Production of jets and photons at ATLAS

Mark Stockton
(University of Birmingham)
on behalf of the ATLAS collaboration

QCD 08 7th-12th July 2008
Many processes involving jets and photons,
- Will mainly refer to direct photons and inclusive di-jet events as these events have the highest cross section at the LHC

Introduction
Motivations
LHC and ATLAS
Selecting jets and photons
Cross Sections
Summary
Introduction

- Jets are as close as we get to the individual quarks or gluons
 - Parton level process is obscured by hadronisation, jet algorithms, etc.
- Inclusive di-jet events give a good probe into parton densities with a large cross section $\sigma=4.5\text{mb}$ $p_{T\gamma}>25\text{GeV}$
 (NLOJET++)
- Photons are a complementary probe of parton densities
 - Free from uncertainties of jet reconstruction
 - Direct photons $\sigma=0.2\mu\text{b}$ $p_{T\gamma}>25\text{GeV}$
 (JETPHOX)
 - Di-photon $q\bar{q},qg \rightarrow \gamma\gamma$ $\sigma=21\text{pb}$ $gg \rightarrow \gamma\gamma$ $\sigma=8\text{pb}$ $p_{T\gamma}>25\text{GeV}$
 (RESBOS $80<M_{\gamma\gamma}<150\text{GeV}$)
• Di-jet and direct photon events will be observable with relatively small data samples already in a new region of p_T
 → Larger statistics will probe even higher p_T region
• Need to understand these processes before doing searches
• Di-jet and direct photon events will be observable with relatively small data samples already in a new region of p_T
 → Larger statistics will probe even higher p_T region

• Need to understand these processes before doing searches

Simulated cross sections

- Di-jet $d\sigma/dE_T$ [nb/GeV]
- Direct Photon $d\sigma/dp_T$ [nb/GeV]
- Di-Photon $d\sigma/dp_T$ [pb/GeV]
Motivations

- **Inclusive Jet and Di-Jet:**
 - Tests the running of α_s
 - New Physics?
 (e.g. Sub-structure, Extra dimensions)

- **Gluon Distribution and Parton Evolution Dynamics**
 - Large uncertainty at high x
 - Important as is discovery region
 - At low x:
 - No direct data constraint for $x \leq 10^{-4}$
 - Is DGLAP evolution sufficient?

- **Direct Photons**:
 - Calibration of Jet energy scale
 - Background for $H \rightarrow \gamma \gamma$

- **Gluon at $Q^2 = 10^4$ GeV2**

- **At Low p_T** previous direct photon data poorly described without intrinsic parton k_T
Direct Photons in \(\bar{p}p \) at \(\sqrt{s} = 1.8 \) TeV

- Data-theory discrepancy can be explained by adding intrinsic parton \(k_T \)
- Or maybe our deeper understanding needs improving?
- Interesting features at low \(p_T \) but can still probe the gluon PDF at higher \(p_T \)

- Both Di-jets and direct photons cover a wide range of x for a large range of Q^2 (or p_T^2).
- Most of this area has not been observed before.
- Can test the evolution from HERA to LHC.
- Low x region $x \sim 10^{-4}$ accessed at scales where perturbative QCD is clearly applicable for the first time.
- To reach even lower x values need lower Q (p_T) or more forward detectors.
ATLAS @ the LHC

- pp collisions @ 14TeV
- Design L=10^{34} \text{ cm}^{-2}\text{s}^{-1}
- Beam commissioning to start very shortly.
- Initial collisions @ 10TeV
- First month $\int L$ of the order of a few pb^{-1}

Cooling as of 30/06/08

- Inner detector (tracking) $|\eta|<2.5$
- 2T solenoid magnet
- Ecal + Hcal Calorimeters
- Muon System with 4T toroidal magnet system
ATLAS calorimeters

- Detecting jets + γ's requires high resolution and segmentation
- Ecal (LAr) |η|<3.2
 - Goal: $\sigma_E/E=10%/\sqrt{E}$ for EM objects
- Hadronic (Scintillating TILE & HEC) |η|<3.2
 - Goal: $\sigma_E/E=50%/\sqrt{E}$ for jets

- In the LAr barrel there are 3 layers:
 - Strips in η
 - For π^0/γ separation
 - Middle sampling (square Cells)
 - Most energy deposited here
 - Rear Cells
 - Also has a presampler |η|<1.8
Simulated events

- Top direct photon
 - $p=786$ GeV Photon
 - $E=722$ GeV Jet

- Bottom di-jet
 - $E=682$ GeV Jet
 - $E=622$ GeV Jet

- Back to back in the transverse plane

- The jet/photon rapidities depend on the momentum fractions carried by the incoming partons
• To reconstruct a jet an algorithm is used on energy deposits in the calorimeter
• Key elements of the algorithm are that it should be fast, understood theoretically, easy to calibrate, infra-red safe and applicable at a parton level

• In ATLAS there is a choice of algorithm and size:
 • Cone - radius=0.4/0.7 in $\Delta R^2=\Delta \eta^2+\Delta \phi^2$ around highest p_T seed
 • Kt - merges particles of similar momentum with a distance parameter=0.4/0.6 to control the merging

• Jet Energy Scale is the largest uncertainty in Jet measurements
 • Rely on accurate calibration, e.g. from in-situ measurement for which $\gamma+$jet and $Z+$jet events are used
• Have to decide whether a calorimeter deposit is a jet or whether it has come from a photon

• There is a low fake probability but the di-jets have a much larger cross section (x10⁴) than direct photons

• For a jet to be misidentified as a photon most of the jet energy has to end up in the ECAL
 → Largest source of these photons is: π⁰→γγ

• Also the photon could be radiated at a wide angle
 → But this is a real signal photon so is a higher order correction
• LO Direct Photon processes:
 • Compton $qg \rightarrow q\gamma$ (dominant @ LHC)
 • Annihilation $qq \rightarrow g\gamma$

• At HO in α_s: $gg \rightarrow g\gamma$ has the same event topology
• But also at HO is the Bremsstrahlung process which is difficult to handle (experimentally and theoretically)
 \rightarrow depends on isolation cuts used

• As well as this 70% of photons will convert before reaching the calorimeter, although most of these convert in the solenoid
 • Can use tools to recover those that convert in the tracker
Photon Identification

- Firstly apply a track veto to remove electrons
- Then by using the fine granularity of the calorimeter the photon shower shape can be studied.
- Apply ID cuts, separated into η and p_T bins:
 - Hadronic leakage
 - Ratio of cell windows in the 2nd layer
 - Width of the shower in the 1st and 2nd layers
 - Secondary maxima in the 1st layer
 - Fraction of E in the 1st layer compared to the full cluster
 - Shower Shape in the shower core in the first layer

Only ≈ 1 in 3000 jets pass photon ID*

Only isolated π^0, η, etc. from jets survive

• Pseudo Inclusive Jet data was passed through a global (Zeus) fit which showed that ATLAS could constrain the high x-gluon.

• The jet uncertainty is dominated by the jet energy scale, an error on this of 1% leads to a $\sigma(jet)$ error of 10%.

• The jet energy scale does not apply to direct photon events so they will have a much smaller uncertainty.

• This should allow the differences in the η spectrum of different PDF's (~10%) to be observed.
• Di-Jets and direct photons have the largest σ
 • Will be the first high p_T data taken
 • Need to be well understood before searches can take place

• The LHC is preparing for first data later this year
 • Both Di-jets and direct photons will be seen
 • It will be entering a new region of phase space

• ATLAS has been carefully designed for high γ/jet and γ/π^0 separation needed for γ studies

• Jet and Photon studies will be crucial studying pQCD through parton densities and evolution

Thanks to the Birmingham HEP and ATLAS SM groups
Backup
Direct Photon LO diagrams

- More often involves low x gluon and high x quark
- Rec of $x_1^{(obs)}$ and $x_2^{(obs)}$:
 - $x_1^{(obs)} = \frac{p_T}{\sqrt{s}}(e^{\eta_{jet}} + e^{\eta_{\gamma}})$
 - $x_2^{(obs)} = \frac{p_T}{\sqrt{s}}(e^{-\eta_{jet}} + e^{-\eta_{\gamma}})$
- Direct photons may be useful for this calculation as the γ p_T is well known and only the η of the jet is needed
\(\eta \) bins: [0.7, 1.0, 1.5, 1.8, 2.0, 2.5]
\(p_T \) bins: [30, 40, 50, 60, 70, 80] GeV

Hadronic leakage eta dependent for \(\eta < 0.8 \) and \(\eta > 7.5 \) GeV

- \(\text{ethad}_1/\text{et}_37 = \text{ET leakage into 1st sampling of had calo / ET in 3x7} \)

Secondary maxima in the 1st layer

- \(~e2tsts1/(1000+\text{const_lumi*et}) = 2nd maximum in strips / (1000+\text{const_lumi*et})~\)
- \(e2tsts1-\text{emins1} = 2nd \text{ maximum in strips - energy of strip with minimum between max 1 & 2} \)

Ratio of cell windows in the 2nd layer

- \(e237/e277 = \text{uncor. energy in 3x7 cells in em sampling 2 / uncor. energy in 7x7 cells in em sampling 2} \)
- \(e233/e237 = \text{uncor. energy in 3x3 cells in em sampling 2 / uncor. energy in 3x7 cells in em sampling 2} \)

Width of the shower in the 1st and 2nd layers

- \(\text{weta}_1 = \text{corrected width in 3 strips in the 1st samp.} \)
- \(\text{weta}_2 = \text{corrected width in 3x5 cells in the 2nd samp} \)
- \(\text{wtots}_1 = \text{total width in em sampling 1 in 20 strips} \)

Fraction of E in the 1st layer compared to the full cluster

- \(f1 = \text{fraction of energy found in 1st em sampling} \)

Shower shape in the shower core in the 1st layer

- \(\text{fracs}_1 = \text{energy outside core (E(\pm7)-E(\pm3))/E(\pm7)} \)
- Cluster isolation on etcone 20 is there but set to be 1000

PhotonID details
Photon Param's

- etcone = ET in a cone of R=0.45 in EM calo
- etcone20 = ET in a cone of R=0.20 in EM calo
- etcone30 = ET in a cone of R=0.30 in EM calo
- etcone40 = ET in a cone of R=0.40 in EM calo
- etaBE2 = eta from the second sample
- et37 = ET in 3x7
- e237 = uncor. energy in 3x7 cells in em sampling 2
- e277 = uncor. energy in 7x7 cells in em sampling 2
- ethad1 = ET leakage into 1st sampling of had calo
- weta1 = corrected width in 3 strips in the 1st samp.
- weta2 = corrected width in 3x5 cells in the 2nd samp
- f1 = fraction of energy found in 1st em sampling
- e2tsts1 = 2nd maximum in strips
- emins1 = energy of strip with minimum between max 1 & 2
- wtots1 = total width in em sampling 1 in 20 strips
- fracs1 = energy outside core (E(±7)-E(±3))/E(±7)
Inclusive Jet Cross Section

Direct photon PDF outcomes

- $p_T > 30$ GeV
- $p_T > 110$ GeV
- $p_T > 300$ GeV
Reco that matches truth
- Highest $p_T\gamma$ but fails photonID

Example of background from a signal event

2 γ's in jet to ignore
- Both lower p_T but 1 passes photonID