INTRODUCTION TO MODERN THERMODYNAMICS

Dilip Kondepudi
Thurman D Kitchin Professor of Chemistry
Wake Forest University

John Wiley & Sons, Ltd
CONTENTS

Preface xiii

PART I THE FORMALISM OF MODERN THERMODYNAMICS 3

1 BASIC CONCEPTS AND THE LAWS OF GASES 4

Introduction 3
1.1 Thermodynamic Systems 4
1.2 Equilibrium and Nonequilibrium Systems 6
1.3 Biological and Other Open Systems 9
1.4 Temperature, Heat and Quantitative Laws of Gases 11
1.5 States of Matter and the van der Waals Equation 19
1.6 An Introduction to Kinetic Theory of Gases 29
Appendix 1.1 Partial Derivatives 37
Appendix 1.2 Elementary Concepts in Probability Theory 39
Appendix 1.3 Mathematica Codes 41
References 44
Examples 44
Exercises 45

2 THE FIRST LAW OF THERMODYNAMICS 49

The Idea of Energy Conservation amidst New Discoveries 49
2.1 The Nature of Heat 50
2.2 The First Law of Thermodynamics: The Conservation of Energy 55
2.3 Elementary Applications of the First Law 64
2.4 Thermochemistry: Conservation of Energy in Chemical Reactions 68
2.5 Extent of Reaction: A State Variable for Chemical Systems 76
2.6 Conservation of Energy in Nuclear Reactions and Some General Remarks 79
2.7 Energy Flows and Organized States 81
Appendix 2.1 Mathematica Codes 87
References 88
Examples 88
Exercises 92

3 THE SECOND LAW OF THERMODYNAMICS AND THE ARROW OF TIME 97

3.1 The Birth of the Second Law 97
3.2 The Absolute Scale of Temperature 106
3.3 The Second Law and the Concept of Entropy 108
3.4 Entropy, Reversible and Irreversible Processes 116
3.5 Examples of Entropy Changes due to Irreversible Processes 125
3.6 Entropy Changes Associated with Phase Transformations 128
3.7 Entropy of an Ideal Gas 129
3.8 Remarks about the Second Law and Irreversible Processes 130
Appendix 3.1 The Hurricane as a Heat Engine 132
Appendix 3.2 Entropy Production in Continuous Systems 135
References 136
Examples 137
Exercises 139

4 ENTROPY IN THE REALM OF CHEMICAL REACTIONS 141

4.1 Chemical Potential and Affinity: The Thermodynamic Force for Chemical Reactions 141
4.2 General Properties of Affinity 150
4.3 Entropy Production Due to Diffusion 153
4.4 General Properties of Entropy 155
Appendix 4.1 Thermodynamics Description of Diffusion 158
References 158
Examples 159
Exercises 160

5 EXTREMUM PRINCIPLES AND GENERAL THERMODYNAMIC RELATIONS 163

Extremum Principles in Nature 163
5.1 Extremum Principles Associated with the Second Law 163
5.2 General Thermodynamic Relations 173
5.3 Gibbs Energy of Formation and Chemical Potential 176
5.4 Maxwell Relations 179
5.5 Extensivity with Respect to \(N \) and Partial Molar Quantities 181
5.6 Surface Tension 183
References 187
Examples 187
Exercises 189

PART II APPLICATIONS: EQUILIBRIUM AND NONEQUILIBRIUM SYSTEMS 195

6 BASIC THERMODYNAMICS OF GASES, LIQUIDS AND SOLIDS 195

Introduction 195
6.1 Thermodynamics of Ideal Gases 195
6.2 Thermodynamics of Real Gases 199
6.3 Thermodynamics Quantities for Pure Liquids and Solids 208
Appendix 6.1 Equations of State 211
Reference 211
Examples 212
Exercises 213

7 THERMODYNAMICS OF PHASE CHANGE 215
Introduction 215
7.1 Phase Equilibrium and Phase Diagrams 215
7.2 The Gibbs Phase Rule and Duhem’s Theorem 221
7.3 Binary and Ternary Systems 223
7.4 Maxwell’s Construction and the Lever Rule 229
7.5 Phase Transitions 231
References 235
Examples 235
Exercises 236

8 THERMODYNAMICS OF SOLUTIONS 239
8.1 Ideal and Nonideal Solutions 239
8.2 Colligative Properties 243
8.3 Solubility Equilibrium 250
8.4 Thermodynamic Mixing and Excess Functions 255
8.5 Azeotropy 259
References 260
Examples 260
Exercises 262

9 THERMODYNAMICS OF CHEMICAL TRANSFORMATIONS 265
9.1 Transformations of Matter 265
9.2 Chemical Reaction Rates 266
9.3 Chemical Equilibrium and the Law of Mass Action 273
9.4 The Principle of Detailed Balance 278
9.5 Entropy Production due to Chemical Reactions 280
9.6 Elementary Theory of Chemical Reaction Rates 285
9.7 Coupled Reactions and Flow Reactors 288
Appendix 9.1 Mathematica Codes 295
References 298
Examples 298
Exercises 300

10 FIELDS AND INTERNAL DEGREES OF FREEDOM 305
The Many Faces of Chemical Potential 305
10.1 Chemical Potential in a Field 305
10.2 Membranes and Electrochemical Cells 311
10.3 Isothermal Diffusion 319
Reference 324
Examples 324
Exercises 325

11 INTRODUCTION TO NONEQUILIBRIUM SYSTEMS 327
Introduction 327
11.1 Local Equilibrium 328
11.2 Local Entropy Production, Thermodynamic Forces and Flows 331
11.3 Linear Phenomenological Laws and Onsager Reciprocal Relations 333
11.4 Symmetry-Breaking Transitions and Dissipative Structures 339
11.5 Chemical Oscillations 345
Appendix 11.1 Mathematica Codes 352
References 355
Further Reading 356
Exercises 357

PART III ADDITIONAL TOPICS

12 THERMODYNAMICS OF RADIATION 361
Introduction 361
12.1 Energy Density and Intensity of Thermal Radiation 361
12.2 The Equation of State 365
12.3 Entropy and Adiabatic Processes 368
12.4 Wien’s Theorem 369
12.5 Chemical Potential of Thermal Radiation 371
12.6 Matter-Antimatter in Equilibrium with Thermal Radiation: The State of Zero Chemical Potential 373
References 377
Examples 377
Exercises 377

13 BIOLOGICAL SYSTEMS 379
13.1 The Nonequilibrium Nature of Life 379
13.2 Gibbs Energy Change in Chemical Transformations 382
13.3 Gibbs Energy Flow in Biological Systems 385
13.4 Biochemical Kinetics 399
References 406
Further Reading 406
Examples 406
Exercises 409
CONTENTS

14 THERMODYNAMICS OF SMALL SYSTEMS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>411</td>
</tr>
<tr>
<td>14.1 Chemical Potential of Small Systems</td>
<td>411</td>
</tr>
<tr>
<td>14.2 Size-Dependent Properties</td>
<td>414</td>
</tr>
<tr>
<td>14.3 Nucleation</td>
<td>418</td>
</tr>
<tr>
<td>14.4 Fluctuations and Stability</td>
<td>421</td>
</tr>
<tr>
<td>References</td>
<td>430</td>
</tr>
<tr>
<td>Examples</td>
<td>430</td>
</tr>
<tr>
<td>Exercises</td>
<td>430</td>
</tr>
</tbody>
</table>

15 CLASSICAL STABILITY THEORY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 Stability of Equilibrium States</td>
<td>433</td>
</tr>
<tr>
<td>15.2 Thermal Stability</td>
<td>433</td>
</tr>
<tr>
<td>15.3 Mechanical Stability</td>
<td>435</td>
</tr>
<tr>
<td>15.4 Stability with Respect to Fluctuations in (N)</td>
<td>437</td>
</tr>
<tr>
<td>References</td>
<td>439</td>
</tr>
<tr>
<td>Exercises</td>
<td>439</td>
</tr>
</tbody>
</table>

16 CRITICAL PHENOMENA AND CONFIGURATIONAL HEAT CAPACITY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>441</td>
</tr>
<tr>
<td>16.1 Stability and Critical Phenomena</td>
<td>441</td>
</tr>
<tr>
<td>16.2 Stability and Critical Phenomena in Binary Solutions</td>
<td>443</td>
</tr>
<tr>
<td>16.3 Configurational Heat Capacity</td>
<td>447</td>
</tr>
<tr>
<td>Further Reading</td>
<td>448</td>
</tr>
<tr>
<td>Exercises</td>
<td>449</td>
</tr>
</tbody>
</table>

17 ELEMENTS OF STATISTICAL THERMODYNAMICS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>451</td>
</tr>
<tr>
<td>17.1 Fundamentals and Overview</td>
<td>452</td>
</tr>
<tr>
<td>17.2 Partition Function Factorization</td>
<td>454</td>
</tr>
<tr>
<td>17.3 The Boltzmann Probability Distribution and Average Values</td>
<td>455</td>
</tr>
<tr>
<td>17.4 Microstates, Entropy and the Canonical Ensemble</td>
<td>457</td>
</tr>
<tr>
<td>17.5 Canonical Partition Function and Thermodynamic Quantities</td>
<td>462</td>
</tr>
<tr>
<td>17.6 Calculating Partition Functions</td>
<td>462</td>
</tr>
<tr>
<td>17.7 Equilibrium Constants</td>
<td>469</td>
</tr>
<tr>
<td>Appendix 17.1 Approximations and Integrals</td>
<td>471</td>
</tr>
<tr>
<td>Reference</td>
<td>472</td>
</tr>
<tr>
<td>Examples</td>
<td>472</td>
</tr>
<tr>
<td>Exercises</td>
<td>473</td>
</tr>
<tr>
<td>CONTENTS</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>LIST OF VARIABLES</td>
<td>475</td>
</tr>
<tr>
<td>STANDARD THERMODYNAMIC PROPERTIES</td>
<td>477</td>
</tr>
<tr>
<td>PHYSICAL CONSTANTS AND DATA</td>
<td>485</td>
</tr>
<tr>
<td>NAME INDEX</td>
<td>487</td>
</tr>
<tr>
<td>SUBJECT INDEX</td>
<td>489</td>
</tr>
</tbody>
</table>