Search for the SM Higgs Boson in VBF Production Mode (with ATLAS)

Guilherme Nunes Hanninger
(Bonn University)

On behalf of the ATLAS Collaboration

Seoul, 06.19.08
SM Higgs Production at the LHC

- **gluon fusion**: dominant process
- **vector boson fusion (VBF)**: factor ~10 below gluon fusion
 - **BUT**: clear signature in the detector
- **ttH**: important $100 \text{ GeV} < M_H < 120 \text{ GeV}$
- **W(Z)H**: not for discovery due to huge background
SM Higgs Final States

Dominant decays for $M_H < 135$ GeV:
- $H \rightarrow bb$ Dominant decay, difficult final state (large $t\bar{t}$ background)
- $H \rightarrow \tau\tau$ Attractive discovery channel

Dominant decays for $M_H > 135$ GeV:
- $H \rightarrow WW$ and $H \rightarrow ZZ$
- $H \rightarrow \gamma\gamma$ Also important ($110 \text{ GeV} < M_H < 140 \text{ GeV}$)

VBF Channels investigated in ATLAS:
- VBF $H \rightarrow \tau\tau$
- VBF $H \rightarrow WW$ (not discussed in this talk)
Optimize analysis assuming an integrated luminosity of 30fb^{-1} using:

- State-of-the-art Monte Carlo generators
 (MC@NLO, ALPGEN, HERWIG, PYTHIA, ...)

- Detailed GEANT4-based simulation of the ATLAS detector
 (including misalignments and distortions)

The first five years

<table>
<thead>
<tr>
<th>Year</th>
<th>$\int \mathcal{L} dt$</th>
<th>\mathcal{L}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>~ 40 pb$^{-1}$</td>
<td>$10^{31} - 10^{32}$ cm$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>2009</td>
<td>2 - 3 fb$^{-1}$</td>
<td>8×10^{32} cm$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>2010</td>
<td>~ 10 fb$^{-1}$</td>
<td>2×10^{33} cm$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>2011</td>
<td>~ 30 fb$^{-1}$</td>
<td>2×10^{33} cm$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>2012</td>
<td>~ 100 fb$^{-1}$</td>
<td>10^{34} cm$^{-2}$ s$^{-1}$</td>
</tr>
</tbody>
</table>
VBF Higgs $\rightarrow \tau \tau$ Signature

- Two tagging jets in forward region
- Higgs boson decay products in the central region
- No color flow between quark lines:
 - No central jets
- Missing transverse momentum: associated to ν's from τ decays
H → ττ → hh (42%):
• Triggers for hh channel are under investigation
• Reliable estimate of the QCD jets background can only be provided with data
• Will not be discussed in this talk

H → ττ → lh+3ν (46%) AND H → ττ → ll+4ν (12%)
• Easy to trigger (high p_T leptons)
• Backgrounds to VBF H → ττ: Z + jets, W + jets, tt, diboson, WW/ZZ/ZW
Leptonic τ Decays

Decay leptons used for trigger:
- use simple robust trigger signatures (initially):
 - isolated electron with $p_T > 22$ GeV
 - or isolated μ with $p_T > 20$ GeV

Lepton selection:
- thresholds for e/μ identification optimised for identification efficiency and fake rejection
- electron:
 - $p_T > 25$ GeV for trigger electron
 - $p_T > 15$ GeV for the other electrons
- muon:
 - $p_T > 20$ GeV for trigger electron
 - $p_T > 10$ GeV for other muons
- energy isolation within a cone around the e/μ ($\text{Isolation } E_T / p_T \leq 0.1$)
Hadronic τ Decays

Hadronic τ decay:

- $\Gamma \sim 50\%$ single prong (1 charged h)
- $\Gamma \sim 15\%$ three prongs (3 charged h)
- Decay products collimated into a narrow region

\[\rightarrow \text{collimated deposition in EM Calorimeter} \]
\[\rightarrow \text{use shower shape variables} \]
\[\rightarrow \text{reconstruct } \pi^0 \text{ sub-clusters} \]
\[\rightarrow \text{isolation cone} \]
\[\rightarrow \text{log-likelihood-based discrimination from QCD jets} \]

- Log-likelihood and p_T cuts optimized with respect to $s/(s+b)^{1/2}$
- $p_T > 30$ GeV
Tagging Jets

- $|\eta|<4.9$ (jets as close as 1° to the beam pipe!)
- **Tagging jets**: 2 highest p_T jets (nearly 100% of the time correctly matches the quark-initiated tagging jets from the hard process)
- **Reconstruction efficiency** for 2 tagging jets (VBF selection) ~ 95
- **Cuts**: $p_T>40$ GeV and second jet $p_T>20$ GeV
 $$\eta_j \times \eta_j \leq 0, \Delta\eta_{jj} > 4.4, M_{jj} > 700 \text{ GeV}$$

ATLAS Preliminary

SUSY08

G. Nunes Hanninger (Bonn University)
Central Jet Veto

- No extra jet with $p_T > 20$ GeV within $|\eta| < 3.2$

Pileup?
- Studies in progress to suppress these effects using:
 - vertexing information
 - timing information in the calorimeter
Mass Reconstruction

- Use collinear approximation:
 - assume that the decay products of the \(\tau \) are collinear with the \(\tau \) in the laboratory frame
 - Resolution limited by the missing transverse energy resolution
Data-driven Background Estimation

\[Z \rightarrow \mu\mu + \text{jets} \text{ has identical jet activity as } Z \rightarrow \tau\tau + \text{jets} \]

→ Procedure:

⇒ select \(Z \rightarrow \mu\mu + \text{jets} \) events

⇒ replace the \(\mu \)'s by the \(\tau \)'s

⇒ carefully treat the decay of the \(\tau \)

→ Full event selection is then applied to the emulated \(Z \rightarrow \tau\tau + \text{jets} \) control sample

→ Expected uncertainty \(\sim 10\% \)

→ Normalization can be directly obtained from data

\[\text{ATLAS} \]
Signal Significance

- Extracted from $M_{\tau\tau}$ spectrum
- Simultaneous fit the signal candidates and the background control samples
 - constrain the shape and normalization of the background from the data-driven analysis
 - uncertainty of the background shape is directly incorporated
- The fit is performed twice:
 1) letting the signal and background parameters to float
 2) constrain signal normalization to be zero, floating background parameters
- Define the profile likelihood ratio λ

$$
\lambda(\mu = 0) = \frac{L(data|\mu = 0, \hat{b}(\mu = 0), \hat{\nu}(\mu = 0))}{L(data|\hat{\mu}, \hat{b}, \hat{\nu})}
$$

μ is the signal rate in units of SM expectation, b is the rate and ν is the shape parameters
$\hat{\nu}$ and \hat{b} are best fit with μ fixed to 0; $\hat{\nu}$ and \hat{b} are best fit with μ left floating
- Wilk’s theorem states that under certain conditions the distribution of the profile likelihood ratio has an asymptotic form

$$-2\log \lambda(\mu = 0) \sim \chi^2_1$$

- Thus, significance $= \sqrt{-2\log \lambda(\mu = 0)}$
Expected Signal Significance (30 fb$^{-1}$)

ATLAS Preliminary

$\sqrt{s} = 14$ TeV, 30 fb$^{-1}$

- [] ll-channel
- [] lh-channel
- [] combined

NB: no pileup included in the signal significance estimation
- Limited by the missing transverse energy resolution ~ 10 GeV
- 2000 pseudo-experiments per input mass point
Systematic Errors

<table>
<thead>
<tr>
<th>Source</th>
<th>Relative uncertainty</th>
<th>Effect on signal efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>luminosity</td>
<td>± 3%</td>
<td>± 3%</td>
</tr>
<tr>
<td>tau energy scale</td>
<td>± 5%</td>
<td>± 4.9%</td>
</tr>
<tr>
<td>tau ID efficiency</td>
<td>± 5%</td>
<td>± 5%</td>
</tr>
<tr>
<td>jet energy scale</td>
<td>± 7% (</td>
<td>(\eta)</td>
</tr>
<tr>
<td></td>
<td>± 15% (</td>
<td>(\eta)</td>
</tr>
<tr>
<td></td>
<td>± 5% (on Etmiss)</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>total summed in quadrature</td>
<td>-</td>
<td>± 20%</td>
</tr>
</tbody>
</table>

Jet energy/Etmiss scale is the dominant source of systematics
What if there is no signal?

Expected Exclusion Limits (10 fb$^{-1}$)

ATLAS Preliminary

$\sqrt{s} = 14$ TeV, 10 fb$^{-1}$

NB: no pileup included in the signal significance estimation
Conclusions

VBF $H \rightarrow \tau \tau$:

- Important discovery channel for SM Higgs with $105 \text{ GeV} < M_H < 140 \text{ GeV}$
- Rich experimental signature

For 30 fb$^{-1}$ expect:

- $\sim 3 - 5 \sigma$ evidence for light SM Higgs
- Powerful exclusion limits

Outlook:

- Include and limit the effect of pileup
- Continue to improve/optimize the analysis
- Use information from real data as soon as available
Backup slides
• **Particle identification:**
 - muons ($|\eta|<2.5$): Efficiency ~ 97% Jet Rejection ~ 10^4
 - electrons ($|\eta|<2.5$): Efficiency ~ 80% Jet Rejection ~ 10^3
 - hadronic tau ($|\eta|<2.5$): Efficiency ~ 50% Jet Rejection ~ 10^2
 - b-Jet ID: Efficiency ~ 60% light-quark Jet Rejection ~ 10^2

• **Missing transverse energy**
 - hermetic calorimeter $\sigma_{E_{\text{miss}}} \sim 0.55 \left(\sum E_{T}\right)^{0.5}$

• **Jets ($|\eta|<4.9$)**
 - reconstruction efficiency ~ 95%
Expected Combined 95% CL Exclusion

![Combined 95% CL Exclusion](image)

ATLAS Preliminary
Influence of pileup

- e/μ quite robust against pile-up

- jet and Etmiss performance are affected by pileup

- hadronic τ: efficiency can be maintained with pile-up
 but jet rejection drops ~ 50%

- mass resolution is degradate from ~ 9.5 to ~ 11.5 GeV for $M_H = 120$ GeV

- central jet veto drops from ~88% to 75% at 10^{33}cm$^{-2}$s$^{-1}$ and ~65% at 2×10^{33}cm$^{-2}$s$^{-1}$

- Reconstruction and analysis are being re-optimized with pileup. No signal significance is reported under this condition.

ATLAS Preliminary
Figure 6: Background rejection versus signal sensitivity for the central jet veto with and without pileup. Also shown is the case for $t\bar{t}$-only background.
Cutflow VBF $H \rightarrow \tau\tau \rightarrow lh$

ATLAS Preliminary

Table 5: Signal cross-sections for the lh-channel for various Higgs boson masses.

<table>
<thead>
<tr>
<th>Mass (GeV)</th>
<th>105</th>
<th>110</th>
<th>115</th>
<th>120</th>
<th>125</th>
<th>130</th>
<th>135</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross section (fb)</td>
<td>394.7</td>
<td>372.0</td>
<td>341.8</td>
<td>309.1</td>
<td>266.8</td>
<td>225.4</td>
<td>180.1</td>
<td>135.8</td>
</tr>
<tr>
<td>Trigger</td>
<td>65.6(3)</td>
<td>65.1(2)</td>
<td>61.1(2)</td>
<td>57.2(1)</td>
<td>51.5(2)</td>
<td>44.7(1)</td>
<td>36.5(1)</td>
<td>28.3(1)</td>
</tr>
<tr>
<td>Trigger lepton</td>
<td>56.4(3)</td>
<td>56.2(2)</td>
<td>53.2(2)</td>
<td>49.5(1)</td>
<td>44.7(2)</td>
<td>38.9(1)</td>
<td>31.8(1)</td>
<td>24.7(1)</td>
</tr>
<tr>
<td>Di-lepton veto</td>
<td>50.0(3)</td>
<td>49.6(2)</td>
<td>46.7(2)</td>
<td>43.4(1)</td>
<td>38.9(2)</td>
<td>34.0(1)</td>
<td>27.6(1)</td>
<td>21.3(1)</td>
</tr>
<tr>
<td>Hadronic τ</td>
<td>7.7(1)</td>
<td>8.1(1)</td>
<td>8.1(1)</td>
<td>8.02(7)</td>
<td>7.4(1)</td>
<td>6.68(8)</td>
<td>5.72(7)</td>
<td>4.53(9)</td>
</tr>
<tr>
<td>Missing $E_T \geq 30$ GeV</td>
<td>4.8(1)</td>
<td>5.1(1)</td>
<td>5.08(9)</td>
<td>4.96(5)</td>
<td>4.63(8)</td>
<td>4.16(7)</td>
<td>3.51(6)</td>
<td>2.82(8)</td>
</tr>
<tr>
<td>Collinear Approx.</td>
<td>3.19(9)</td>
<td>3.50(8)</td>
<td>3.51(8)</td>
<td>3.34(5)</td>
<td>3.14(7)</td>
<td>2.77(6)</td>
<td>2.37(5)</td>
<td>1.91(6)</td>
</tr>
<tr>
<td>Transverse mass</td>
<td>2.53(8)</td>
<td>2.70(7)</td>
<td>2.67(7)</td>
<td>2.46(4)</td>
<td>2.26(6)</td>
<td>1.98(5)</td>
<td>1.64(4)</td>
<td>1.29(5)</td>
</tr>
<tr>
<td>N jets ≥ 2</td>
<td>2.12(7)</td>
<td>2.22(7)</td>
<td>2.21(6)</td>
<td>2.02(4)</td>
<td>1.80(5)</td>
<td>1.60(4)</td>
<td>1.32(4)</td>
<td>1.00(5)</td>
</tr>
<tr>
<td>Forward jet</td>
<td>1.61(7)</td>
<td>1.66(6)</td>
<td>1.73(5)</td>
<td>1.52(3)</td>
<td>1.41(5)</td>
<td>1.20(4)</td>
<td>1.03(3)</td>
<td>0.78(4)</td>
</tr>
<tr>
<td>Jet kinematics</td>
<td>0.88(5)</td>
<td>0.86(4)</td>
<td>0.92(4)</td>
<td>0.82(2)</td>
<td>0.73(3)</td>
<td>0.65(3)</td>
<td>0.56(2)</td>
<td>0.42(3)</td>
</tr>
<tr>
<td>Central jet veto</td>
<td>0.77(5)</td>
<td>0.77(4)</td>
<td>0.81(4)</td>
<td>0.72(2)</td>
<td>0.63(3)</td>
<td>0.55(2)</td>
<td>0.50(2)</td>
<td>0.38(3)</td>
</tr>
<tr>
<td>Mass window</td>
<td>0.68(4)</td>
<td>0.68(4)</td>
<td>0.70(3)</td>
<td>0.61(2)</td>
<td>0.52(3)</td>
<td>0.44(2)</td>
<td>0.40(2)</td>
<td>0.30(3)</td>
</tr>
</tbody>
</table>
Table 4: Signal cross-section for the ll-channel for various Higgs boson masses.

<table>
<thead>
<tr>
<th>Mass (GeV)</th>
<th>105</th>
<th>110</th>
<th>115</th>
<th>120</th>
<th>125</th>
<th>130</th>
<th>135</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross section (fb)</td>
<td>394.7</td>
<td>372.0</td>
<td>341.8</td>
<td>309.1</td>
<td>266.8</td>
<td>225.4</td>
<td>180.1</td>
<td>135.8</td>
</tr>
<tr>
<td>Trigger</td>
<td>65.6(3)</td>
<td>65.1(2)</td>
<td>61.1(2)</td>
<td>57.2(1)</td>
<td>51.5(2)</td>
<td>44.7(1)</td>
<td>36.5(1)</td>
<td>28.3(1)</td>
</tr>
<tr>
<td>Trigger lepton</td>
<td>56.4(3)</td>
<td>56.2(2)</td>
<td>53.2(2)</td>
<td>49.5(1)</td>
<td>44.7(2)</td>
<td>38.9(1)</td>
<td>31.8(1)</td>
<td>24.7(1)</td>
</tr>
<tr>
<td>Di-lepton</td>
<td>5.73(7)</td>
<td>5.86(6)</td>
<td>5.80(6)</td>
<td>5.46(3)</td>
<td>4.94(5)</td>
<td>4.30(4)</td>
<td>3.61(4)</td>
<td>2.88(4)</td>
</tr>
<tr>
<td>Missing $E_T \geq 40$ GeV</td>
<td>3.41(5)</td>
<td>3.49(5)</td>
<td>3.45(5)</td>
<td>3.17(3)</td>
<td>2.94(4)</td>
<td>2.56(4)</td>
<td>2.17(3)</td>
<td>1.78(4)</td>
</tr>
<tr>
<td>Collinear Approx.</td>
<td>2.34(5)</td>
<td>2.38(4)</td>
<td>2.33(4)</td>
<td>2.15(2)</td>
<td>1.95(4)</td>
<td>1.69(3)</td>
<td>1.46(2)</td>
<td>1.16(3)</td>
</tr>
<tr>
<td>N jets ≥ 2</td>
<td>1.96(4)</td>
<td>1.97(4)</td>
<td>1.95(4)</td>
<td>1.77(2)</td>
<td>1.61(3)</td>
<td>1.41(3)</td>
<td>1.20(2)</td>
<td>0.95(3)</td>
</tr>
<tr>
<td>Forward jet</td>
<td>1.48(4)</td>
<td>1.49(4)</td>
<td>1.48(3)</td>
<td>1.34(2)</td>
<td>1.21(3)</td>
<td>1.08(3)</td>
<td>0.91(2)</td>
<td>0.73(3)</td>
</tr>
<tr>
<td>B-jet veto</td>
<td>1.26(3)</td>
<td>1.30(3)</td>
<td>1.25(3)</td>
<td>1.16(2)</td>
<td>1.04(3)</td>
<td>0.94(2)</td>
<td>0.77(2)</td>
<td>0.64(2)</td>
</tr>
<tr>
<td>Jet kinematics</td>
<td>0.70(3)</td>
<td>0.69(2)</td>
<td>0.70(2)</td>
<td>0.63(1)</td>
<td>0.58(2)</td>
<td>0.52(2)</td>
<td>0.43(1)</td>
<td>0.37(2)</td>
</tr>
<tr>
<td>Central jet veto</td>
<td>0.61(2)</td>
<td>0.60(2)</td>
<td>0.62(2)</td>
<td>0.56(1)</td>
<td>0.50(2)</td>
<td>0.45(2)</td>
<td>0.38(1)</td>
<td>0.32(2)</td>
</tr>
<tr>
<td>Mass window</td>
<td>0.52(2)</td>
<td>0.50(2)</td>
<td>0.51(2)</td>
<td>0.45(1)</td>
<td>0.39(2)</td>
<td>0.34(1)</td>
<td>0.29(1)</td>
<td>0.23(1)</td>
</tr>
</tbody>
</table>
• Many and large background processes
 • (tt + jets, W + jets, Z + jets, WW + jets, ZZ + jets, ...)
 • Clean access to Higgs-W-W-coupling

Example of background processes

Example cut variable: $\Delta \phi_{ll}$
A very complex final state

- Dominant background: $tt + \text{jets}$ production

Experimental issues:

- b-tagging (efficiency $\sim \varepsilon^4$)
- Good understanding of background shape
SM Higgs production at LHC

Fig. 1: Total cross sections for Higgs production at the LHC. The gluon fusion result is NNLO QCD with soft gluon resummation effects included at NNLL and uses MRST2002 PDFs with renormalization/factorization scales equal to m_h. The vector boson fusion curve is shown at NLO QCD with CTEQ6M PDFs and renormalization/factorization scales equal to m_h. The Vh results ($V = W, Z$) include NNLO QCD corrections and NLO EW corrections and use MRST2002 PDFs with the renormalization/factorization scales equal to the $m_h - M_V$ invariant mass. The $b\bar{b} \rightarrow h$ result is NNLO QCD, with MRST2002 PDFs, renormalization scale equal to m_h and factorization scale equal to $m_h/4$. The results for $t\bar{t}h$ production are NLO QCD, use CTEQ6M PDFs and set the renormalization/factorization scale to $m_t + m_h/2$ [100].
VBF $H \rightarrow \tau\tau$