Statistical Plasma Physics
Volume I: Basic Principles

Setsuo Ichimaru

Westview Press
Advanced Book Program
A Member of the Perseus Books Group
Contents

Chapter 1 **Introduction**
1.1 Plasmas in Nature 2
1.2 Coulomb Coupling Parameters 5
1.3 Electrostatic Consequences of the Coulomb Interaction 9
 A. Cross Sections for the Coulomb Scattering 10
 B. Debye Screening 12
 C. The Ion-Sphere Model 16
1.4 Density Fluctuation Excitations 19
 A. Plasma Oscillations 19
 B. Collective Motion and Individual-Particlelike Behavior 22
 C. Discreteness Parameters and Fluid Limit 25

Problems 26

Chapter 2 **Kinetic Equations** 29
2.1 Structures of Kinetic Equations 30
 A. The Klimontovich Equation 30
 B. The Liouville Distribution 32
 C. Multiparticle Distributions 34
 D. The BBGKY Hierarchy 35
2.2 The Vlasov Equation 37
2.3 Evolution of Correlations 40
 A. Pair correlation Function and Collision Term 40
 B. Bogoliubov’s Hierarchy of Characteristic Times 42
 C. The Vlasov Propagator 44
2.4 The BGL Collision Term 46
 A. Derivation 46
 B. Properties 48

Problems 51
Chapter 3 Plasmas as Dielectric Media

3.1 Linear Response Formalism
 - A. Linear Response Functions
 - B. Fluctuation-Dissipation Theorem
 - C. Density-Density Response Functions

3.2 Dielectric Formulation
 - A. Dielectric Response Function
 - B. Analytic Properties
 - C. Dynamic Screening and Stopping Power
 - D. Collective Mode
 - E. Density Fluctuations
 - F. Polarization Potential Approach

3.3 The Dielectric Tensor
 - A. Definition
 - B. Dispersion Relations
 - C. Isotropic Media

3.4 The Vlasov Plasmas
 - A. The Vlasov-Maxwell Equations
 - B. Integration along Unperturbed Trajectories
 - C. Dielectric Tensor
 - D. Dielectric Response

3.5 Electron Gas at Finite Temperatures
 - A. Fermi Distributions
 - B. Density-Density Response
 - C. The Hartree-Fock Approximation
 - D. The Lindhard Dielectric Function
 - E. Thermodynamic Functions

Chapter 4 Electromagnetic Properties of Vlasov Plasmas in Thermodynamic Equilibria

4.1 Dielectric Responses in Maxwellian Plasmas
 - A. The Plasma Dispersion Function
 - B. Plasmas in Constant External Magnetic Field

4.2 Dynamic Screening
 - A. Debye Screening and Effective Mass Correction
 - B. Stopping Power and Cherenkov Emission of Plasma Waves

4.3 Plasma Oscillations and Landau Damping
Contents

A. Collective Mode 112
B. Wave-Particle Interaction 114
C. Electron and Ion Two Component Plasmas 115

4.4 Excitations in Magnetized Plasmas 119
A. Plasma Oscillations 120
B. The Bernstein Modes 122

4.5 Electromagnetic Waves in Plasmas Without External Magnetic Field 124
A. The Transverse Dielectric Function 124
B. Cutoffs and Resonances 125

4.6 Wave Propagation in Magnetized Plasmas 126
A. Transformation to Circularly Polarized Waves 126
B. Helicon, Alfvén Waves, and Whistler 129
C. Wave Propagation Perpendicular to the Magnetic Field 137

Problems 141

Chapter 5 Transient Processes 143

5.1 Propagation of Small-Amplitude Plasma Waves 144
A. Temporal Propagation 146
B. Spatial Propagation 149

5.2 Plasma-Wave Echoes 151
A. Fundamental Processes 152
B. Detailed Calculation 155
C. Effects of Collisions 159

5.3 Large-Amplitude Plasma Waves 161
A. Trapped Particles 162
B. Amplitude Oscillation 163
C. The BGK Solutions 166

5.4 Nonlinear Effects 167
A. Solitary Waves 167
B. Ponderomotive Forces 171

Problems 174

Chapter 6 Instabilities 177

6.1 Penrose Criterion for Plasma-Wave Instability 178
6.2 Current-Carrying Plasmas 182
A. Ion-Acoustic Wave Instability 182
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Two-Stream Instability</td>
<td>184</td>
</tr>
<tr>
<td>6.3 Magnetic Instabilities</td>
<td>186</td>
</tr>
<tr>
<td>A. Cyclotron Instabilities</td>
<td>186</td>
</tr>
<tr>
<td>B. Loss-Cone Instability</td>
<td>190</td>
</tr>
<tr>
<td>C. Electromagnetic Instabilities</td>
<td>196</td>
</tr>
<tr>
<td>6.4 Longitudinal Dielectric Functions for Inhomogeneous Plasmas</td>
<td>198</td>
</tr>
<tr>
<td>A. Drifts of Charged Particles in Magnetic Fields</td>
<td>199</td>
</tr>
<tr>
<td>B. Dielectric Response</td>
<td>202</td>
</tr>
<tr>
<td>6.5 Rayleigh-Taylor Instabilities</td>
<td>206</td>
</tr>
<tr>
<td>A. Orbit-Theoretical Introduction</td>
<td>207</td>
</tr>
<tr>
<td>B. Gravitational Instability</td>
<td>209</td>
</tr>
<tr>
<td>C. Confinement in Curved Magnetic Fields</td>
<td>212</td>
</tr>
<tr>
<td>D. Magnetic Well</td>
<td>214</td>
</tr>
<tr>
<td>E. Finite Larmor-Radius Stabilization</td>
<td>214</td>
</tr>
<tr>
<td>6.6 Drift Wave and Instability</td>
<td>216</td>
</tr>
<tr>
<td>A. Elementary Survey</td>
<td>216</td>
</tr>
<tr>
<td>B. Microscopic Calculation</td>
<td>218</td>
</tr>
<tr>
<td>C. Stabilization</td>
<td>220</td>
</tr>
<tr>
<td>D. Drift Cyclotron Instability</td>
<td>222</td>
</tr>
<tr>
<td>Problems</td>
<td>224</td>
</tr>
</tbody>
</table>

Chapter 7 Fluctuations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Evolution of Fluctuations</td>
<td>230</td>
</tr>
<tr>
<td>A. Description in Phase Space</td>
<td>230</td>
</tr>
<tr>
<td>B. Spontaneous and Induced Fluctuations</td>
<td>234</td>
</tr>
<tr>
<td>C. Fluctuations in Uniform Systems</td>
<td>236</td>
</tr>
<tr>
<td>7.2 Spectral Functions</td>
<td>237</td>
</tr>
<tr>
<td>A. Correlation Functions and Spectral Representations</td>
<td>238</td>
</tr>
<tr>
<td>B. Electromagnetic Fluctuations in the RPA</td>
<td>239</td>
</tr>
<tr>
<td>C. Superposition of the Dressed Test Particles</td>
<td>241</td>
</tr>
<tr>
<td>D. Collision Terms in the RPA</td>
<td>242</td>
</tr>
<tr>
<td>E. Energy Spectra of Fluctuations</td>
<td>243</td>
</tr>
<tr>
<td>7.3 Density Fluctuation Excitations</td>
<td>245</td>
</tr>
<tr>
<td>A. Structure Factors</td>
<td>245</td>
</tr>
<tr>
<td>B. Dielectric Formulations</td>
<td>248</td>
</tr>
<tr>
<td>C. RPA Structure Factors in Nonequilibrium Plasmas</td>
<td>251</td>
</tr>
<tr>
<td>D. Static Local-Field Corrections</td>
<td>255</td>
</tr>
<tr>
<td>E. Fully Convergent Collision Terms</td>
<td>259</td>
</tr>
<tr>
<td>F. Quantum Mechanical Collision Terms</td>
<td>263</td>
</tr>
</tbody>
</table>
Contents

7.4 Transport Processes 265
 A. Hydrodynamic Moment Equations 265
 B. Electric and Thermal Resistivities 267
 C. Viscosity 274

7.5 Radiative Processes 280
 A. Rates of Radiative Processes 280
 B. Synchrotron Radiation 282
 C. Bremsstrahlung 284
 D. Incoherent Scattering 285
 E. Inverse Compton Processes 288

Problems 290

Chapter 8 Relaxations 293

8.1 Fokker-Planck Equations 294

8.2 Fokker-Planck Coefficient 296
 A. Particle Motion in Fluctuating Fields 297
 B. Diffusion Coefficients in Momentum Space 298
 C. Friction Coefficients in Momentum Space 303

8.3 Temperature Relaxations 305
 A. Relaxation of Particle Energy 306
 B. Relaxation between Electrons and Ions 307
 C. Relaxation between Parallel and Perpendicular Motions to the Magnetic Field 311

8.4 Spatial Diffusion Across a Magnetic Field 312
 A. Motion of Guiding Centers and Spatial Diffusion 313
 B. Calculation of the Second Moment 314
 C. Calculation of the First Moment 315
 D. Diffusion Coefficients 317

Problems 320

Chapter 9 Plasma Turbulence 323

9.1 Wave-Kinetic Equations 326
 A. The Quasilinear Approach 327
 B. Weak Turbulence 329
 C. Nonlinear Landau Damping 332
 D. Ion-Acoustic Wave Turbulence 334
 E. Toward Strong Turbulence 336
<table>
<thead>
<tr>
<th>Contents</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2 Transports</td>
<td>340</td>
</tr>
<tr>
<td>A. Description by Fluctuation Spectra</td>
<td>341</td>
</tr>
<tr>
<td>B. The Spitzer Resistivity</td>
<td>342</td>
</tr>
<tr>
<td>C. Anomalous Electric Resistivity</td>
<td>343</td>
</tr>
<tr>
<td>D. Magnetic-Field Reconnections</td>
<td>346</td>
</tr>
<tr>
<td>9.3 Magnetic-Field Turbulence in Disk Geometries</td>
<td>349</td>
</tr>
<tr>
<td>A. Accretion-Disk Problems</td>
<td>350</td>
</tr>
<tr>
<td>B. Turbulent Magnetic Viscosity</td>
<td>354</td>
</tr>
<tr>
<td>Problems</td>
<td>357</td>
</tr>
</tbody>
</table>

Appendices 359

- Appendix A: The Functional Derivatives 359
- Appendix B: Derivation of Eq. (3.13b) 361
- Appendix C: Derivation of Eq. (3.16) 365

Bibliography 367

Index 377