CERN PLANS ON HIGH FIELD MAGNETS DEVELOPMENT

D. Tommasini, CERN, Geneva, Switzerland

Abstract
The talk covered a short status of the LHC installation, an overview of R&D directions on superconducting magnets beyond the start of the LHC specifically addressing high field magnets, and an overlook of already on-going activities at CERN.

SUPERCONDUCTING MAGNETS ACTIVITIES BEYOND THE LHC START

Introduction
We can distinguish the activities on superconducting magnets beyond the LHC start as:
- Needed & funded activities
 - Magnet R&D in “The White Paper” 2008-2011 (6 year-version under study);
 - 20.5 MCHF + 73 FTE-Y in High Field Magnets (primarily Nb3Sn but HTS also considered);
 - 1.5 MCHF + 7 FTE-y for Fast Cycled Magnets
 - Magnet R&D in the FP7;
- Desirable, not funded (yet) activities
 - Triplet upgrade with NbTi
 - Being considered
 - D0;
 - Q0;
 - Undulators for beam diagnostics with lead ions;
 - Wigglers for CLIC damping ring;
 - Cycled magnets for PS2.

We will here specifically focus on high field magnet development.

High Field Magnets
There is a variety of needs for high field magnets, which can be summarized as follows:
- Large aperture, high peak field low-beta insertion quadrupoles Q1-Q2-Q3;
- Large aperture, high peak field correctors for low-beta insertions;
- High field (< 15 T), any cost, dipole for Fresca upgrade;
- High field, compact, any cost, D0 dipole (with 2 beam-beam LR at 5 σ, > 7 m);
- Very high field (15-25 T), low cost, dipole (LHC energy upgrade);
- Use of temperature margin for large heat deposition (D1, Q0, D0);
- High peak field undulators for LHC lead ions beam diagnostics;
- High peak field wigglers for CLIC damping rings;
- Open mid-plane dipoles for neutrino factories

R&D programs & topics
The High Field program at CERN, coordinated by G. de Rijk, involves the CERN White Paper Program, the FP7-IA-HFM program and collaborations with several research institutes worldwide (CEA, CIEMAT, INFN, STFC-RAL, UNIGE, TWENTE UNIVERSITY, WROCLAW UNIVERSITY and the LARP laboratories).

The R&D topics under consideration are:
- Conductor
 - Develop stable, high Jc conductors
 - Magnetization
- Enabling technologies & support studies
 - Electromagnetic layouts
 - Mechanical structures
 - High thermal transfer insulation
 - Radiation resistant insulation
 - Model coils (solenoid-racetrack) to study insulation & thermal treatment
 - Prospect HTS possibilities (design and build a 20 T insert)
- Model magnets
 - Design build and tests short models (dipole, quad and corrector)
- Prototype magnet
 - Design build and test 4 m prototype (dipole or quad)

On-going activities
The are at least four R&D activities already on-going at CERN concerning high field magnets:
- Development of an industrial European wire with a target Jc of 3000 A/mm² @ 12 T at 4.2 K. In Europe two technologies having the potential of reaching the target are being explored: powder in tube (contract awarded to SMI) and internal tin diffusion (contract awarded to Alstom). The progress on both fronts are promising and allowed achieving a Jc of 2500 A/mm² @ 12 T and 4.2 K with the powder in tube technology, and a Jc of 2100 A/mm² @ 12 T and 4.2 K with the internal tin technology;
- “Fast” thermal treatment of OST wires, showing enhanced stability and excellent Jc values (~3000 A/mm² @ 12 T and 4.2 K) with a treatment of only 17 hours at 695°C;
- Development of Nb3Sn undulators as synchrotron radiation sources for the beam profile monitors of the LHC run with lead ions. The short magnet period of only 14 cm, associated to a large aperture of 60 mm, requires a coil peak field of about 10 T to produce a magnetic field on the beam axis of 3 T;
- Development of new concepts of Nb3Sn wire insulation, being experimented on mini dipole split-coils. The use of advanced ceramic insulations allowed the manufacture of a mini dipole reaching a short sample field of 12 Tesla at 4.2K with no training quenches. This insulation has the particularity to get fully hardened before the high temperature thermal treatment of the superconductor.