Electroweak physics measurements at the LHC for the Atlas and CMS collaborations

Mass of the top quark
Mass of the W boson
Introduction

- In SM, masses of top quark, W boson and Higgs boson are related through radiative corrections:

- Precise measurements of M_{top} and M_{W} allow
 - Consistency check of SM
 - Give hints of new physics
 - Constraint the mass of SM Higgs boson

- Up to date values:
 - $M_{\text{top}} = 172.6 \pm 0.8 \text{ (stat.) } \pm 1.1 \text{ (syst.) GeV}$
 - $M_{W} = 80.398 \pm 0.025 \text{ GeV}$
 - $M_{H} = 87^{+36}_{-27} \text{ GeV} \& M_{H} < 160 (190) \text{ GeV}$

- LHC = 10 days $\Leftrightarrow 1 \text{ fb}^{-1}$, 1 year $\Leftrightarrow 10 \text{ fb}^{-1}$

 Challenge = **systematics uncertainties**

- Outline
 - Top quark mass measurements at LHC
 - W boson mass measurement at LHC
 - Conclusion
Top pairs at LHC

High center of mass energy
14 TeV
High cross section
833 pb (NLO)
High luminosity
10^{33} to 10^{34} cm2s$^{-1}$
A lot of events
800 000 top pairs (1 fb$^{-1}$)

But very complex events

Many different objects:
• Light jets
• b jets
• Missing E_t
• Leptons

Many sources of uncertainty:
• Jet Energy Scale (JES)
• ISR/FSR
• Backgrounds
• Combinatorial background
• b fragmentation…
Top pairs: decays

Top Pair Branching Fractions

- "alljets" 44%
- \(\tau+\text{jets}\) 15%
- \(\mu+\text{jets}\) 15%
- \(e+\text{jets}\) 15%

Low background
- Low combinatorics
- Small BR
- \(\approx 50,000\) evts for 1 fb\(^{-1}\)
- Final state difficult to reconstruct

Enormous background
- Huge combinatorics
- 10 ways to combine 6 jets
- High BR
- \(\approx 350,000\) for 1 fb\(^{-1}\)
- Possible to reconstruct the whole event

Good compromise
- \(\approx 250,000\) evts for 1 fb\(^{-1}\)
Top mass: semileptonic channel (1/5)

250 000 events for 1 fb$^{-1}$ with $S/B \approx 10^{-5}$ prior to any cut and selection

- Event selection
 - One and only one isolated lepton inside acceptance ($|\eta| < 2.5$, $p_T > 20$ GeV (μ) or $p_T > 25$ GeV (e))
 - Missing $E_T > 20$ GeV
 - At least 4 jets with $p_T > 40$ GeV
 - Among them exactly 2 which are b-tagged

- Backgrounds
 - Single top and ttbar fully hadronic (isolation) & dileptonic (1 lepton only)
 - W+jets (b-tagging) and Z+jets
 - Di bosons (low cross section)
 - QCD (missing E_T, lepton p_T)

- After lepton cuts QCD negligible and top all jets reduced by 2/3
Top mass: semileptonic channel (2/5)

- W hadronic side, choice and *in situ* rescaling
 After selection of pairs in a mass range
determined on 2 light jets events

\[
\chi^2 = \frac{(M_{jj} - M_W^{PDG})^2}{\Gamma_W^2} + \frac{(E_{j1}(1 - \alpha_1))^2}{\sigma_1^2} + \frac{(E_{j2}(1 - \alpha_2))^2}{\sigma_2^2}
\]

- Efficiency: $\varepsilon = 1.93\%$

- Pairing:
 Several methods: here b closest to W

- Gaussian fit + polynomial

$M_{\text{top}} = 175.0 \pm 0.2$ GeV
$\sigma_{\text{top}} = 11.6 \pm 0.2$ GeV
Top mass: semileptonic channel (3/5)

Systematics

<table>
<thead>
<tr>
<th>Systematic uncertainty sources</th>
<th>Effect on m_{top}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light jet energy scale</td>
<td>0.2 GeV/%</td>
</tr>
<tr>
<td>b-jet energy scale</td>
<td>0.7 GeV/%</td>
</tr>
<tr>
<td>ISR/FSR</td>
<td>≈ 0.3 GeV</td>
</tr>
<tr>
<td>b fragmentation</td>
<td>≤ 0.1 GeV</td>
</tr>
<tr>
<td>Background</td>
<td>negligible</td>
</tr>
</tbody>
</table>

Most important source of uncertainty

- Light JES (reduced thanks to in situ rescaling, if it’s not done the slope $\Rightarrow 1$ GeV/%)
- b-jets energy scale

JES studies:

- This analysis: JES taken from rec./sim. differences
- Template method comparing reconstructed jj invariant masses with smeared Ws
 - Systematic uncertainties (combinatorial, template ingredients, top mass..) all below 0.5% $\Rightarrow 1\%$ for 1 fb$^{-1}$
- This analysis: b-jet energy scale obtained from MC correction factors

\[M_{\text{top}} = 175.0 \pm 0.2 \text{ (stat.)} \pm 1 \text{ (syst.) GeV} \]
Top mass: semileptonic channel (4/5)

- Alternative analysis based on likelihoods:
 - Probability from selection \(P_{\text{sign}} \)
 - Probability from jet combination \(P_{\text{comb}} \)
 - Probability from kinematic fit forcing \(M_W \)
 - Fitting \(M_{\text{top}} \), probability from \(\chi^2 \)
 - Forcing \(M_{\text{top}} \), probability from mass scan

\[
\chi^2 \left(\{ \vec{p}_j \}, m_i \right) = \left(\frac{m_i - m_i^{\text{fit}}}{\sigma_{m_i}^{\text{fit}}} \right)^2
\]

Mass scan gives (1 fb\(^{-1}\), only \(\mu \) channel)

\(M_{\text{top}} = 172.42 \pm 0.66 \text{ GeV (stat)} \pm 1.13 \text{ (syst)} \)

Largest: JES for b jets
Top mass:
dileptonic & fully hadronic channels (1 fb⁻¹)

<table>
<thead>
<tr>
<th>Starting from</th>
<th>S/B ≈ 5 10⁻³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>S/B ≈ 7</td>
</tr>
<tr>
<td>Kinematical reconstruction of the event and pairing with likelihood (660 evts)</td>
<td>S/B ≈ 12 ε = 1.2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Starting from</th>
<th>S/B < 10⁻⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection</td>
<td>S/B ≈ 1/9 ε = 2.7%</td>
</tr>
<tr>
<td>Likelihood on masses and angles to perform the pairing + top choice</td>
<td></td>
</tr>
</tbody>
</table>

\[M_{\text{top}} = 178.5 \pm 1.5 \text{ (stat)} \pm 4.2 \text{ (syst)} \]

Syst.: JES, kinematical hypothesis

\[M_{\text{top}} = 175 \pm 0.6 \text{ (stat.)} \pm 4.2 \text{ (syst.)} \]

Syst.: QCD background, JES, ISR/FSR
W mass at LHC

- NNLO cross section 20.5 nb per lepton channel
 \(W \rightarrow \ell \nu \) 3 000 000 evts selected per channel in 1 fb\(^{-1}\)
 10 times less Z i.e. 300 000 evts selected per channel

- 2 observables sensitive to the W mass:
 \(m_T \) and \(p_t(\text{lepton}) \)

- Template method

 A reconstructed distribution: lepton \(p_t \)

 A set of distributions characterized by a scale factor \(\alpha \)

 \(\chi^2 \) test as a function of \(\alpha \)

Simple and efficient but crucially relies on control of any effect distorting the test distribution
Effects distorting the test distributions:

- Experimental sources of uncertainty:
 - Lepton energy scale and linearity
 - Lepton energy resolution
 - Non gaussian tails of the energy distributions
 - Recoil scale and resolution
 - Reconstruction efficiency

- Theoretical sources:
 - Direct effect on lepton p_t: FSR
 - Effect on lepton p_t via the W distribution $y(W)$ et $p_t(W)$: Γ_W, PDF, ISR

- Environmental sources:
 - Backgrounds, underlying event, pileup, beam crossing angle

To control these effects in the templates, rely on our great knowledge of the Z physics, either by creating the templates from the Z events or by calibrating the effects on the Z events.
Creation of templates from Z events

Scaled observable method
with lepton p_t distribution in $W \rightarrow e\nu$ for 1 fb$^{-1}$

- Randomly remove 1 e in $Z \rightarrow ee$
- Rescaling of the observable $X_V = \frac{p_t}{M_V}$
- Weight by $R(X)$

$$R(X) = \frac{d\sigma^W}{dX_W} / \frac{d\sigma^Z}{dX_Z}, \quad X_V = \frac{p_t}{M_V}, \quad V = W, Z$$

$R(X)$ depend on theory and sel. & det. effects

- Apply W selection on Z events with scale e.g. Missing $E_T > 29$ GeV $\times \frac{M_W}{M_Z}$

Most common uncertainties cancel

Morphing
scaling the Z event instead of scaling the observable
With m_T $W \rightarrow \mu\nu$ for 1 fb$^{-1}$

40 (stat.) \oplus 40 (exp.) \oplus 40 (theo.) MeV

Dominated by lepton energy scale linearity

40 (stat.) \oplus 64 (exp.) \oplus 20 (theo.) MeV

Dominated by E_T scale

N. Besson CEA Saclay
Calibrate templates with Z constraints

- First step: validate the modelisation of detector effects

Parameters we need to control:
energy scale α, resolution σ, tails τ

$30 < p_t < 40$
$0.4 < |\eta| < 0.5$ (a), $0.8 < |\eta| < 0.9$ (b),
$1.3 < |\eta| < 1.4$ (c), $1.9 < |\eta| < 2.0$ (d)

Smear the leptons according to shapes fitted on $E_{\text{rec}}/E_{\text{true}}$ distributions in bins in $|\eta|$ and p_t.

- Example: very early data 15 pb^{-1}, $W \rightarrow e\nu$, p_t lepton
Selection and backgrounds
 - High p_t isolated lepton, \not{E}_T, had. recoil $\varepsilon = 22\%$
 - Backgrounds W to τ, Z to leptons, jet events
 - After selection 2.2% of evts are background
 mainly $W \rightarrow \tau\nu$

$\alpha = 0.9995 \pm 0.0012$
Second step: calibrate the parameters on $Z \rightarrow ee$ events

- Non gaussian tails
- Scale and resolution

With the low statistics, only average scale and resolution can be derived with a template method.
Third step: validate we can « transport » calibration from Z events to W events

Results 15pb⁻¹
- With p_T lepton (electron channel)
 $\delta M_W = 110 \text{ (stat)} \oplus 114 \text{ (exp.)} \oplus 25 \text{ (PDF) MeV}$
 main systematic uncertainty: energy scale
- With m_T (muon channel)
 $\delta M_W = 60 \text{ (stat)} \oplus 230 \text{ (exp.)} \oplus 25 \text{ (PDF) MeV}$
 main systematic uncertainty: recoil scale
Long term perspectives

- Extensive systematic studies. Examples:
 - Experimental sources of uncertainty:
 - Lepton energy scale and resolution, linearity
 - Theoretical sources:
 - W distributions $y(W)$ and $p_t(W)$

- First example: energy dependent scale and resolution

For 10 fb⁻¹ control up to 2×10^{-4}: $\delta M_W (\alpha) \approx 4$ MeV and $\delta M_W (\sigma) \approx 1$ MeV
Second example: W distributions

- Transverse momentum
 Contribution from intrinsic p_t of partons and ISR
 Final states l^+l^- $p_t(l^+l^-)$ versus $m(l^+l^-)$ with a huge lever arm

- Rapidity
 Contribution from PDF
 For the moment
 $\delta M_W \approx 25$ MeV

 Strong correlation between y_W and y_Z with respect to PDF variations

 With 10 fb$^{-1}$ improvement by a factor 20
 $\Rightarrow \delta M_W \approx 3$ MeV
<table>
<thead>
<tr>
<th>Source</th>
<th>effect</th>
<th>δm_W (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical model</td>
<td>Γ_W</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>γ_W</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>ρ_{tw}</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>QED radiation</td>
<td><1</td>
</tr>
<tr>
<td>Lepton measurement</td>
<td>linearity and scale</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>resolution</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>efficiency</td>
<td>4.5 (e); <1 (μ)</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>$W \rightarrow \tau\nu$</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>$Z \rightarrow l$ (l)</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>$Z \rightarrow \tau\tau$</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>jet events</td>
<td>0.5</td>
</tr>
<tr>
<td>Pile-up and UE</td>
<td></td>
<td><1 (e); ~0 (μ)</td>
</tr>
<tr>
<td>Beam crossing angle</td>
<td></td>
<td><0.1</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>~7 (e); 6 (μ)</td>
</tr>
</tbody>
</table>

One channel and one study (can be done for m_T)
Conclusion

- The challenge will be clearly to reduce systematic uncertainties
- $\delta M_{\text{top}} \approx 1\text{GeV}$ and $\delta M_{\text{W}} \approx 7\text{ MeV}$ seem within reach
- With 10 fb$^{-1}$ and a lot of hard work we might go to

- Really eager to have data to work on!

Many thanks to
the Atlas and CMS collaborations, especially to Juan Alcaraz, Maarten Boonekamp, Martine Bosman, Jorgen D’Hondt, Anna Di Ciaccio, Lucia Di Ciaccio, Anne-Isabelle Etienvre, Tom LeCompte, Bruno Mansoulié
References

ATLAS

ATL-PHYS-PUB-2006-007
Determination of the absolute lepton scale using Z boson decays. Application to the measurement of M_W

Forthcoming “CSC” notes
Top quark mass measurement with ATLAS
Measurement of W mass at ATLAS with early data

To be published
Re-evaluation of the LHC potential for the measurement of M_W

CMS

CMS note 2006/066
Top quark mass measurement in single leptonic ttbar events

CMS note 2006/077
Measurement of top-pair cross section and top-quark mass in the di-lepton and full-hadronic channels with CMS

CMS note 2006/061
Prospects for the precision measurement of the W mass with the CMS detector at the LHC

LEPEWWG
http://lepewwg.web.cern.ch/LEPEWWG/