td>d</td>
<td>0.2</td>
</tr>
</tbody>
</table>
II. Induction Machines: Betatrons

In the United States

<table>
<thead>
<tr>
<th>Location</th>
<th>Orbit Radius</th>
<th>Particles Accelerated</th>
<th>Energy (Mev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 4 Allis-Chalmers, Milwaukee, Wis.</td>
<td>8.20 in.</td>
<td>e</td>
<td>28</td>
</tr>
<tr>
<td>1, 4 Anderson Hospital and Tumor Institute, University of Texas, Houston, Tex.</td>
<td>9.5 in.</td>
<td>e</td>
<td>24</td>
</tr>
<tr>
<td>1, 4 Baldwin-Lima-Hamilton Corporation, Lima, O.</td>
<td>8.22 in.</td>
<td>e→x-rays</td>
<td>24</td>
</tr>
<tr>
<td>4 Birdsboro Steel Foundry, Birdsboro, Pa.</td>
<td>7.5 in.</td>
<td>e→x-rays</td>
<td>24</td>
</tr>
<tr>
<td>4 Bonney-Floyd Steel Castings Company, Columbus, O.</td>
<td>7.5 in.</td>
<td>e→x-rays</td>
<td>24</td>
</tr>
<tr>
<td>1 Case Institute of Technology, Cleveland, O.</td>
<td>17.25 cm</td>
<td>e</td>
<td>30</td>
</tr>
<tr>
<td>3 Chicago, University, Chicago, Ill.</td>
<td>33 in.</td>
<td>e</td>
<td>100</td>
</tr>
<tr>
<td>4 Continental Foundry and Machine Company, Coraopolis, Pa.</td>
<td>8.13 in.</td>
<td>e→x-rays</td>
<td>24</td>
</tr>
<tr>
<td>4 Continental Foundry and Machine Company, East Chicago, Ind.</td>
<td>7.5 in.</td>
<td>e→x-rays</td>
<td>24</td>
</tr>
<tr>
<td>1 Detroit Arsenal, Ordnance Corps, Center Line, Mich.</td>
<td>5.5 in.</td>
<td>e</td>
<td>15</td>
</tr>
<tr>
<td>1, 3, 4 Electric Steel Foundry Company, Portland, Oreg.</td>
<td>8 in.</td>
<td>e→x-rays</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>11.5 in.</td>
<td>e</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>33 in.</td>
<td>e</td>
<td>100</td>
</tr>
<tr>
<td>1 General Electric Research Laboratory, Schenectady, N. Y.</td>
<td>5.25 in.</td>
<td>e</td>
<td>11.7</td>
</tr>
<tr>
<td>4 General Steel Castings Company, Eddystone, Pa.</td>
<td>7.5 in.</td>
<td>e</td>
<td>24</td>
</tr>
<tr>
<td>4 General Steel Castings Company, Granite City, Ill.</td>
<td>7.5 in.</td>
<td>e</td>
<td>24</td>
</tr>
<tr>
<td>Location</td>
<td>Orbit Radius</td>
<td>Particles Accelerated</td>
<td>Energy (MeV)</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1, 4 Illinois, University, Urbana, Ill.</td>
<td>8 in.</td>
<td>e</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>10 in.</td>
<td>e</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>46 in.</td>
<td>e</td>
<td>340</td>
</tr>
<tr>
<td>1, 4 Illinois, University, Medical School, Chicago, Ill.</td>
<td>20 in.</td>
<td>e</td>
<td>24</td>
</tr>
<tr>
<td>1 Knolls Atomic Power Laboratory, General Electric Company, Schenectady, N. Y.</td>
<td>33 in.</td>
<td>e</td>
<td>100</td>
</tr>
<tr>
<td>1, 4 Los Alamos Scientific Laboratory, Los Alamos, N. Mex.</td>
<td>19.3 cm</td>
<td>e</td>
<td>24</td>
</tr>
<tr>
<td>1, 4 Madison Radiation Center, Madison, Wis.</td>
<td>8.5 in.</td>
<td>e</td>
<td>24</td>
</tr>
<tr>
<td>1, 4 Memorial Center, New York, N. Y.</td>
<td>20 cm</td>
<td>e</td>
<td>24</td>
</tr>
<tr>
<td>4 Mesta Machine Company, Homestead, Pa.</td>
<td>7.5 in.</td>
<td>e→x-rays</td>
<td>24</td>
</tr>
<tr>
<td>4 Michigan, University, Ann Arbor, Mich.</td>
<td>7.5 in.</td>
<td>e→x-rays</td>
<td>24</td>
</tr>
<tr>
<td>4 Mt. Sinai Hospital, New York, N. Y.</td>
<td>7.5 in.</td>
<td>e→x-rays</td>
<td>24</td>
</tr>
<tr>
<td>3 National Bureau of Standards, Washington, D. C.</td>
<td>115 in.</td>
<td>e</td>
<td>50</td>
</tr>
<tr>
<td>4 Ohio Steel Castings Company, Lima, O.</td>
<td>7.5 in.</td>
<td>e</td>
<td>24</td>
</tr>
<tr>
<td>1, 4 Pennsylvania, University, Philadelphia, Pa.</td>
<td>19.1 cm</td>
<td>e</td>
<td>24</td>
</tr>
<tr>
<td>1, 4 Picatinny Arsenal, Dover, N. J.</td>
<td>8 in.</td>
<td>e</td>
<td>24</td>
</tr>
<tr>
<td>1, 4 Pittsburgh Steel Foundry Corporation, Glassport, Pa.</td>
<td>8.22 in.</td>
<td>e</td>
<td>24</td>
</tr>
<tr>
<td>1, 4 Presbyterian Hospital, New York, N. Y.</td>
<td>7.5 in.</td>
<td>e→x-rays</td>
<td>25</td>
</tr>
<tr>
<td>1 Rensselaer Polytechnic Institute, Troy, N. Y.</td>
<td>11.5 in.</td>
<td>e</td>
<td>31</td>
</tr>
<tr>
<td>3 U. S. Naval Ordnance Laboratory, Silver Spring, Md.</td>
<td>5.2 in.</td>
<td>e</td>
<td>10</td>
</tr>
<tr>
<td>Location</td>
<td>Orbit Radius</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1, 4 U. S. Naval Research Laboratory, Washington, D. C.</td>
<td>7.3 in</td>
<td>e</td>
<td>21</td>
</tr>
<tr>
<td>1, 4 U. S. Navy Electronics Laboratory, San Diego, Calif.</td>
<td>8.2 in</td>
<td>e</td>
<td>26</td>
</tr>
<tr>
<td>1, 4 Washington University, School of Medicine, St. Louis, Mo.</td>
<td>19 cm</td>
<td>e</td>
<td>24</td>
</tr>
<tr>
<td>4 Watervliet Arsenal, Watervliet, N. Y.</td>
<td>7.5 in</td>
<td>e</td>
<td>24</td>
</tr>
<tr>
<td>Outside the United States</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Sao Paulo, University, Sao Paulo</td>
<td>7.5 in</td>
<td>e</td>
<td>24</td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 4 Ontario Cancer Institute, Toronto</td>
<td>7.5 in</td>
<td>e, γ</td>
<td>25</td>
</tr>
<tr>
<td>1, 4 Saskatchewan, University, Saskatoon, Saskatchewan</td>
<td>20 cm</td>
<td>e</td>
<td>25</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Institute Gustave Roussy, Paris</td>
<td>19 cm</td>
<td>e</td>
<td>22</td>
</tr>
<tr>
<td>4 Ministry of Health, Paris</td>
<td>19 cm</td>
<td>e→γ</td>
<td>24</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Physikalisches Institut der Technischen Hochschule, Karlsruhe</td>
<td>24 cm</td>
<td>e</td>
<td>31</td>
</tr>
<tr>
<td>1 Siemens-Reiniger-Werke, Erlangen</td>
<td>10 cm</td>
<td>e</td>
<td>15</td>
</tr>
<tr>
<td>21 cm</td>
<td>e</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>1 Universitat Frankfurt, Frankfurt</td>
<td>21 cm</td>
<td>e</td>
<td>35</td>
</tr>
<tr>
<td>Location</td>
<td>Orbit Radius</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universitat Heidelberg, Heidelberg</td>
<td>19.2 cm</td>
<td>e</td>
<td>35</td>
</tr>
<tr>
<td>Universitat Würzburg, Würzburg</td>
<td>20 cm</td>
<td>e</td>
<td>35</td>
</tr>
<tr>
<td>Great Britain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Christie Hospital and Holt Radium Institute, Withington, Manchester, England</td>
<td>19 cm</td>
<td>e</td>
<td>20</td>
</tr>
<tr>
<td>1Metropolitan-Vickers, Manchester, England</td>
<td>20 cm</td>
<td>e</td>
<td>20</td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Clinica Medica, Universita Torino, Turin</td>
<td>26 cm</td>
<td>e</td>
<td>31</td>
</tr>
<tr>
<td>1Instituto Nazionale di Fisica Nucleare, Universita Torino, Turin</td>
<td>24.5 cm</td>
<td>e</td>
<td>31</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Central Research Laboratory, Hitachi Ltd., Tokyo</td>
<td>7 cm</td>
<td>e</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>22 cm</td>
<td>e</td>
<td>20</td>
</tr>
<tr>
<td>1Electrotechnical Laboratory, Tokyo</td>
<td>13.5 cm</td>
<td>e</td>
<td>10</td>
</tr>
<tr>
<td>1Osaka University, Osaka</td>
<td>8 cm</td>
<td>e</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>19 cm</td>
<td>e</td>
<td>24</td>
</tr>
<tr>
<td>1Research Laboratory, Mitsubishi Electric Company, Amagasaki</td>
<td>18 cm</td>
<td>e</td>
<td>30</td>
</tr>
<tr>
<td>1Shimadzu Seisakusho, Ltd., Kyoto</td>
<td>8 cm</td>
<td>e</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>12.5 cm</td>
<td>e</td>
<td>15</td>
</tr>
<tr>
<td>1Tokyo Shibaura Electric Company, Ltd., Mazda Research Laboratory, Kawasaki</td>
<td>10 cm</td>
<td>e</td>
<td>15</td>
</tr>
<tr>
<td>Location</td>
<td>Orbit Radius</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Tokyo University of Education, Tokyo</td>
<td>8.5 cm</td>
<td>e</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>29 cm</td>
<td>e</td>
<td>30</td>
</tr>
<tr>
<td>New Zealand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 4 Dunedin Hospital, Dunedin, New Zealand</td>
<td>19 cm</td>
<td>e</td>
<td>24</td>
</tr>
<tr>
<td>Norway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Bergen University, Bergen</td>
<td>40 cm</td>
<td>e</td>
<td>47</td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Royal Institute of Technology, Stockholm</td>
<td>8 cm</td>
<td>e</td>
<td>5</td>
</tr>
<tr>
<td>3 Institutionen for Fysikalisk Kemi, Stockholm</td>
<td>9.5 cm</td>
<td>e</td>
<td>5</td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Roentgeninstitut, Inselspital, Bern</td>
<td>25 cm</td>
<td>e</td>
<td>31</td>
</tr>
<tr>
<td>1 Physikalisches Institut der Universitat Zurich, Zurich</td>
<td>30 cm</td>
<td>e</td>
<td>31</td>
</tr>
<tr>
<td>Union of Soviet Socialist Republics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Lebedev Institute, Moscow</td>
<td>n.a.</td>
<td>e</td>
<td>30</td>
</tr>
<tr>
<td>6 Moscow State University, Moscow</td>
<td>n.a.</td>
<td>e</td>
<td>n.a.</td>
</tr>
<tr>
<td>6 Tomsk</td>
<td>n.a.</td>
<td>e</td>
<td>100</td>
</tr>
<tr>
<td>6 Tomsk</td>
<td>n.a.</td>
<td>e</td>
<td>20</td>
</tr>
<tr>
<td>Yugoslavia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Institute "J. Stefan," Ljubljana</td>
<td>25 cm</td>
<td>e</td>
<td>31</td>
</tr>
</tbody>
</table>
III. Resonance Machines

Linear Accelerators

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Accelerator Length</th>
<th>Particles Accelerated</th>
<th>Energy (Mev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Argonne Cancer Research Hospital, University of Chicago, Chicago, Ill.</td>
<td>Traveling-wave</td>
<td>16 ft</td>
<td>e</td>
<td>60</td>
</tr>
<tr>
<td>1 Bartol Research Foundation of the Franklin Institute, Swarthmore, Pa.</td>
<td>n. a.</td>
<td>3 ft</td>
<td>e</td>
<td>1.4</td>
</tr>
<tr>
<td>1 Brookhaven National Laboratory, Upton, Long Island, N. Y.</td>
<td>n. a.</td>
<td>110 ft</td>
<td>p</td>
<td>50</td>
</tr>
<tr>
<td>1 Brown University, Providence, R. I.</td>
<td>n. a.</td>
<td>3 ft</td>
<td>p, d</td>
<td>0.2</td>
</tr>
<tr>
<td>1 California, University, Radiation Laboratory, Berkeley, Calif.</td>
<td>Traveling-wave 3.3 ft</td>
<td>e</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Traveling-wave 3.3 ft</td>
<td>e</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standing-wave 40 ft</td>
<td>p</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standing-wave 18.2 ft</td>
<td>p</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standing-wave 120 ft</td>
<td>heavy ions to Ne20</td>
<td>10 Mev/nucleon</td>
<td></td>
</tr>
<tr>
<td>1, 5 California, University, Radiation Laboratory, Livermore, Calif.</td>
<td>*Traveling-wave 14 ft</td>
<td>e</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Traveling-wave 11 ft</td>
<td>p</td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Traveling-wave 11 ft</td>
<td>d</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Traveling-wave 11 ft</td>
<td>a</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>1 California, University, Radiation Laboratory, Site 300, Livermore, Calif.</td>
<td>Traveling-wave 6.7 ft</td>
<td>e</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4 Columbia University, New York, N. Y.</td>
<td>n. a.</td>
<td>9.5 ft</td>
<td>e</td>
<td>15</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Accelerator Length</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1Ethicon, Inc., Somerville, N. J.</td>
<td>Traveling-wave</td>
<td>10 ft</td>
<td>e</td>
<td>7</td>
</tr>
<tr>
<td>1General Atomic, Division of General Dynamics, San Diego, Calif.</td>
<td>*n. a.</td>
<td>12 ft</td>
<td>e</td>
<td>33</td>
</tr>
<tr>
<td>1Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Mass.</td>
<td>n. a.</td>
<td>21 ft</td>
<td>e</td>
<td>17</td>
</tr>
<tr>
<td>1Michael Reese Hospital, Chicago, Ill.</td>
<td>n. a.</td>
<td>10 ft</td>
<td>e</td>
<td>35</td>
</tr>
<tr>
<td>1Minnesota, University, Institute of Technology, Minneapolis, Minn.</td>
<td>n. a.</td>
<td>120 ft</td>
<td>p</td>
<td>68</td>
</tr>
<tr>
<td>1Montana State University, Missoula, Mont.</td>
<td>Traveling-wave</td>
<td>37.8 ft</td>
<td>e</td>
<td>7</td>
</tr>
<tr>
<td>1Purdue University, Lafayette, Ind.</td>
<td>n. a.</td>
<td>10 ft</td>
<td>e</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>n. a.</td>
<td>2.5 ft</td>
<td>e</td>
<td>1.7</td>
</tr>
<tr>
<td>1Stanford Hospital, San Francisco, Calif.</td>
<td>Traveling-wave</td>
<td>6 ft</td>
<td>e-\times-rays</td>
<td>5</td>
</tr>
<tr>
<td>1Stanford University, Stanford, Calif.</td>
<td>Traveling-wave</td>
<td>12 ft</td>
<td>e</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Traveling-wave</td>
<td>260 ft</td>
<td>e</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>Traveling-wave</td>
<td>20 ft</td>
<td>e</td>
<td>75</td>
</tr>
<tr>
<td>1Stanford University, Microwave Laboratory, Stanford, Calif.</td>
<td>Traveling-wave</td>
<td>2 ft</td>
<td>e</td>
<td>6</td>
</tr>
<tr>
<td>1U. S. Army Ionizing Radiation Center, Lathrop, Calif.</td>
<td>*Traveling-wave</td>
<td>15 ft</td>
<td>e</td>
<td>24</td>
</tr>
<tr>
<td>1Virginia, University, Charlottesville, Va.</td>
<td>n. a.</td>
<td>1 ft</td>
<td>e</td>
<td>0.75</td>
</tr>
<tr>
<td>1Yale University, New Haven, Conn.</td>
<td>n. a.</td>
<td>20 ft</td>
<td>e</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>n. a.</td>
<td>138 ft</td>
<td>heavy ions to A^{40}</td>
<td>10 Mev/nucleon</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Accelerator Length</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Ecole Royale Militaire, Centre de Physique Nucleaire, Brussels</td>
<td>Helix</td>
<td>5 m</td>
<td>p</td>
<td>10</td>
</tr>
<tr>
<td>1Ghent, University, Ghent</td>
<td>n.a.</td>
<td>2 m</td>
<td>e</td>
<td>4</td>
</tr>
<tr>
<td>*n.a.</td>
<td></td>
<td>n.a.</td>
<td>n.a.</td>
<td>15</td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1McGill University, Montreal</td>
<td>n.a.</td>
<td>10 ft</td>
<td>e</td>
<td>10</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Centre d'Etudes Nucleaires de Saclay, Saclay</td>
<td>n.a.</td>
<td>6.30 m</td>
<td>e</td>
<td>28</td>
</tr>
<tr>
<td>1Centre Anticancereaux, Nancy</td>
<td>n.a.</td>
<td>2 m</td>
<td>e</td>
<td>4</td>
</tr>
<tr>
<td>1Curie Foundation, Paris</td>
<td>n.a.</td>
<td>3 m</td>
<td>e</td>
<td>4</td>
</tr>
<tr>
<td>1Paris, University, Laboratoire d' Electronique et de Radioelectricite, Paris</td>
<td>Traveling-wave</td>
<td>1 m</td>
<td>e</td>
<td>2</td>
</tr>
<tr>
<td>Great Britain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Associated Electrical Industries, Ltd., Aldermaston, England</td>
<td>Helix</td>
<td>1 m</td>
<td>p</td>
<td>4</td>
</tr>
<tr>
<td>1Atomic Energy Research Establishment, Harwell, England</td>
<td>Traveling-wave</td>
<td>6 m</td>
<td>e</td>
<td>15</td>
</tr>
<tr>
<td>*n.a.</td>
<td></td>
<td>100 ft</td>
<td>p</td>
<td>50</td>
</tr>
<tr>
<td>Traveling-wave</td>
<td>6 m</td>
<td>e</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>1Christie Hospital and Holt Radium Institute, Manchester, England</td>
<td>n.a.</td>
<td>1 m</td>
<td>e</td>
<td>4</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Length</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
<td>--------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Great Britain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Hammersmith Hospital, London, England</td>
<td>n.a.</td>
<td>3 m</td>
<td>e</td>
<td>8</td>
</tr>
<tr>
<td>1Liverpool Radium Institute, Clatterbridge Hospital, Liverpool, England</td>
<td>n.a.</td>
<td>1.5 m</td>
<td>e</td>
<td>4</td>
</tr>
<tr>
<td>1Metropolitan-Vickers, Manchester, England</td>
<td>Traveling-wave</td>
<td>1 m</td>
<td>e</td>
<td>4</td>
</tr>
<tr>
<td>1Ministry of Supply, London, England</td>
<td>n.a.</td>
<td>1 m</td>
<td>e</td>
<td>5</td>
</tr>
<tr>
<td>1Mount Vernon Hospital, Northwood, London, England</td>
<td>Traveling-wave</td>
<td>100 cm</td>
<td>e</td>
<td>3.9</td>
</tr>
<tr>
<td>1Mullard Research Laboratories, Surrey, England</td>
<td>n.a.</td>
<td>1 m</td>
<td>e</td>
<td>4</td>
</tr>
<tr>
<td>1Newcastle General Hospital, Newcastle-upon-Tyne, England</td>
<td>Standing-wave</td>
<td>1 m</td>
<td>e</td>
<td>4.3</td>
</tr>
<tr>
<td>1St. Bartholomew's Hospital, London, England</td>
<td>n.a.</td>
<td>6 m</td>
<td>e</td>
<td>17</td>
</tr>
<tr>
<td>1Western General Hospital, Edinburgh, Scotland</td>
<td>n.a.</td>
<td>1 m</td>
<td>e</td>
<td>4</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Central Research Laboratory, Hitachi Ltd., Tokyo</td>
<td>*n.a.</td>
<td>2 m</td>
<td>e</td>
<td>6</td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1European Council for Nuclear Research, Geneva</td>
<td>*n.a.</td>
<td>n.a.</td>
<td>p</td>
<td>50</td>
</tr>
<tr>
<td>Union of Soviet Socialist Republics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6Big Volga Laboratories, Bolshoya Volga</td>
<td>n.a.</td>
<td>n.a.</td>
<td>p</td>
<td>9</td>
</tr>
<tr>
<td>6Moscow Physical Institute, Moscow</td>
<td>n.a.</td>
<td>n.a.</td>
<td>p</td>
<td>40</td>
</tr>
<tr>
<td>6Ukrainian Technical Institute, Kharkov</td>
<td>n.a.</td>
<td>n.a.</td>
<td>p</td>
<td>21</td>
</tr>
</tbody>
</table>
Magnetic Accelerators: Cyclotrons

In the United States

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Pole-piece Diameter</th>
<th>Particles Accelerated</th>
<th>Energy (Mev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Argonne National Laboratory, Lemont, Ill.</td>
<td>CW</td>
<td>62 in.</td>
<td>p</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>43.2</td>
</tr>
<tr>
<td>2Brookhaven National Laboratory, Upton, Long Island, N. Y.</td>
<td>n. a.</td>
<td>18 in.</td>
<td>p</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>44</td>
</tr>
<tr>
<td>1California, University, Radiation Laboratory, Berkeley, Calif.</td>
<td>CW</td>
<td>72 in.</td>
<td>p</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>FM</td>
<td>184 in.</td>
<td>p</td>
<td>720</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>430</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>880</td>
</tr>
<tr>
<td>1California, University, Radiation Laboratory, Livermore, Calif.</td>
<td>CW</td>
<td>90 in.</td>
<td>(variable energy)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>24</td>
</tr>
<tr>
<td>1Carnegie Institute of Technology, Pittsburgh, Pa.</td>
<td>FM</td>
<td>70.8 in.</td>
<td>p</td>
<td>450</td>
</tr>
<tr>
<td>1Carnegie Institution of Washington, Washington, D. C.</td>
<td>CW</td>
<td>60 in.</td>
<td>p</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>32</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Pole-piece Diameter</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1Chicago, University, Enrico Fermi Institute for Nuclear Studies, Chicago, Ill.</td>
<td>FM</td>
<td>170 in.</td>
<td>p</td>
<td>450</td>
</tr>
<tr>
<td>1Columbia University, Pupin Cyclotron Laboratory, New York, N. Y.</td>
<td>CW</td>
<td>36 in.</td>
<td>p</td>
<td>15</td>
</tr>
<tr>
<td>1Columbia University, Nevis Cyclotron Laboratories, Irvington-on-Hudson, N. Y.</td>
<td>FM</td>
<td>164 in.</td>
<td>p</td>
<td>400</td>
</tr>
<tr>
<td>1Harvard University, Cyclotron Laboratory, Cambridge, Mass.</td>
<td>FM</td>
<td>95 in.</td>
<td>p</td>
<td>160</td>
</tr>
<tr>
<td>1Illinois, University, Urbana, Ill.</td>
<td>n.a.</td>
<td>47 in.</td>
<td>p</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>24</td>
</tr>
<tr>
<td>1Indiana University, Bloomington, Ind.</td>
<td>GW</td>
<td>45 in.</td>
<td>d</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>He++ 27.8</td>
</tr>
<tr>
<td>1Lewis Flight Propulsion Laboratory, National Advisory Committee for Aeronautics, Cleveland, O.</td>
<td>CW</td>
<td>60 in.</td>
<td>d</td>
<td>20</td>
</tr>
<tr>
<td>1Los Alamos Scientific Laboratory, Los Alamos, N. Mex.</td>
<td>CW</td>
<td>(variable energy)</td>
<td>p</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>32</td>
</tr>
<tr>
<td>1Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Mass.</td>
<td>n.a.</td>
<td>42 in.</td>
<td>p</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>30</td>
</tr>
<tr>
<td>1Michigan, University, Ann Arbor, Mich.</td>
<td>CW</td>
<td>42 in.</td>
<td>p, d, a</td>
<td>10</td>
</tr>
<tr>
<td>1Oak Ridge National Laboratory, Oak Ridge, Tenn. (continued on page 143)</td>
<td>CW</td>
<td>86 in.</td>
<td>p</td>
<td>25</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Pole-piece Diameter</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1Oak Ridge National Laboratory, Oak Ridge, Tenn.</td>
<td>CW</td>
<td>63 in.</td>
<td>N³⁺</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>CW</td>
<td>44 in.</td>
<td>p</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>CW</td>
<td>48 in.</td>
<td>N⁵⁺</td>
<td>80</td>
</tr>
<tr>
<td>1Oregon State College, Corvallis, Oreg.</td>
<td>CW</td>
<td>37 in.</td>
<td>d</td>
<td>7.5</td>
</tr>
<tr>
<td>1Pittsburgh, University, Radiation Laboratory, Pittsburgh, Pa.</td>
<td>n.a.</td>
<td>47 in.</td>
<td>p</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>38</td>
</tr>
<tr>
<td>1Princeton University, Palmer Physical Laboratory, Princeton, N. J.</td>
<td>FM</td>
<td>35 in.</td>
<td>p</td>
<td>20</td>
</tr>
<tr>
<td>1Purdue University, Lafayette, Ind.</td>
<td>n.a.</td>
<td>37 in.</td>
<td>d</td>
<td>9.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>19.4</td>
</tr>
<tr>
<td>1Rochester, University, Rochester, N. Y.</td>
<td>n.a.</td>
<td>27 in.</td>
<td>p</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>FM</td>
<td>130 in.</td>
<td>p</td>
<td>240</td>
</tr>
<tr>
<td>1Stanford University, Stanford, Calif.</td>
<td>CW</td>
<td>27 in.</td>
<td>d</td>
<td>2.8</td>
</tr>
<tr>
<td>1U. S. Naval Research Laboratory, Washington, D. C.</td>
<td>n.a.</td>
<td>6 in.</td>
<td>e</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>n.a.</td>
<td>6 in.</td>
<td>e</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>n.a.</td>
<td>6 in.</td>
<td>e</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>n.a.</td>
<td>6 in.</td>
<td>e</td>
<td>6</td>
</tr>
<tr>
<td>1Washington University, St. Louis, Mo.</td>
<td>CW</td>
<td>45 in.</td>
<td>p</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>a</td>
<td>20.4</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Pole-piece Diameter</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1. Yale University, Sloane Physics Laboratory, New Haven, Conn.</td>
<td>CW</td>
<td>28 in.</td>
<td>d</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>7.6</td>
</tr>
<tr>
<td>Outside the United States</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. n. a.</td>
<td>FM</td>
<td>n. a.</td>
<td>n. a.</td>
<td>n. a.</td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Australian National University, Canberra</td>
<td>n. a.</td>
<td>30 in.</td>
<td>p</td>
<td>8</td>
</tr>
<tr>
<td>1. Melbourne, University, Melbourne</td>
<td>variable energy</td>
<td>40 in.</td>
<td>p</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>6.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>12.5</td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 3. Centre de Physique Nucleaire, Louvain</td>
<td>CW</td>
<td>94 cm</td>
<td>d</td>
<td>13.35</td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. McGill University, Montreal, Quebec</td>
<td>FM</td>
<td>82 in.</td>
<td>p</td>
<td>100</td>
</tr>
<tr>
<td>1. Western Ontario, University, London, Ontario</td>
<td>n. a.</td>
<td>35 cm</td>
<td>e</td>
<td>4.5</td>
</tr>
<tr>
<td>Denmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Copenhagen, University, Copenhagen</td>
<td>CW</td>
<td>90 cm</td>
<td>p</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>also C, N, O</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Pole-piece Diameter</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Centre d' Etudes Nucleaires de Saclay, Saclay</td>
<td>n.a.</td>
<td>160 cm</td>
<td>d</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>a</td>
<td>45</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>N⁺⁺</td>
<td>120</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>O⁺⁺</td>
<td>120</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Institut für Strahlen-Und Kernphysik, Universität Bonn, Bonn</td>
<td>FM</td>
<td>190 cm</td>
<td>d</td>
<td>35</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>a</td>
<td>70</td>
</tr>
<tr>
<td>1Institut für Physik im Max-Planck-Institut für Med. Forschung, Heidelberg</td>
<td>CW</td>
<td>101 cm</td>
<td>d</td>
<td>13</td>
</tr>
<tr>
<td>1Universität Braunschweig, Braunschweig</td>
<td>n.a.</td>
<td>50 cm</td>
<td>e</td>
<td>5</td>
</tr>
<tr>
<td>1Universität Mainz, Mainz</td>
<td>n.a.</td>
<td>50 cm</td>
<td>e</td>
<td>10</td>
</tr>
<tr>
<td>Great Britain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Atomic Energy Research Establishment, Harwell, England</td>
<td>FM</td>
<td>110 in.</td>
<td>p</td>
<td>175</td>
</tr>
<tr>
<td>1, 3Birmingham, University, Birmingham, England</td>
<td>CW</td>
<td>61.5 in.</td>
<td>p</td>
<td>10</td>
</tr>
<tr>
<td>1, 3</td>
<td></td>
<td></td>
<td>d</td>
<td>20</td>
</tr>
<tr>
<td>1, 3</td>
<td></td>
<td></td>
<td>H₂⁺</td>
<td>40</td>
</tr>
<tr>
<td>1, 3</td>
<td></td>
<td></td>
<td>He³</td>
<td>40</td>
</tr>
<tr>
<td>1, 3</td>
<td></td>
<td></td>
<td>a</td>
<td>40</td>
</tr>
<tr>
<td>1, 3</td>
<td></td>
<td></td>
<td>C</td>
<td>40</td>
</tr>
<tr>
<td>1, 3</td>
<td></td>
<td></td>
<td>N</td>
<td>40</td>
</tr>
<tr>
<td>1, 3</td>
<td></td>
<td></td>
<td>O</td>
<td>40</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Pole-piece Diameter</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Great Britain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambridge, University, Cambridge, England</td>
<td>n.a.</td>
<td>35.5 in.</td>
<td>p</td>
<td>8</td>
</tr>
<tr>
<td>Hammersmith Hospital, London, England</td>
<td>CW</td>
<td>50 in.</td>
<td>p</td>
<td>7.5</td>
</tr>
<tr>
<td>Liverpool, University, Mt. Pleasant, Liverpool, England</td>
<td>CW</td>
<td>37 in.</td>
<td>p</td>
<td>4.5</td>
</tr>
<tr>
<td>University College, London, England</td>
<td>FM</td>
<td>156 in.</td>
<td>p</td>
<td>410</td>
</tr>
<tr>
<td>Hebrew University, Jerusalem</td>
<td>n.a.</td>
<td>n.a.</td>
<td>p</td>
<td>1</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kyoto University, Kyoto</td>
<td>n.a.</td>
<td>105 cm</td>
<td>d</td>
<td>16</td>
</tr>
<tr>
<td>Osaka University, Osaka</td>
<td>n.a.</td>
<td>111.8 cm</td>
<td>d</td>
<td>12</td>
</tr>
<tr>
<td>Scientific Research Institute, Tokyo</td>
<td>n.a.</td>
<td>66 cm</td>
<td>d</td>
<td>4</td>
</tr>
<tr>
<td>Tokyo, University, Institute of Science and Technology, Tokyo</td>
<td>n.a.</td>
<td>40 cm</td>
<td>d</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td>4</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Pole-piece Diameter</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Tokyo, University, Institute for Nuclear Study, Tokyo</td>
<td>n.a.</td>
<td>160 cm</td>
<td>p</td>
<td>65 (FM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>22 (CW)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td>16 (CW)</td>
</tr>
<tr>
<td>Netherlands</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Instituut voor Kernphysisch Onderzoek, Amsterdam</td>
<td>FM</td>
<td>180 cm</td>
<td>d</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>52</td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Nobel Institute for Physics, Stockholm</td>
<td>CW</td>
<td>80 cm</td>
<td>p</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>CW</td>
<td>225 cm</td>
<td>p</td>
<td>11/Mev nucleon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>11/Mev nucleon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>11/Mev nucleon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ions to Ne6+</td>
<td>11/Mev nucleon</td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Physikalisches Institut der Universitat Zurich, Zurich</td>
<td>FM</td>
<td>230 cm</td>
<td>p</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>20</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Pole-piece Diameter</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 European Council for Nuclear Research, Geneva</td>
<td>FM</td>
<td>50 cm</td>
<td>p</td>
<td>600</td>
</tr>
<tr>
<td>Union of South Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 South African Council for Scientific and Industrial Research, Pretoria</td>
<td>CW</td>
<td>113 cm</td>
<td>d</td>
<td>15.5</td>
</tr>
<tr>
<td>Union of Soviet Socialist Republics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 6 Big Volga Laboratories, Bolshoya Volga</td>
<td>FM</td>
<td>6 m</td>
<td>n.a.</td>
<td>680</td>
</tr>
<tr>
<td>6 Institute for Thermal Studies, Moscow</td>
<td>CW</td>
<td>1.5 m</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>6 Moscow Physical Institute, Moscow</td>
<td>n.a.</td>
<td>1.5 m</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>6 Peking</td>
<td>CW</td>
<td>n.a.</td>
<td>n.a.</td>
<td>25</td>
</tr>
<tr>
<td>1 Radium Institute, USSR Academy of Sciences, Leningrad</td>
<td>n.a.</td>
<td>14 in.</td>
<td>d</td>
<td>1.8</td>
</tr>
<tr>
<td>Yugoslavia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Institute "Rudjer Boskovic," Zagreb</td>
<td>*n.a.</td>
<td>140 cm</td>
<td>p</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d</td>
<td>16 heavy ions</td>
</tr>
</tbody>
</table>
Magnetic Accelerators: Synchrotrons

In the United States

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Orbit Radius</th>
<th>Particles Accelerated</th>
<th>Energy (Mev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brookhaven National Laboratory, Upton, Long Island, N. Y.</td>
<td>proton</td>
<td>30 ft</td>
<td>p</td>
<td>3,000</td>
</tr>
<tr>
<td></td>
<td>*proton</td>
<td>421.45 ft</td>
<td>p</td>
<td>30,000</td>
</tr>
<tr>
<td>California, University, Medical Center, San Francisco, Calif.</td>
<td>electron</td>
<td>29 cm</td>
<td>e</td>
<td>70</td>
</tr>
<tr>
<td>California, University, Radiation Laboratory, Berkeley, Calif.</td>
<td>electron</td>
<td>3.3 ft</td>
<td>e</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>proton</td>
<td>50 ft</td>
<td>p</td>
<td>6,300</td>
</tr>
<tr>
<td>California Institute of Technology, Pasadena, Calif.</td>
<td>electron</td>
<td>376 cm</td>
<td>e</td>
<td>1,200</td>
</tr>
<tr>
<td>Cornell University, Laboratory of Nuclear Studies, Ithaca, N. Y.</td>
<td>electron</td>
<td>12.5 ft</td>
<td>e</td>
<td>1,000</td>
</tr>
<tr>
<td>General Electric Company, Schenectady, N. Y.</td>
<td>electron</td>
<td>2 ft</td>
<td>e</td>
<td>300</td>
</tr>
<tr>
<td>Iowa State College, Ames, Ia.</td>
<td>electron</td>
<td>1 ft</td>
<td>e</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>electron</td>
<td>1 ft</td>
<td>e</td>
<td>90</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology, Cambridge, Mass.</td>
<td>electron</td>
<td>3.3 ft</td>
<td>e</td>
<td>350</td>
</tr>
<tr>
<td>Michigan, University, Ann Arbor, Mich.</td>
<td>electron</td>
<td>3.3 ft</td>
<td>e</td>
<td>100</td>
</tr>
<tr>
<td>Midwestern Universities Research Association, Madison, Wis.</td>
<td>FFAG</td>
<td>60 cm</td>
<td>e</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>FFAG</td>
<td>60 cm</td>
<td>e</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>FFAG</td>
<td>150 cm</td>
<td>e</td>
<td>40</td>
</tr>
<tr>
<td>Purdue University, Lafayette, Ind.</td>
<td>electron</td>
<td>100 cm</td>
<td>e</td>
<td>340</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Orbit Radius</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1 U. S. Naval Research Laboratory, Washington, D. C.</td>
<td>*electron</td>
<td>77 cm</td>
<td>e</td>
<td>100</td>
</tr>
<tr>
<td>1 Virginia, University, Charlottesville, Va.</td>
<td>electron</td>
<td>30 cm</td>
<td>e</td>
<td>75</td>
</tr>
</tbody>
</table>

Outside the United States

Australia

1 Australian National University, Canberra
- *proton* 480 cm p 10,600
- electron 10 cm e 33

1 Melbourne, University, Melbourne
- electron 10 cm e 18

Canada

1 Queens University, Kingston, Ontario
- electron 29.3 cm e 70

France

1 Centre d'Etudes Nucleaires de Saclay, Saclay
- proton 8.40 m p 4,000

Germany

1 Physikalisches Institut, Freie Universitat, Berlin - Dahlem
- electron 7.5 cm e 12

1 Physikalisches Institut der Universitat Bonn, Bonn
- electron 170 cm e 500

Great Britain

1 Birmingham, University, Birmingham England
- proton 450 cm p 1,000

1 Cambridge, University, Cambridge, England
- electron 10 cm e 33

1 Oxford University, Oxford, England
- electron 46.7 cm e 125
<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Orbit Radius</th>
<th>Particles Accelerated</th>
<th>Energy (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Great Britain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Glasgow, University, Glasgow, Scotland</td>
<td>electron</td>
<td>125 cm</td>
<td>e</td>
<td>340</td>
</tr>
<tr>
<td>1Royal Cancer Hospital, London England</td>
<td>electron</td>
<td>10 cm</td>
<td>e</td>
<td>30</td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Istituto Nazionale di Fisica Nucleare, Rome</td>
<td>electron</td>
<td>360 cm</td>
<td>e</td>
<td>1,000</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Osaka Prefectural University, Osaka</td>
<td>electron</td>
<td>14 cm</td>
<td>e</td>
<td>30</td>
</tr>
<tr>
<td>1Tohoku University, Sendai</td>
<td>electron</td>
<td>25 cm</td>
<td>e</td>
<td>40</td>
</tr>
<tr>
<td>1Tokyo, University, Faculty of Science, Tokyo</td>
<td>electron</td>
<td>100 cm</td>
<td>e</td>
<td>200</td>
</tr>
<tr>
<td>1Tokyo, University, Institute of Nuclear Study, Tokyo</td>
<td>electron</td>
<td>400 cm</td>
<td>e</td>
<td>1,000</td>
</tr>
<tr>
<td>1Tokyo Institute of Technology, Tokyo</td>
<td>electron</td>
<td>15 cm</td>
<td>e</td>
<td>25</td>
</tr>
<tr>
<td>Netherlands</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Delft Institute of Technology, Delft</td>
<td>proton</td>
<td>3.25 m</td>
<td>p</td>
<td>1,000</td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1Institutionen for Electronik, Royal Institute of Technology, Stockholm</td>
<td>electron</td>
<td>3.65 m</td>
<td>e</td>
<td>1,200</td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1European Council for Nuclear Research</td>
<td>proton</td>
<td>100 m</td>
<td>p</td>
<td>25,000</td>
</tr>
<tr>
<td>1Roentgeninstitut, Inselspital, Bern</td>
<td>electron</td>
<td>29 cm</td>
<td>e</td>
<td>100</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Orbit Radius</td>
<td>Particles Accelerated</td>
<td>Energy (Mev)</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Union of Soviet Socialist Republics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1, 6, 7 Big Volga Laboratories, Bolshoi Volga</td>
<td>proton</td>
<td>28 m</td>
<td>p</td>
<td>10,000</td>
</tr>
<tr>
<td>6, 7 Leningrad</td>
<td>electron</td>
<td>n. a.</td>
<td>e</td>
<td>150</td>
</tr>
<tr>
<td>6, 7 Lebedev Institute, Moscow</td>
<td>electron</td>
<td>n. a.</td>
<td>e</td>
<td>240</td>
</tr>
<tr>
<td>6 Moscow Physical Institute, Moscow</td>
<td>nonferrous, electron</td>
<td>n. a.</td>
<td>e</td>
<td>200</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

The author sincerely appreciates the aid and encouragement that he has received from many sources during the preparation of this bibliography and accelerator list. The aid of various members of the Technical Information Division staff has been invaluable. Special thanks are due to Dr. Edwin M. McMillan for suggesting the accelerator classification system used here.

This work was performed under the auspices of the United States Atomic Energy Commission.
LIST OF PARTICLE-ACCELERATOR INSTALLATIONS:
ADDENDA AND ERRATA

Gerald A. Behman

January 20, 1959

Printed for the U.S. Atomic Energy Commission
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
LIST OF PARTICLE-ACCELERATOR INSTALLATIONS: ADDENDA AND ERRATA

Gerald A. Behman

Lawrence Radiation Laboratory
University of California
Berkeley, California

January 20, 1959

Communications received by the author after recent publication of a list of particle-accelerator installations operating throughout the world have yielded additional information and pointed out certain errata. The addenda and corrected information are given below.

Addenda

1. DIRECT CURRENT MACHINES

In the United States

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Dimensions</th>
<th>Particles accelerated</th>
<th>Energy (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argonne National</td>
<td>Van de Graaff</td>
<td>n.a.</td>
<td>e, p, d</td>
<td>3.0</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lemont, Ill.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2J.R. Wallace, Argonne National Laboratory, private communication, December, 1958.
<table>
<thead>
<tr>
<th>Institution</th>
<th>Accelerator Type</th>
<th>Model</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Electric Co., General Engineering</td>
<td>Cockcroft-Walton</td>
<td>3.6-ft accelerating tube</td>
<td>d</td>
</tr>
<tr>
<td>Laboratory, Schenectady, N.Y.</td>
<td>*Cockcroft-Walton</td>
<td>15-ft accelerating tube</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>*Cockcroft-Walton</td>
<td>15-ft accelerating tube</td>
<td>d</td>
</tr>
<tr>
<td>Vanderbilt University, Nashville, Tenn.</td>
<td>Cockcroft-Walton</td>
<td>n. a.</td>
<td>p, d, a</td>
</tr>
<tr>
<td>Wesleyan University, Middletown, Conn.</td>
<td>Cockcroft-Walton</td>
<td>3-ft accelerating tube</td>
<td>d</td>
</tr>
</tbody>
</table>

*Under construction

4 C. D. Curtis, Vanderbilt University, private communication, February, 1959.

5 F. Boley, Wesleyan University, private communication, January, 1959.
Outside the United States

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Dimensions</th>
<th>Particles accelerated</th>
<th>Energy (Mev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Laboratoria de Fisica Nuclear, Santiago</td>
<td>Cockcroft-Walton</td>
<td>12-ft accelerating tube</td>
<td>p, d, a</td>
<td>0.72</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Centre d'Etudes Nucléaires de Saclay, Saclay</td>
<td>Felici</td>
<td>0.41-m accelerating tube</td>
<td>p, d</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>Felici</td>
<td>1.9-m accelerating tube</td>
<td>p, d</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Cockcroft-Walton</td>
<td>n.a.</td>
<td>p, d</td>
<td>0.3</td>
</tr>
<tr>
<td>7 Compagnie Francaise de Van de Graaff Raffinage</td>
<td>n.a.</td>
<td>e</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7 Direction des Etudes et Fabrications d'Armement, Paris</td>
<td>Felici</td>
<td>0.41-m accelerating tube</td>
<td>p, d</td>
<td>0.15</td>
</tr>
<tr>
<td>7 Ecole des Hautes Etudes, Felici Paris</td>
<td>n.a.</td>
<td>p, d</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>7 Faculte des Sciences, Alger</td>
<td>Felici</td>
<td>1.9-m accelerating tube</td>
<td>p, d, e</td>
<td>0.6</td>
</tr>
<tr>
<td>7 Faculte des Sciences, Grenoble</td>
<td>Felici</td>
<td>n.a.</td>
<td>p, d</td>
<td>0.3</td>
</tr>
<tr>
<td>7 Faculte des Sciences, Paris</td>
<td>Felici</td>
<td>n.a.</td>
<td>e</td>
<td>1</td>
</tr>
<tr>
<td>7 Faculte des Sciences, Paris</td>
<td>Felici</td>
<td>1.9-m accelerating tube</td>
<td>p, d, e</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Cockcroft-Walton</td>
<td>n.a.</td>
<td>e</td>
<td>1</td>
</tr>
</tbody>
</table>

6 C. M. Raggio Laboratoria de Fisica Nuclear, Santiago, Chile, private communication, December, 1958.

7 P. Silvy, Societe Anonyme de Machines Electrostatique, Grenoble, France, private communication, December, 1958.
<table>
<thead>
<tr>
<th>Location</th>
<th>Facility Name</th>
<th>Accelerating Tube</th>
<th>p, d</th>
<th>e, a, d</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Faculte des Sciences, Strasbourg</td>
<td>Felici</td>
<td>0.41-</td>
<td>p, d</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>n.a.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Laboratoire de Synthese</td>
<td>Felici</td>
<td>1.9-m</td>
<td>p, d, e</td>
<td>0.6</td>
</tr>
<tr>
<td>Atomique, Ivry</td>
<td>Felici</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n.a.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Zealand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Auckland, University, Auckland</td>
<td>Cockcroft-Walton</td>
<td></td>
<td>p, d</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>n.a.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Otago, University, Dunedin</td>
<td>Van de Graaff</td>
<td></td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Pakistan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Government College, Lahore</td>
<td>Cockcroft-Walton</td>
<td>12-ft</td>
<td>p, d, a</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>accelerating tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Istanbul, University, Istanbul</td>
<td>Cockcroft-Walton</td>
<td>2.5-m</td>
<td>p, d</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>accelerating tube</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8 R. E. White, High Voltage Laboratory, Massachusetts Institute of Technology, Cambridge, Mass., private communication, January, 1959.
10 I. Yenicay, Istanbul University, Istanbul, Turkey, private communication, January, 1959.
II. INDUCTION MACHINES: BETATRONS

Outside the United States

<table>
<thead>
<tr>
<th>Location</th>
<th>Orbit radius</th>
<th>Particles accelerated</th>
<th>Energy (Mev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universite-Klinik Prof. van Vaerenbergh, Ghent</td>
<td>10 cm</td>
<td>e</td>
<td>15</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratoire Central des Industries Electriques, Paris</td>
<td>10 cm</td>
<td>e</td>
<td>15</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czerny-Krankenhaus, Heidelberg</td>
<td>10 cm</td>
<td>e</td>
<td>15</td>
</tr>
<tr>
<td>Firma Mannesmann, Duisburg-Huckingen</td>
<td>10 cm</td>
<td>e</td>
<td>15</td>
</tr>
<tr>
<td>Med.-Universitatsklinik, Erlangen</td>
<td>10 cm</td>
<td>e</td>
<td>15</td>
</tr>
<tr>
<td>St. Georg-Krankenhaus, Hamburg</td>
<td>10 cm</td>
<td>e</td>
<td>15</td>
</tr>
<tr>
<td>Städt. Krankenanstalten, Düsseldorf</td>
<td>10 cm</td>
<td>e</td>
<td>15</td>
</tr>
<tr>
<td>Strahlenklinik Prof. Janker, Bonn</td>
<td>10 cm</td>
<td>e</td>
<td>15</td>
</tr>
<tr>
<td>Universitäts-Frauenklinik, Hamburg</td>
<td>10 cm</td>
<td>e</td>
<td>15</td>
</tr>
<tr>
<td>Universitäts-Hautpoliklinik, Göttingen</td>
<td>10 cm</td>
<td>e</td>
<td>15</td>
</tr>
</tbody>
</table>

Universitäts-Klinik, München
Universitäts-Strahleninstitut, Marburg
Universitäts-Strahleninstitut, Tübingen

Italy
Centro Tumori, Cagliari
Centro Tumori, Chieti
Centro Tumori, Palermo
Consorzio Cura Tumori, Udine
Instituto die Radiologia dell' Universita, Rome
Instituto Regina Elena, Rome
Ospedale San Lorenzo, Borgo Valsugana

Mexico
Centro Medico, Mexico City

Sweden
Radiumhemmet, Stockholm
Corrections

Certain fixed-field alternating-gradient (FFAG) accelerators were included in the synchrotron group in the recently published list by this author. McMillan has pointed out that, under the classification system suggested by him for this list, all FFAG accelerators belong in the cyclotron class because the field does not vary as a function of time. Accordingly, the FFAG machines listed for the Midwestern Universities Research Association, Madison, Wis. should be included in the cyclotron group in this list.

In the classification system used, two general types of cyclotrons were indicated. These are continuous-wave (CW) and frequency-modulated (FM) machines. It should be noted that the FM class of cyclotrons may be referred to alternatively as synchrocyclotrons.

The dimensions of the larger of two Van de Graaff machines at Argonne National Laboratory, Lemont, Illinois were listed incorrectly. This machine has a 15-ft accelerating tube, can accelerate protons, deuterons, or alpha particles, and has a maximum energy of 4.5 Mev.

D.C. machines listed at the Centre d'Etudes Nucléaires, Grenoble, France and at the Laboratoire de Physique Atomique et Moléculaire, College de France, Paris are Felici-type accelerators rather than Van de Graaff generators. As contrasted with the belt system of charge transport of the Van de Graaff machines, the Felici machine uses a dielectric cylinder which rotates about a slightly conducting glass stator. Thin steel strips charge and discharge the rotor as a result of induction of metallic inductors within the glass cylinder. For improved efficiency, the machine usually operates under a high pressure.

The proper location of the betatron listed for the Knolls Atomic Power Laboratory is General Engineering Laboratory, General Electric Company, Schenectady, N.Y.

The 4-Mev Van de Graaff machine and 32-Mev proton linac formerly at University of California in Berkeley have been moved to the University of Southern California at Los Angeles, California.

Acknowledgments

The author is deeply grateful to the scientists of various countries who provided the new and revised information published here. Thanks are due Dr. Edwin McMillan for helpful suggestions and to other members of the staff of the Lawrence Radiation Laboratory for their aid.

This work was done under the auspices of the Atomic Energy Commission.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.