Production of Antihydrogen at Reduced Magnetic Field for Anti-atom Trapping

(AHFA Collaboration)

1Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
2Department of Physics, Swansea University, Swansea SA2 8PP, United Kingdom
3Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom
4Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rua do Bairro, Cidade Universitaria, 21941-972, Brazil
5Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300, USA
6TRIUMF, 4004 Wesbrook Mall, Vancouver BC, Canada V6T 2A3
7Department of Physics, University of Tokyo, Tokyo 113-0033, Japan
8Department of Physics and Astronomy, University of Calgary, Calgary AB, Canada T2N 1N4
9Department of Physics, Auburn University, Auburn, AL 36849-5311, USA
10Department of Physics, NRK-Negev Research Center, Beer Sheva, 84190, Israel
11Atomic Physics Laboratory, RIKEN, Saitama 351-0198, Japan

(Dated: April 20, 2013)

We have demonstrated production of antihydrogen in a 1T solenoidal magnetic field. This field strength is significantly smaller than that used in the 1st generation experiments ATHENA (3T) and ATRAP (5T). The motivation for using a smaller magnetic field is to facilitate trapping of antihydrogen atom s in a neutral atom trap surrounding the production region. We report the results of measurements with the ALPHA (Antihydrogen Laser Physics Apparatus) device, which can capture and cool antiprotons at 3T, and then mix the antiprotons with positrons at 1T. We infer antihydrogen production from the time structure of antiproton annihilations during mixing, using mixing with heated positrons as a null experiment, as denoted in ATHENA. Implications for antihydrogen trapping are discussed.

Cold antihydrogen atom s were first synthesized and detected in 2002 by the ATHENA collaboration at the CERN Antiproton Decay Facility (AD). The neutral antihydrogen atom s were not confined; in fact, ATHENA detected the annihilation of the antiproton and positron in spatial and temporal coincidence with a positron antihydrogen production. The ATRAP collaboration reported a similar result, using an indirect detection technique based on electron ionization, shortly thereafter. In both of these experiments, antihydrogen was produced by mixing plasms of antiprotons and positrons in liquid helium cooled Penning traps. ATHENA observed peak antihydrogen production rates of up to about 400 Hz, immediately suggesting that an experiment to trap the neutral antihydrogen atom s could be feasible. Trapping of antihydrogen is probably necessary, if the long-term goal of performing precision spectroscopy of antihydrogen is to be realized. Gravitational studies using antihydrogen will also test certain relativistic effects.

We have constructed a first apparatus designed to produce and trap antihydrogen. The ALPHA (Antihydrogen Laser Physics Apparatus) device combines antihydrogen synthesis Penning traps with a superposed magnetic gradient trap for neutral particles. This device features a transverse octupole winding and a unique longitudinal magnetic field configuration involving multiple solenoidal windings, designed to optimize antiproton capture, antihydrogen production rate, and antihydrogen trapping probability. In this Letter, we describe antihydrogen production at 1T in this novel solenoidal configuration.

Neutral atoms or antihydrogen atom s can be trapped by exploiting the interaction of their magnetic dipole moment with an inhomogeneous magnetic field. A potential well can be formed using a minimum B configuration, as described by Pirchard. The Io-Pirchard configuration utilizes a cylindrical quadrupole for transverse motion and a solenoidal error field for creating the longitudinal field. The ALPHA apparatus, illustrated in Figure 1, replaces the quadrupole by an octupole, in order to minimize perturbations that could lead to loss of the charged particle plasms used to form antihydrogen. Most laboratory Penning trap plasms as are stored in solenoidal error fields, having high uniformity and rotational symmetry, since the plasms depend on symmetry for their long-term stability. The deleterious effects of a quadrupole on plasms and the advantages of the octupole configuration are described elsewhere. An earlier experiment in the ALPHA apparatus showed that positrons and antiprotons can be stored in a strong octupole field for times comparable to those needed to produce antihydrogen in ATHENA.

The solenoidal field needed to contain charged antihydrogen represents a major challenge for the design of an effective antihydrogen trap. The trap depth of a
neutral trap is given by
\[
U = (B_{m \text{ ax}} - B_{m \text{ in}});
\]
(1)
where \(B_{m \text{ ax}} \) and \(B_{m \text{ in}} \) are the maximum and minimum magnetic field strengths in the device. In a combined Penning/neutral atom trap, the solenoidal field for the Penning trap is \(B_{m \text{ in}} \). Longitudinally, \(B_{m \text{ ax}} \) is given by
\[
B_{m \text{ ax}} = B_x + B_m;
\]
(2)
where \(B_x \) is the solenoidal field and \(B_m \) is the peak field due to the microwave field. Transversely, we have
\[
q \sqrt{B_{m \text{ ax}}} = B_x^2 + B_y^2;
\]
(3)
where \(B_y \) is the transverse field strength of the multipole at the inner wall of the Penning trap.

The maximum trapping fields obtainable are fundamentally determined by the critical current in the superconductor used to generate the \(B_x \). The critical current is in turn larger for smaller external field strength. Thus the solenoidal \(B_x \) should be as small as possible to maximize the trap depth. Quantitatively, a trap depth of 1T provides about 0.7K of trapping potential for ground state antihydrogen. (Note that the highly excited antihydrogen states observed in ATRAP and ATHENA may have signifi cantly larger magnetic moment and thus be more trapped. Cold rubidium atoms in highly excited Rydberg states have recently been trapped in a superconducting 10 eV Penning trap.) Assuming that the maximum \(B_x \) strength in the superconductor is 4-5T, a background solenoidal field of 3 or 5T represents an undesirably large bias field for the trap. The situation is exacerbated by the fact that the inner wall of the Penning trap is radially separated by a few mm from the innermost superconducting windings, due to the thickness of the magnet support structure and of the Penning trap itself. The loss of useful field strength in this distance is particularly significant for higher order multipole magnets.

In the absence of a neutral trap, a large solenoidal field is desirable for most aspects of the antihydrogen production cycle. The antiprotons from the AD are slowed in a foil (nall degrader in Figure 1) from 5.3 MeV to 5.4 keV or less before trapping. The beam, which is partially focused by traversing the fringe field of the solenoid, has a transverse size of a few mm at the foil. Scattering in the foil adds divergence to the beam. The solenoidal field strength and the transverse size of the Penning trap electrodes (33.6 mm diameter for the ALPHA catching trap) thus determine what fraction of the slowed particles can be transversely confined. High magnetic field is also favored by considerations of cyclotron radiation cooling times for electrons and positrons, positron and antiproton plasma density (and thus antihydrogen production rate), and plasma storage lifetime.

In the following we concentrate on manipulations without the transverse octupole field energized. A measurement of the relative antiproton capture efficiency versus solenoidal field strength in ALPHA is shown in Figure 2. For this measurement, the antiproton bunch from the AD, containing typically 2 x 10^17 particles in 200 ns, was slowed and trapped by pulsing the 5 kV antiproton catching trap; see Figure 1. The "hot" antiprotons were then held for 500 ms, before being released onto the nall degrader (see Figure 1), where they annihilate. The annihilation products (charged pions) were counted using the external scintillation detectors (Figure 1). The magnetic field was provided by the ALPHA double solenoid system. The main (external) solenoid was held at 1T, and the internal solenoid was varied from zero to 2T. The 3T field is about a factor of eight more effective than a 1T field for capturing antiprotons, so the use of a single solenoid at low field for a combined apparatus seems well advised. The ALPHA double solenoid is designed to catch antiprotons at 3T and to produce antihydrogen at 1T in the combined neutral/Penning trap. In the following we demonstrate that the anticipated reductions in position and antiproton density in the 1T field are not prohibitive for antihydrogen production.

For each mixing cycle with positrons to produce antihydrogen, three bunches of antiprotons from the AD were captured, cooled through interactions with a previously loaded plasma of cold electrons, and then transferred (without electrons) to a potential well adjacent to the mixing region in the 1T field region; see Figure 1. The left mirror (adjacent to the inner solenoid) was energized to provide a smooth transition from the 3T region to the 1T region. This transition was accomplished with typically less than 10% loss in antiprotons. The antiprotons were then injected into the mixing region, which has the potential configuration of a nested Penning trap (Figure 3a), containing positrons from the ALPHA positron accumulator. Typical particle num bers were 7000 antiprotons injected into 30 million positrons. The entire trapping apparatus is cooled to 4 K by the cryostat for the inner superconducting magnets.

The antiprotons, which are injected into the positron...
plasma with a relative energy of about 12 eV, slow by Coulomb interaction with the positrons, as previously observed in ATHENA [14] and ATRAP [15]. The result of slowing can be observed by ramping down the trapping potential to determine at what energy the antiprotons are released. Figure 2 demonstrates positron cooling of antiprotons at 1T in ALPHA. With no positrons, the antiprotons remain at the injection energy (Figure 3b). With positrons present, the antiprotons cool to an energy approximately corresponding to the potential at which the positron plasma is held (Figure 3c). In ATHENA, cooling to this level was correlated with the onset of antihydrogen production [14], as measured by the rise in event rate in an antiproton annihilation detector. The neutral antihydrogen escapes the Penning trap and annihilates on the electrode walls.

For the following measurements, the apparatus was equipped with four scintillation detectors read out by avalanche photodiodes. The detectors were placed inside the outer solenoid and adjacent to the mixing trap (Figure 2). An event was registered if two or more of the detectors read in coincidence (100 ns window). The solid angle subtended by the detectors was about 35% of 4π.

Figure 3 illustrates the time development of the annihilation event rate after the start of mixing. Two cases are shown; "normal" mixing and m mixing in which the positrons are heated to suppress antihydrogen formation [11]. The heating is achieved by exciting the axial dipole mode of the positron plasma, again following established practice from ATHENA [16]. In normal mixing we observe the initial rise in event rate, as seen in the ATHENA apparatus, but with a considerably slower rise time — about 1 s here as opposed to a few tens of ms. This longer cooling time is probably due to the lower positron plasma density in the 1T field, although we have not measured the density directly. The positron number here is also lower, by a factor of 2 to 3, than in [14].

The ATHENA experiment used position sensitive detection of antiproton and positron annihilation products to obtain the very first evidence for antihydrogen production at the AD. In subsequent experiments, experience
with the device demonstrated that it was not necessary to rely on the position-sensitive detection to distinguish antihydrogen production from antiproton loss. The trigger rate signal from the annihilation detector exhibits a time structure that, in concert with evidence of antiproton cooling, can be interpreted as a signature for antihydrogen production. Mixing with heated positrons leads to non-negligible cooling and the antiprotons and antihydrogen production, and thus can serve as the null experiment. In ALPHA, as in ATHENA, no evidence for significant antihydrogen production or significant antiproton loss is seen with heated positrons, although both species of particle are present and spatially overlapping during the cycle. (The events in the very first time bin, for both cases, include "hot" antiproton losses caused by the rapid potential manipulations used to inject the particles into the nested trap.) The authors interpreted the annihilation signal for cold mixing as being due to a time-averaging antihydrogen production superimposed on a largely background due to cosmic rays and slow and small antiproton losses. (There may be a small admixture of antihydrogen production even with heated positrons, at times greater than about 12 s, but we have not yet investigated this in detail.)

Based on a knowledge of the number of antiprotons typically injected into the mixing trap, and the number remaining when the trap is dumped at the end of the cycle, we estimate that up to 15% of the antiprotons could have produced antihydrogen. This number is consistent with the total number of events observed, given the estimated scintillator detector efficiency, and it is comparable to that observed under typical conditions in ATHENA.

The observation of antihydrogen produced in a 1 T field is a significant development for the future of antihydrogen trapping experiments. For example, the design of the ALPHA apparatus is for a maximum of 1.19 T of transverse field from the octupole in a 1 T solenoid, corresponding to a well depth of 1.16 T. The well depth for a 3 T solenoidal field and the same superconducting magnet construction technique would be less than 0.5 T, when the reduction in critical current is taken into account. The relative ease with which antihydrogen was produced here suggests that attempts at even lower solenoidal fields may succeed, leading to even larger neutral well depths. For possible work at lower fields, the ALPHA device features the capability of applying rotating wall electric fields to compress the antiproton and positron cloud radially before mixing, if necessary.

In summary, we have shown that antiprotons can be captured at high magnetic fields, transferred to lower field without significant loss and then used to make antihydrogen, without further manipulation of the antiproton cloud. This method is superior to performing the whole process at the lower field, and allows for a significantly higher neutral well depth for future attempts at antihydrogen trapping.

This work was supported by CNPq, FINEP (Brazil), ISF (Israel), MEXT (Japan), FNU (Denmark), NSERC, NRC (Canada), DOE, NSF (USA) and EPSRC (UK).
