Nonsingular and accelerated expanding universe from effective Yang-Mills theory

Vitorio A. De Lorenci
Instituto de Ciências Exatas, Universidade Federal de Itajubá, 37500-903 Itajubá, M. G., Brazil, and PH Department, TH Unit, CERN, 1211 Geneva 23, Switzerland

The energy-momentum tensor coming from one-parameter effective Yang-Mills theory is here used to describe the matter-energy content of the homogeneous and isotropic Friedmann cosmology in its early stages. The behavior of all solutions is examined. Particularly, it is shown that only solutions corresponding to an open model do allow the universe to evolve into an accelerated expansion. This result appears as a possible mechanism for an inflationary phase produced by a vector field. Further, depending on the value of some parameters characterizing the system, the resulting models are classified as singular or nonsingular.

PACS numbers: 98.80.-k, 98.80.Cq, 98.80.Bp

I. INTRODUCTION

The Friedmann-Lemaître cosmological model \[1,2\], described by the Robertson-Walker geometry \[3,4\] with classical electrodynamics as its source, leads to a singularity at a finite time in the past \[5\]. It is usually identified as the origin of the universe. In fact, this singular behavior points out that, around the very beginning, the spacetime curvature becomes arbitrarily large, thus being beyond the domain of applicability of the model. It is expected that a quantum theory for gravity would circumvent the appearance of this curvature singularity by changing the predictions of the general relativity in the limit of large curvature.

There are many proposals of cosmological solutions without a primordial singularity. Mostly they are based on the fact that a collapsing phase can achieve a minimum, then evolving into a expanding phase. These nonsingular solutions are usually called bouncing cosmology. Such models are based on a variety of distinct mechanisms, such as cosmological constant \[6\], non-minimal couplings \[7\], nonlinear Lagrangians involving quadratic terms in the curvature \[8–10\], non-equilibrium thermodynamics \[11\] and loop quantum cosmology \[12\], among others \[13–18\]. In general, the singularity theorems \[19\] are circumvented by the appearance of a high (but nevertheless finite) negative pressure in the early phase of the universe. An initial singularity can also be avoided by assuming a quantum creation of a small but finite universe, and hence a beginning of time \[20,21\]. For a recent review on bouncing cosmology see \[22\].

The issue of inflationary cosmology has also been largely considered in the literature. For a recent review on theory and observations, see \[23\] and references therein. Data from the Wilkinson Microwave Anisotropy Probe (WMAP) observations \[24,25\] have imposed several restrictions to the possible models describing an inflationary cosmology. Particularly, evidence \[26\] for primordial non-Gaussianity in the temperature anisotropy of the cosmic microwave background radiation (CMBR) seems to disfavor canonical single-field slow-roll inflation. Further, the spatial curvature of the universe is found to be small (with a spatial curvature parameter \(\Omega_K\) of order \(10^{-2}\)), but not so small as predicted by the conventional inflationary models, where \(\Omega_K \sim 10^{-5}\). WMAP data seem to favor cosmological models with flat (Euclidean) or open (negative curvature) spatial sections. If the spatial curvature is non-null, even being small, the implications for the time evolution of the universe can really be important, as described by general relativity. Recently \[27\], inflationary cosmology and late-time accelerated expansion of the universe were considered in the context of non-minimally coupled effective Yang-Mills (Y-M) fields. It was shown that Y-M fields with a non-minimal gravitational coupling can produce an accelerated expanding phase in a flat (Euclidean spatial section) universe model. A complete analysis of the consequences for cosmology of the minimal coupling between gravity and effective Y-M fields has not been considered so far in the literature. The issue of inflation appears also in the context of nonsingular quantum cosmological models \[28\], where the inflationary phase appears as a quantum cosmological effect, instead of being produced by an inflaton field.

In this paper, the cosmological consequences of the minimal coupling between gravity and effective Y-M theory are investigated. The energy-momentum tensor coming from the effective Y-M fields is assumed to be the dominant source of the matter-energy content of the early universe, which is assumed to be homogeneous and isotropic. The behavior of all possible solutions is examined for the three distinct topologies, corresponding to flat, closed (positive curvature) and open (negative curvature) spatial sections. It is shown that when Euclidean or closed sections are...
considered, the solutions presenting expansion are decelerated and evolve into a static configuration. From this static phase the system can evolve into a collapsing phase if fluctuations on the scale factor are allowed. On the other hand, solutions corresponding to an open model do allow the universe to evolve into an accelerated expansion, thus providing a simple mechanism for an early inflationary phase produced by a vector field. Models presenting an inflationary phase produced by vector fields have been called as dark energy models [29 –31]. A graceful exit from the inflationary phase appears naturally because of a relationship between the scale factor and the magnitude of the Y-M field. Further, depending on the value of some parameters that characterize the system, the solutions turn out to be singular or nonsingular. Solutions exhibiting collapsing phases are also examined.

The paper is organized as follows: the following section presents some general aspects of the homogeneous and isotropic cosmology, including the main equations. In Sec. III the energy-momentum tensor for general one-parameter Lagrangian density is derived. It is also presented the procedure of field averaging which renders the system a perfect fluid configuration. Section IV deals with effective Y-M theory. In this context, the equation governing the time evolution of the scale factor is derived. In Sec. V cosmological models resulting from the minimal coupling between gravity and effective Y-M theory are examined. There, a suitable functional form for the effective coupling is assumed. In Sec. VI we use the results obtained before in order to discuss the regime of small coupling with large mean fields, for which the effective coupling presents a well known form. Finally, concluding remarks are presented in Sec. VII.

II. FRIEDMANN-LEMAÎTRE-ROBERTSON-WALKER UNIVERSE

Maxwell electrodynamics as source of gravity in the homogeneous and isotropic Friedmann-Lemaître cosmology [1, 2] leads to singular universe models. In this framework, this is a direct consequence of the singularity theorems [19], and follows from energy conservation law and Raychaudhuri equation [32]. Let us assume the homogeneous and isotropic Friedmann-Lemaître model as described by the Robertson-Walker metric [3, 4] in the form

\[ds^2 = dt^2 - \frac{A^2(t)}{(1 + \epsilon r^2/4)^2} \left[dr^2 + r^2 \left(d\theta^2 + \sin^2 \theta \, d\phi^2 \right) \right], \]

where \(\epsilon = -1, 0, +1 \) hold for the open, flat (or Euclidean) and closed sections, respectively. Here \((r, \theta, \varphi)\) are dimensionless comoving coordinates. In what follows the above mentioned framework will be simply referred as FLRW [5]. The 3-dimensional surface of homogeneity \(t = \text{constant} \) is orthogonal to a fundamental class of observers determined by a four-velocity vector field \(v^\mu = \delta^\mu_0 \).

For a perfect fluid with energy density \(\rho \) and pressure \(p \), the energy conservation law and the Raychaudhuri equation read, respectively,

\[\dot{\rho} + 3(\rho + p) \frac{\dot{A}}{A} = 0, \]

\[\frac{\dot{A}}{A} = -\frac{\kappa}{6}(\rho + 3p), \]

in which \(\kappa \) is the Einstein gravitational constant \((\kappa = 8\pi G) \) and ‘dot’ denotes Lie derivative respective to \(v^\mu \), that is \(\partial/\partial t \). It is worth to mention here that \(\rho + 3p \geq 0 \) states the strong energy-dominance condition (SEC). For instance, in the case of \(A(t) \) describing an expanding phase, satisfying SEC means that \(\dot{A} < 0 \). In this case we say that gravity decelerates the expansion. On the other hand, if this condition is violated the corresponding model will present a phase of accelerated expansion, as required for an inflationary cosmology. This issue will be further addressed when cosmological models are examined.

Multiplying Eq. (3) by \(\dot{A}A \) we obtain

\[\dot{A}\dot{A} + \frac{k}{6}A\dot{A}(\rho + 3p) = 0. \]

But \(A\dot{A}(\rho + 3p) = -(A^2\rho)' \), where Eq. (2) was used. Thus, introducing this result in Eq. (4), and after integrating it, we obtain the Friedmann equation [61]

\[\frac{\kappa}{3}\rho = \left(\frac{\dot{A}}{A} \right)^2 + \frac{\epsilon}{A^2}. \]
which consists of a first integral of Eqs. (2) and (3). If \(\rho \) is a known function of \(A(t) \), the above equation will determine the solutions for the scale factor. In other words, the time evolution of the scale factor is determined by Einstein’s equations in terms of the matter-energy content of the universe.

III. ENERGY-MOMENTUM TENSOR FOR ONE-PARAMETER NONLINEAR LAGRANGIAN

This section provides a description of the tensor characterizing the matter-energy contents of the system, which is assumed to be described by a general one-parameter Lagrangian density. We begin by introducing some well known objects, which will be useful to set the notation. The strength tensor field \(F_{\mu\nu}^{(a)} \) and the gauge field \(A_{\mu}^{(a)} \) are related by

\[
F_{\mu\nu}^{(a)} = \partial_{\mu} A_{\nu}^{(a)} - \partial_{\nu} A_{\mu}^{(a)} + C_{\nu\lambda\mu}^{abc} A_{\lambda}^{(b)} A_{\mu}^{(c)},
\]

where \(C_{\nu\lambda\mu}^{abc} \) represents the structure constant for a compact Lie group \(G \). This tensor field can be conveniently defined in terms of the non-Abelian electric \(E_{\mu}^{(a)} \) and magnetic \(B_{\mu}^{(a)} \) color fields as

\[
F_{\mu\nu}^{(a)} = v_{\mu} E_{\nu}^{(a)} - v_{\nu} E_{\mu}^{(a)} - \eta_{\mu\nu} \alpha\beta v_{\alpha} B_{\beta}^{(a)}. \tag{7}
\]

In order to alleviate the notation the ‘color’ indices, above indicated by upper brackets, will be omitted in what follows.

Let us assume the gauge invariant Lagrangian density to be a general function of the Lorentz invariant \(F = F_{\mu\nu} F^{\mu\nu} = 2(B^2 - E^2) \) as \(L = L(F) \). The energy-momentum tensor for this class of one-parameter theories can be presented as

\[
T_{\mu\nu} = -4L_{F} F_{\mu\alpha} F_{\alpha\nu} - L g_{\mu\nu}, \tag{8}
\]

in which \(L_{F} \) represents the derivative of the Lagrangian density with respect to the invariant \(F \).

Since the spatial sections of FLRW geometry are isotropic, we may consider that the color fields can generate such universe only if an averaging procedure is performed \([34]\). For this propose the system is assumed to satisfy the following requirements: (i) the volumetric spatial average of the color field strength does not depend on directions; (ii) it is equally probable that the products \(E^i E^j \), \(B^i B^j \) and \(E^i B^j \) (with \(i \neq j \)), at any time, take positive or negative values; (iii) there is no net flow of energy as measured by comoving observers. The above mentioned volumetric spatial average of an arbitrary quantity \(X \) for a given instant of time \(t \) is defined as

\[
\langle X \rangle \equiv \lim_{V \to V_0} \frac{1}{V} \int X \sqrt{-g} d^4x, \tag{9}
\]

with \(V = \int \sqrt{-g} d^4x \), and \(V_0 \) stands for the time dependent volume of the whole space. Similar average procedures have already been considered in \([14, 31, 36]\).

In terms of the electric and magnetic color fields, these requirements imply that

\[
\langle E_{i} \rangle = 0, \quad \langle B_{i} \rangle = 0, \tag{10}
\]

\[
\langle E_{i} B_{j} \rangle = -\frac{1}{3} \langle \vec{E} \cdot \vec{B} \rangle g_{ij}, \tag{11}
\]

\[
\langle E_{i} E_{j} \rangle = -\frac{1}{3} E^2 g_{ij}, \tag{12}
\]

\[
\langle B_{i} B_{j} \rangle = -\frac{1}{3} B^2 g_{ij}, \tag{13}
\]

where we have defined \(E^2 = -E_i E^i \) and \(B^2 = -B_i B^i \). Note that Eq. \(\text{(11)} \) implies in \(\langle E_{i} B_{j} - B_{i} E_{j} \rangle = 0 \).

Applying the above average procedure to the energy-momentum tensor we obtain the following non null components:

\[
\langle T_{00} \rangle = -4L_{F} E^2 - L g_{00}, \tag{14}
\]

\[
\langle T_{ij} \rangle = -\left[\frac{4}{3} L_{F} (E^2 - 2B^2) + L \right] g_{ij}, \tag{15}
\]

which can be presented as a perfect fluid configuration with energy density \(\rho \) and pressure \(p \) as

\[
\langle T_{\mu\nu} \rangle = (\rho + p) u_{\mu} u_{\nu} - p g_{\mu\nu}, \tag{16}
\]
where we identify:
\[
\rho = -4L_FE^2 - L, \quad (17)
\]
\[
p = \frac{4}{3}(E^2 - 2B^2)L_F + L. \quad (18)
\]

For the particular case of Maxwell electrodynamics, with \(L = -F/4 \), we obtain the classical result \(\rho = 3p = (E^2 + B^2)/2 \) (here \(E \) and \(B \) stand for the Abelian electric and magnetic fields). The fact that both the energy density and the pressure are positive definite for all times yields the singular nature of FLRW universes. The Einstein equations for the above energy-momentum configuration lead to [35] the classical solution for the scale factor \(A(t) = (A_0^2 t - \epsilon t^2)^{1/2} \), where \(A_0 \) is an arbitrary constant.

For the case of nonlinear spin-one fields described by the Lagrangian density \(L = -F/4 + \alpha F^2 + \beta G^2 \), which encompass the first order terms coming from one-loop QED, it can be shown [14] that, in the absence of electric field, \(\rho = (B^2/2)(1 - 8\alpha B^2) \) and \(p = (B^2/6)(1 - 40\alpha B^2) \). This toy model presents solutions exhibiting a nonsingular behavior for the scale factor. Regards must be taken in applying such model to the description of the early universe. Nevertheless, it could be considered in a specific phase where the above terms in the Lagrangian density would correspond to the dominant terms in the effective QED Lagrangian.

Let us return to the general case determined by Eq. (16). Taking in consideration the averaging procedure on fields, the energy conservation law stated by Eq. (2) reduces to
\[
\frac{4L_FF}{L_F}E^2 \frac{\partial}{\partial t}(B^2 - E^2) + (B^2 + E^2) \frac{\partial}{\partial t} \ln [(B^2 + E^2)A^4] = 0. \quad (19)
\]

Summing up, the behavior of the scale factor \(A(t) \) in the FLRW cosmology dominated by a perfect fluid given by Eq. (16) is determined by Eqs. (5) and (19).

The dominant matter-energy contents of the universe in a very early phase is expected to be a plasma of quark and gluons (QGP). Such a phase would occur when the temperatures exceeded the value \(\Lambda_{QCD} \approx 200 \text{MeV} \) [47]. At this regime the strong coupling is small and most quark and gluons only interact weakly. Soft modes could also exist but they would constitute only a small fraction of the total energy density. It is not clear by now what would be the better model to describe the evolution of the spacetime in this phase. The production of QGP is expected to occur in high energy collisions in the great accelerators, as in RHIC and LHC experiments (in BNL and CERN, respectively). The results to come from these experiments may shed some light in the understanding of the very early universe. In the following sections we shall examine a working model in which the Y-M effective Lagrangian density for quantum chromodynamics with one parameter background field will be considered to describe the matter-energy contents of the isotropic and homogeneous FLRW universe. The use of effective Y-M theory in the context of QGP and gluon plasma has recently been considered in [36, 37].

IV. ONE-PARAMETER EFFECTIVE LAGRANGIAN FOR YANG-MILLS FIELDS

The effective Lagrangian density for quantum chromodynamics (QCD) in terms of the parameter background field \(F \) can be presented [39, 41] in the form:
\[
L_{YM} = -\frac{1}{4} \frac{F}{\bar{g}(\gamma)^2}, \quad \gamma = \log \frac{F}{\mu^4} \quad (20)
\]
where the effective coupling \(\bar{g}(\gamma) \) is implicitly given by means of
\[
\gamma = \int_{g}^{\bar{g}(\gamma)} dg \frac{1}{\beta(g)}, \quad (21)
\]
with \(\beta(g) \) the Callan-Symanzik \(\beta \)-function, \(\mu \) is the renormalization mass and \(g \) the gauge field coupling constant appearing in the basic QCD Lagrangian. This effective Lagrangian density should be taken as a classical model that incorporates several features of the quantum problem. It gives a sufficiently correct description of the quantum vacuum, opening a window to the examination of physically important configurations [40].
In fact, there are many invariants of the Yang-Mills fields, depending on the specific gauge group \[42\]. The ansatz used to derive this effective Lagrangian density takes in consideration only the algebraic invariant \(F \) and imposes consistency with the trace anomaly for the energy-momentum tensor \[43\].

Before analyzing the cosmological implications of this model, some remarks are in order. The study of the energy density for the effective action associated with this theory, reveals that \(E^2 > B^2 \) would lead to a metastability of the vacuum. The interpretation for this behavior can be presented as follows: if a region in the system develops a large \(E \) field, it will quickly decay into a configuration where \(B^2 > E^2 \) \[40\]. Furthermore, we limit our considerations to the case in which only the average of the squared magnetic color field \(B^2 \) survives \[14, 37, 44–46\]. This is formally equivalent to put \(E^2 = 0 \) in Eq. (12). With this assumption, the energy conservation law [cf. Eq. (19)] leads to

\[
B(t) = \frac{B_0}{A(t)^2}, \tag{22}
\]

Now, introducing this result in Eq. (5) we obtain the following equation governing the time evolution of \(A(t) \):

\[
\dot{A}^2 = \frac{\kappa B_0^2}{6} \frac{1}{A^2 g^2} - \epsilon. \tag{23}
\]

The equilibrium solutions of this equation can be obtained by means of

\[
\frac{\kappa B_0^2}{6} \frac{1}{A^2 g^2} = \epsilon, \tag{24}
\]

which applies for each possible value of the parameter \(\epsilon \) \((0, \pm 1)\), corresponding to different topologies of the spacetime.

V. COSMOLOGICAL MODELS

In terms of an action principle formulation this work deals with a minimal coupling between gravity and Y-M fields, whose total action is given by

\[
S = \int d^4x \sqrt{-\det[g_{\mu\nu}]}(L_R + L_{YM}), \tag{25}
\]

where \(\det[g_{\mu\nu}] \) is the determinant of the matrix whose elements are the components of the spacetime metric, given by Eq. (1). \(L_R \) represents the well known Einstein-Hilbert Lagrangian density \[47\], and \(L_{YM} \) is the effective Y-M Lagrangian density presented in Eq. (20).

Now, let us examine the solutions for the time evolution of the scale factor \(A(t) \) for the case where the effective coupling \(\bar{g} \) presents the form

\[
\frac{1}{\bar{g}^2} = 1 + b_0 \gamma. \tag{26}
\]

As it will be shown in the next section, this form for the effective coupling correspond to the first two terms coming from the regime of small coupling with large mean fields \[39, 40, 48\], where the constant \(b_0 \) is identified with a beta-function coefficient. The first term, the Maxwell-like term, is really negligible at the mentioned regime, but it will be maintained here for future reference. Now Eq. (23) reads

\[
\dot{A} = \pm \left(\frac{a}{A^2} \ln \frac{b}{A^2} - \epsilon \right)^{1/2}, \tag{27}
\]

with

\[
a = \frac{\kappa b_0 B_0^2}{3}, \tag{28}
\]

\[
b = \frac{\sqrt{2} B_0}{\mu^2} e^{1/b_0}. \tag{29}
\]

The derivative of Eq. (27), which provides an expression for the acceleration field associated to the function \(A(t) \), is given by (for \(\dot{A} \neq 0 \)):

\[
\ddot{A} = -\frac{a}{A^3} \left(1 + \ln \frac{b}{A^2} \right). \tag{30}
\]
It is worth to mention that Eq. (27) can be presented as a second order differential equation in a more suitable form as \(\ddot{y} + 2a/y + \epsilon = 0 \), with \(y = A^2(t) \).

Formal solutions of Eq. (27) are implicitly given by

\[
t - t_i = \pm \int_{A(t_i)}^{A(t)} \left(\frac{a}{z^2} \ln \frac{b}{z^2} - \epsilon \right)^{-1/2} dz, \tag{31}
\]

which does not contain the equilibrium solutions. For each value of the parameter \(\epsilon \), real solutions can exist only if

\[
\frac{a}{A^2} \ln \frac{b}{A^2} - \epsilon \geq 0. \tag{32}
\]

In the above condition, the equality gives the equilibrium solutions (or equilibrium points) of Eq. (27). In fact, at the equilibrium points we have

\[
e^{\epsilon A^2/a} = \frac{b}{A^2}. \tag{33}
\]

As the scale factor \(A \) appears squared in this expression, all solutions will be of the form \(\pm A_\epsilon \). Nevertheless, the negative solutions shall not be considered, since they do not correspond to physical results for the scale factor. Summing up, solutions for the time evolution of \(A(t) \) are given by Eqs. (31) and (33).

In what follows the graphic study of these solutions will be performed for each given spacetime topology. We are not assuming any particular normalization for the scale factor. Particularly, \(A = 1 \) does not imply present time.

A. Euclidean section (\(\epsilon = 0 \))

In the case of an Euclidean section, there is one positive equilibrium solution, which is given by \(A_0 = b^{1/2} \). It can be seen directly from Eq. (33) by setting \(\epsilon = 0 \). Now, let us study the behavior of \(\dot{A}(t) \) in the neighborhood of \(A_0 \).

From Eq. (27) one can see that \(\dot{A}(t) \) is real only if \(A < b^{1/2} \), otherwise it will be complex. Furthermore, in the region where \(\dot{A} \) is real, it will be positive for the positive root of Eq. (27) and negative for its negative root. In other words, the equilibrium solution \(A_0 \) behaves as an attractor for the positive root (in the sense that any nearby solution tend forwards it) and as a source for the negative root (any nearby solution tend away from it).

The slope field\[62\] for the positive root of Eq. (27) is presented in Fig. 1. This figure shows that any initial condition for \(A(t) \) satisfying \(A(t_i) < A_0 \) leads to a solution presenting a primordial singularity. Singularity is here understood in the sense that, looking backwards in time, \(A(t) \) achieves the value zero in a finite interval of time. After this singular origin, the scale factor increases in a decelerated rate towards the equilibrium solution \(A_0 \). The two curves plotted in this figure correspond to the equilibrium solution (the right line) and a numerical solution of Eq. (27) with an initial condition satisfying \(A(t_i) < A_0 \).

![FIG. 1: Slope field for the positive root of Eq. (27) in the case of \(\epsilon = 0 \) (Euclidean section). The two solid curves correspond to the equilibrium solution \(A_0 = b^{1/2} \) (the right line) and a numerical solution of Eq. (27) with an initial condition satisfying \(A(t_i) < A_0 \). Any solution of the differential equation with initial condition satisfying \(A(t_i) < b^{1/2} \) evolves towards the equilibrium solution, which behaves as an attractor in the plot. There is no solution for which \(A > A_0 \). The expanding solution corresponds to a singular and decelerated expanding cosmological model. We set \(a = 1 \) and \(b = 1 \).](image)

condition for \(A(t) \) satisfying \(A(t_i) < A_0 \) leads to a solution presenting a primordial singularity. Singularity is here understood in the sense that, looking backwards in time, \(A(t) \) achieves the value zero in a finite interval of time. After this singular origin, the scale factor increases in a decelerated rate towards the equilibrium solution \(A_0 \). The two curves plotted in this figure correspond to the equilibrium solution (the right line) and a numerical solution of Eq. (27) with an initial condition satisfying \(A(t_i) < A_0 \).
On the other hand, if the negative root of Eq. (27) is considered, the conclusions are quite different, as shown in Fig. 2. In this case the scale factor begins with a finite value, which can not be greater than \(A_0 \). Then, it decreases in an accelerated rate to the singularity. This solution corresponds to a collapsing singular universe model. In the figure, the equilibrium solution appears as the right line. The other curve corresponds to a numerical solution of Eq. (27) with an initial condition satisfying \(A(t_i) < A_0 \).

As the equilibrium solution behaves as a source in the case of the negative root, it is unstable under small perturbation. Thus, if the system is initially in this state, any small fluctuation in the value of \(A(t) \) would lead the system to evolve into a collapsing phase. In this sense, the two roots could also be considered together. In this case, an initially singular universe would expand in a decelerated rate until the equilibrium solution \(A_0 \) is achieved. Thus, it could evolve into a singular collapsing phase.

As one can see, the equilibrium point \(A_0 \) corresponds to an upper limit for the values the scale factor can take. The value of \(A_0 \) is associated with the parameters appearing in the Lagrangian density and depends on the specific model for the effective coupling constant. There is no solution presenting an accelerated expansion in the Euclidean section model.

Since Friedmann equation is invariant under time reversal [63], solutions for the negative root of Eq. (31), as those appearing in Fig. 2 can be obtained from the solutions for the positive root simply taking \(t \rightarrow -t \) in Fig. 1. In what follows only solutions corresponding to the positive root will be considered in plots.

It was recently shown [59] that a non-minimal coupling of gravity with effective Y-M theory can produce accelerated expansion in the flat model. In fact, it was claimed earlier, in [50], that even for the case of a minimal coupling, it would be possible to obtain an accelerated expansion by considering a primordial electric condensate. Nevertheless, following the reasonings of [40], a condensate with only an electric color field (or even with \(E^2 > B^2 \)) would imply in vacuum metastability. Within the framework considered here, our results confirm that, for a magnetic condensate, there is no solution presenting an inflationary phase in the Euclidean model, if the minimal coupling is assumed.

Finally, in the case of Euclidean section, the solution presented by Eq. (31) can also be presented in terms of the inverse error function as

\[
A(t) = \sqrt{b} e^{-\frac{1}{2}Erf^{-1}\left(C_0 \pm \frac{2}{\sqrt{\pi}}\right)^2}
\]

where \(C_0 \) is an integration constant and \(Erf\ (z) \) is the error function [51]

\[
Erf\ (z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-x^2} \, dx.
\]

Here we must add again the equilibrium solution \(A(t) = b^{1/2} \). The results obtained for this case (Euclidean section) can also be obtained from the above prescription, i.e., by means of Eqs. (34) and (35).
B. Closed section ($\epsilon = +1$)

In this case the positive equilibrium solution of Eq. (27) is given by

$$A_{+1} = \sqrt{a W(\frac{b}{a})},$$ \hspace{1cm} (36)

where $W(z)$ represents the Lambert function [52]. Here the behavior of the solutions are quite similar to the case examined before, for the Euclidean section. The slope field for the positive root of Eq. (27) is presented in Fig. 3.

As occurs in the case of the Euclidean section, the equilibrium solution corresponds to an attractor in the case of the positive root and to a source in the case of the negative root. In both cases no solutions can be found for which $A > A_{+1}$. Figure 3 also presents the equilibrium solution (the right line) and a numerical solution corresponding to an expanding model. The latter is given by Eq. (31) with a given initial condition satisfying $A(t_0) < A_{+1}$. Any solution of the differential equation with initial condition satisfying $A(t_0) < A_{+1}$ evolves into the equilibrium solution. There is no real solution for which $A > A_{+1}$. The expanding solution corresponds to a singular and decelerated expanding cosmological model. We set $a = 1$ and $b = 1$.

On the other hand, by considering the negative root of Eq. (27), any given initial condition satisfying $A(t_i) < A_{+1}$ leads to an accelerated collapsing model.

The only difference between the solutions for Euclidean and closed sections consists on the value of the equilibrium point. Again, there is no solution corresponding to an accelerated expanding model. For the case of the positive root of Eq. (27), any expanding solution will evolve into a static configuration with $A = A_{+1}$. Nevertheless, since the equilibrium solution is unstable for the negative root, the system in the static configuration could evolve into a collapsing phase, provided small fluctuations of the scale factor are allowed to occur.

C. Open section ($\epsilon = -1$)

In the case of an open section, the equilibrium solutions of Eq. (27) are given by

$$A_{-1} = i \sqrt{a W(-\frac{b}{a})},$$ \hspace{1cm} (37)

which is real only if $(b/a) \leq (1/e)$. The mathematical constant “e” denotes the base of the natural logarithm. There are three distinct cases to be analyzed here, depending on the values of the parameters a and b. If $a < eb$ no equilibrium solutions can be found; if $a = eb$ there will be only one positive equilibrium solution; and finally, if $a > eb$ there will be two positive equilibrium solutions. We remember that these parameters are related with the physical quantities coming from the Lagrangian densities. These three branches can be clearly understood with the help of Fig. 4. In this figure the solid curve represents the function b/A^2 while the dashed curves represent the function $\exp(-A^2/a)$ for different values of the parameter a. Equilibrium solutions are determined by the intersection between the solid and the dashed curves [cf. Eq. (33)]. These curves are denoted by I, for $a > eb$; II, for $a = eb$; and III, for $a < eb$. As one can see, if $a > eb$ there will be two positive and distinct values of A for which these curves intercept.
FIG. 4: The solid curve corresponds to the plot of the function \(f(A) = b/A^2 \). The three dashed curves I, II and III, correspond to the plots of the function \(f(A) = e^{-A^2/a} \) for \(a > eb \), \(a = eb \), and \(a < eb \), respectively. The intercepting points between the solid and the dashed curves occur at the equilibrium solutions, which are given by Eq. (37).

In the limiting situation where the parameter \(a \) attains the exact value \(eb \), there will be only one positive value of \(A \) for which the curves intercept to each other. On the other hand if \(a < eb \) no coincident point can be found.

Corresponding to each one of the above mentioned domains, the solutions of the differential equation (27), given by Eq. (31), will exhibit different behaviors. Therefore, it is worth to examine each case separately.

1. \(a < eb \): no equilibrium solutions

If \(a < eb \) Eq. (37) does not present any real solution and, as a consequence, there is no equilibrium point. Taking the positive root of Eq. (27) one can see, from the slope field in Fig. 5, that any given initial condition implies in a singular solution. That is, for a given instant of time \(t_0 \) the scale factor attains the singular value \(A(t_0) = 0 \). Looking backward, this means that the scale factor achieves the value zero in a finite interval of time. In this sense \(t_0 \) can be thought as an initial time. For \(t > t_0 \) the scale factor is an increasing function of \(t \). From Eqs. (27) and (30) one can see that this expansion is initially decelerated, when \(A(t) < (eb)^{1/2} \), later evolving into an accelerated expansion when \(A(t) > (eb)^{1/2} \). The transition from the decelerated to the accelerated phase occurs at a certain transition time \(t_T \) given by \(A(t_T) = (eb)^{1/2} \), which depends on the parameters characterizing the effective Y-M theory. The solid curve in this figure corresponds to a numerical solution of Eq. (27) and describes the above discussed expanding cosmological model with a primordial singularity.

FIG. 5: Slope field for the positive root of Eq. (27) in the case of \(\epsilon = -1 \) (open section) with no equilibrium solutions \((a < eb)\). The solid curve represents a numerical solution of Eq. (27) with a given initial condition and corresponds to an expanding cosmological model with two distinct phases: a decelerated expansion evolving into an accelerated expansion. We set \(a = e/2 \) and \(b = 1 \).

If the negative root of Eq. (27) is take into account the opposite behavior is found. The possible solutions correspond to singular contracting cosmological models with a decelerated collapsing phase evolving into a singular accelerated collapsing phase.
2. \(a = eb \): one equilibrium solution

In this case Eq. (37) presents one positive equilibrium solution, which is here denoted by \(A_{II} \). The slope field for the positive root of Eq. (27) is presented in Fig. 6. Depending on the initial condition, the system will behave quite differently. For an initial condition satisfying \(A(t_i) < A_{II} \), the corresponding solution will be singular \(|A(t_i) = 0\) for an initial time \(t_0\), evolving into a decelerated expansion towards the equilibrium solution \(A_{II} \) (the right line in the figure). A numerical solution of Eq. (27) with a given initial condition satisfying \(A < A_{II} \) is presented in the bottom of Fig. 6 (the solid curve below the equilibrium solution) and describes a singular cosmological model presenting a decelerated expansion. On the other hand, if \(A(t_i) > A_{II} \) the corresponding solution will be nonsingular \(|A(t) > A_{II} \), \(\forall t \rangle\) and presenting an accelerated expansion. This cosmological model corresponds to a nonsingular accelerated expanding universe. For a given initial condition this solution is numerically obtained from Eq. (27) and is plotted in Fig. 6 appearing as the solid curve above the equilibrium solution (the right line). These two kinds of solution are separated by the equilibrium solution, which behaves as an attractor for solutions satisfying \(A(t_i) < A_{II} \) and as a source for solutions satisfying \(A(t_i) > A_{II} \). The equilibrium solution itself corresponds to a static cosmological model. As the equilibrium solution is unstable for those solutions satisfying the initial condition \(A > A_{II} \), a singular decelerated expanding phase could evolve into an accelerated expanding phase, provided small fluctuations of the scale factor are allowed when the system is nearby the equilibrium point at \(A = A_{II} \).

Now, if the negative root of Eq. (27) is considered, the possible solutions will describe collapsing or static cosmological models. As before, these solutions can be obtained directly by taking \(t \to -t \) in the above solutions. The solutions coming from the positive and negative roots can also be combined. For instance a collapsing phase can evolve into an expanding accelerated phase producing a bounce. Note however that this combinations do not correspond to a superposition of solutions. It can occur if small fluctuations on the scale factor are allowed to occur when the system achieves its equilibrium point. In this sense, the system initially in the equilibrium state can evolve into an accelerated expansion if a positive fluctuation of \(A(t) \) occurs, or yet, it could evolve into a collapsing phase if a negative fluctuation occurs.

3. \(a > eb \): two equilibrium solution

Finally, when \(a > eb \) there will be two positive equilibrium solutions given by Eq. (37), which are denoted by \(A_f^b \) and \(A_j^b \), with \(A_f^b < A_j^b \). We notice that Eq. (27) presents no real solutions in the interval \(A_f^b < A < A_j^b \). Furthermore, as the parameter \(a \) takes the limiting value \(eb \) the both equilibrium points get the same value \(A_{II} \), which corresponds to the case of only one equilibrium solution, analyzed before.

The slope field for the positive root of Eq. (27) is presented in Fig. 7. As one can see, the equilibrium point \(A_f^b \) behaves as a source for those solutions satisfying the initial condition \(A(t_i) > A_f^b \), while \(A_j^b \) behaves as an attractor for those solutions satisfying the initial condition \(A(t_i) < A_j^b \). For initial conditions satisfying \(A(t_i) < A_f^b \), the corresponding solution will be singular \(|A(t_0) = 0\) for a initial time \(t_0\) evolving into a decelerated expansion towards the equilibrium point \(A_f^b \). It corresponds to a singular decelerated expanding cosmological model. By the other hand, if \(A(t_i) > A_f^b \) the corresponding solution will be nonsingular, with \(A(t_0) = A_f^b \), and accelerated expanding. It describes a nonsingular accelerated expanding universe. Since the equilibrium solution \(A_f^b \) is unstable, an initially static phase
FIG. 7: Slope field for the positive root of Eq. (27) in the case of $\epsilon = -1$ (open section). The top corresponds to the region where $A(t) \geq A_r^b$, while the bottom corresponds to the region where $A(t) \leq A_r^b$. There is not real solution between these two limiting values. The equilibrium solutions A_r^b and A_r^f are represented by the right lines (with $A_r^b < A_r^f$). The two solid curves correspond to numerical solutions of the positive root of Eq. (27) for different initial conditions. Particularly, any initial condition satisfying $A > A_r^b$ leads to a nonsingular accelerated expanding model. We set $a = 2\epsilon$ and $b = 1$.

could evolve into a expanding one if small fluctuations of the scale factor are allowed. These two kinds of solution are separated by a region $A_r^b < A < A_r^f$, for which no solutions can be found. In Fig. 7 the equilibrium solutions A_r^b and A_r^f are represented by the right lines. Two numerical solutions of Eq. (27) are also presented. They correspond to different initial conditions. The curve in the bottom was produced by an initial condition with $A(t_i)$ being smaller than A_r^b, while the curve in the top was produced by an initial condition with $A(t_i)$ being greater than A_r^b. They describe, respectively, a singular decelerated expanding model and a nonsingular accelerated expanding model.

Again, if the negative root of Eq. (27) is considered, the possible solutions will describe collapsing or static cosmological models, and they can be obtained by taking $t \to -t$ in the above solutions.

Depending on the equilibrium state the system lies, it can evolve into an accelerated expansion [from the positive root of Eq. (31)] or into an accelerated collapsing phase [from the negative root of Eq. (31)], provided small fluctuations on the scale factor are allowed. In this sense, the solutions coming from the positive and negative roots can also be combined. For instance, a decelerated expanding phase can evolve into an accelerated collapsing phase, or yet, a collapsing phase could evolve into a expanding accelerated phase, producing a nonsingular model presenting a bounce.

VI. SMALL COUPLING WITH LARGE MEAN-FIELDS

For the case of small coupling, the beta function appearing in Eq. (21) can be expanded as

$$\beta(g) = -\frac{1}{2}b_0 g^3 + b_1 g^5 + \cdots,$$

(38)

where b_0 and b_1 are the usual β-function coefficients defined in one- and two-loop orders. Now, if we take the limit of large mean fields ($F/\mu^4 \gg 1$) we obtain, from Eq. (21),

$$\frac{1}{g^2(\gamma)} = b_0 \gamma - 2 \frac{b_1}{b_0} \log \gamma + \cdots$$

(39)

It has been argued that this expansion may also give the leading two terms in the effective action for weak mean fields ($F/\mu^4 << 1$), because the magnitude of the effective coupling in Eq. (39) is small in both regions.

Introducing Eq. (39) in Eq. (21), we obtain

$$L_{YM} \approx -\frac{1}{4} b_0 F \log \frac{F}{\mu^4}.$$

(40)

The β-function coefficient b_0 is known as the asymptotic freedom constant, and can be presented as $b_0 = (1/8\pi^2)(11/3)C_2(G)$. In SU(3) QCD with N_f massless fermion flavors it reduces to

$$b_0 = \frac{1}{8\pi^2} \left(11 - \frac{2}{3} N_f \right).$$

(41)
As one can see, the effective Lagrangian density describing the regime of small coupling with large mean fields, given by Eq. (40), corresponds to a particular case of the Lagrangian density considered in the framework discussed in the last section. In this regime the parameters a and b, appearing in Eq. (27), are given by

$$a = \frac{\kappa b_0 B_0^2}{3},$$

$$b = \frac{\sqrt{2}B_0}{\mu^2},$$

which are obtained by neglecting the first term in the right-hand-side of Eq. (20).

It is important to note that Eq. (40) does not require further terms in the approximation as the field becomes larger. As the fields become larger, better Eq. (40) holds as the dominant contribution to the effective Lagrangian density.

Before closing this section, some comments on the relationship between the physical parameters b_0, μ and B_0 and the behavior of the solutions for $A(t)$ are in order. First, for the cases of Euclidean and closed sections, the behavior of the solutions are not affected by the values these parameters can take. On the other hand, for the case of an open section, the values of these parameters strongly determine the behavior of $A(t)$. Particularly, they also make influence on the corresponding model being singular or nonsingular. Let us briefly discuss this point in terms of the magnitude of the primordial magnetic color field for the case of expanding solutions in the open section model. If $B_0 < (18\mu^2)^{1/2}/(\kappa b_0 \mu^2)$ the corresponding model will be singular with an earlier decelerated expansion that evolves into an accelerated expansion phase. If $B_0 = (18\mu^2)^{1/2}/(\kappa b_0 \mu^2)$ the corresponding model can be singular or nonsingular, depending on the initial condition $A(t_i)$ be smaller or greater than the equilibrium point $(eb)^{1/2} \equiv A_I$, respectively. In the case of $A(t_i) < A_{III}$ the system will be singular, evolving into a decelerated expansion until the equilibrium point is achieved. From this point it can evolve into an accelerated expanding phase or into a collapsing phase (also accelerated) depending on possible fluctuations of the scale factor $A(t)$. If no fluctuation is allowed the system will last in the static configuration given by A_I. On the other hand, if $A(t_i) > A_{III}$ the corresponding model will be nonsingular and accelerated expanding. Finally, if $B_0 > (18\mu^2)^{1/2}/(\kappa b_0 \mu^2)$ the expanding solution can be decelerated or accelerated, depending on the initial conditions for $A(t)$ be smaller than A_I or greater than A_I, respectively. The singular solution is decelerated expanding and can evolve into an accelerated collapsing phase or into a static configuration. The nonsingular models are accelerated expanding. Such nonsingular models attains its minimum A_{min} at the greatest root of $\{-\kappa b_0 B_0^2/3)W[(18)^{1/2}/(\kappa b_0 \mu^2 B_0^2)]\}^{1/2}$.

VII. FINAL REMARKS

WMAP observations [24, 25] have brought several implications for cosmology. For instance the parameter related with the spatial curvature Ω_K of the universe is shown to be small, presenting a negative mean value. For some reference values [24], it is shown that the combination of the present WMAP data with the Hubble Space Telescope data implies in $\Omega_K = -0.014 \pm 0.017$; the combination of WMAP with SNLS data implies in $\Omega_K = -0.011 \pm 0.012$; the combination of WMAP with SNGold data implies in $\Omega_K = -0.023 \pm 0.014$. These results seem to favor both flat and open models. Further, it was pointed out in [26] that the WMAP data contain evidence against the null-hypothesis of a primordial Gaussianity. By analyzing the bispectrum of the WMAP up to the maximum multipole $l_{max} = 750$ they found $27 < f_{NL} < 147$, with 95% of confidence level. This result disfavor canonical single-field slow-roll inflation predictions of $f_{NL} = 0$, and suggests that alternative models for an early inflationary phase should be considered.

In this work the cosmological implications of the minimal coupling between gravity and effective Yang-Mills theory was examined. An average procedure on matter fields was adopted in order to provide a possible way to describe an isotropic and homogeneous FLRW cosmology. The behavior of all solutions for the time evolution of the scale factor $A(t)$ were graphically examined and the main results can be summarized as follows. Models presenting Euclidean (flat) or closed (positive curvature) spatial section can describe a decelerated expanding universe, an accelerated collapsing universe, or yet a static universe. In all cases, but the static one, these models are singular. Only models presenting an open spatial section (negative curvature) can support an accelerated expanding universe. Further, depending on the initial conditions and on the values of the parameters a and b that characterizes the system, the corresponding model can be singular or nonsingular. The expansion will be accelerated if $A > 0$, which occurs provided $A^2 > eb$. For the case of $a < eb$ the resulting model is singular and evolves into a decelerated expansion until A achieves the value $(eb)^{1/2}$ in a finite time. At this point $\dot{A} = 0$. Then, it evolves into an accelerated expanding phase. If $a = eb$, exactly, there is one equilibrium point given by $A^2 = eb$. Solutions with initial conditions $A(t_i) > (eb)^{1/2}$ result in a nonsingular and accelerated expanding model, while solutions with initial conditions $A(t_i) < (eb)^{1/2}$ result in a singular model presenting a decelerated expansion. Finally, if $a > eb$ there will be two equilibrium solutions. The first
one A_f^2 smaller than $(eb)^{1/2}$ and the second one A_f^2 greater than $(eb)^{1/2}$. Between them, there is no physical solution for $A(t)$. In this case, for any initial condition satisfying $A(t_i) < A_f^2$, the corresponding solution leads to a singular model presenting a decelerated expansion. Here the expansion occurs until $A(t)$ achieves the static configuration at A_f. Since this lower equilibrium point is unstable for solutions coming from the negative root of Eq. (27), the system can evolve into an accelerated collapsing phase. Otherwise, if $A(t_i) > A_f^2$ the corresponding solution leads to a nonsingular cosmology presenting an accelerated expansion. In this case $A(t)$ attains its minimum value at A_f^2 in a time t_0. Solutions presenting collapsing phases can be obtained from the negative root of Eq. (31), and if combined with the expanding solution, provide a mechanism for a bounce. It is worth to stress that, considering the assumed framework, solutions presenting accelerated expansion only appear in an open universe model. Thus, it provides a possible mechanism for an early inflationary phase produced by a vector field. The solutions can be singular or nonsingular, depending on the initial conditions and also on the values that the physical parameters can take.

Let us pick up a specific application of the results obtained in this manuscript. Let us take, for instance, a nonsingular expanding solution from the open-section model with the matter fields described by the Y-M Lagrangian density in the regime of small coupling with large mean fields [as described in Section V C 1] with the parameters a and b given by Eqs. (42) and (43). In this case the universe would come from a previous decelerated contracting phase, which is a solution coming from the negative root of Eq. (27), and after achieving a minimum volume, determined by A_f^2, would expand in an accelerated rate. During this expanding phase the strong energy dominance condition is violated and, mathematically, the accelerated phase would last forever. Nevertheless, Eq. (22) shows that as $A(t)$ increases, $B(t)$ decreases. Thus, the system may achieve a phase in which the regime of large mean-fields does not apply. This fact shows that a mechanism for a graceful exit is supported by this framework. In fact, when F approaches the value μ^4, the dominant term in the effective Lagrangian would be Maxwell-like. This is formally equivalent to neglect the second term in Eq. (20), which would lead to a phase of decelerated expansion. In this sense, an inflationary phase of a nonsingular homogeneous and isotropic universe [64] with a graceful exit appears naturally in the minimal coupled Yang-Mills fields in an open FLRW cosmology. Mathematically, as consequence of considering Y-M matter field as the dominant energy contents, all the accelerated phases described in the open section models last forever. However, as suggested above, these solutions should be considered only as describing an early phase of the universe. As the universe expands the plasma is expected to evolve into another form of matter, which would dominate a next phase of the evolution. In this case, a complete scenario should consider the transition between this primordial phase to the next one, as radiation for example. In the case of a singular and accelerated expanding model (as presented in Section V C 3), the amount of inflation is a quantity of interest to be derived. This quantity can be obtained as

$$N = \log\left[\frac{A(t_{\text{end}})}{A(t_{\text{begin}})}\right]$$

where t_{end} and t_{begin} represent the time coordinate at the end and at the begin of the inflation phase, respectively. Denoting the critical value of the magnetic field by B_{cr}, below which radiation would be the dominant form of matter, we obtain

$$N = (1/2) \log\left(\frac{\mu^4}{\sqrt{2}e B_{cr}}\right).$$

Closing, few remarks are in order. First, the results obtained in this manuscript presenting inflationary solutions only occur in models with open spatial section [55]. Inflationary models obtained from non-minimal Y-M theory have been considered only for flat spatial section [27]. One important feature of the solutions presenting an inflationary phase in the minimal coupling is that such phases can also appear in the context of nonsingular models. Thus, in such cases the amount of inflation is not a fundamental aspect to be considered in the solution of the initial conditions problems stated by standard cosmology. The motivation to work with models with non-flat spatial sections may be set by further observations from WMAP and PLANCK projects. It should be stressed that the spatial curvature has currently been found to be small but not necessarily zero, and the consequences of a non-zero curvature (even really small) can be relevant in the evolution of the universe, as shown here. Second, all the solutions presenting accelerated phases obtained in the context of minimal Y-M theory may be naturally obtained as limiting cases from non-minimal couplings with an open spatial section. Therefore, if non-flat models is considered in non-minimal coupling cases our results should be recovered in the corresponding regime. Finally, the anisotropies in CMB found in current data indicates that the early phase of the universe was not perfectly smooth. This fact must be connected with the inhomogeneities in the distribution of galaxies on large scales, as measured by Two Degree Field Galaxy Redshift Survey [59]. The very relationship between large scale structure and CMB is still an exciting issue in cosmology. In order to apply the results obtained here in the understanding of structure formation, the perturbations around the smooth background should be considered for each particular solution. In this context the power spectrum in the Fourier space would be the most important statistic. In the context of the solutions presented in this manuscript, two different situations could occur. If singular models are considered, inflation would be the responsible for the generation of scalar and tensor perturbations. By the other hand, if nonsingular models are considered, the primordial perturbations could possibly be produced in a previous contracting phase, thus evolving into the expanding phase by means of the bounce. The derivation of the perturbed Einstein equations in the context of minimal Y-M theory and its application in the study of the above mentioned aspects deserve future investigation.
Acknowledgments

D-S. Huang, J. Jalilian-Marian and S-Y. Li are acknowledged for valuable discussions on the Yang-Mills effective theory. This work was partially supported by the Brazilian research agencies CNPq and FAPEMIG.

References

[52] The Lambert function $W(z)$ represents the solutions for W of the equation $z = W e^W$. It is denoted as `ProductLog` in the Mathematica software.

[60] Causal geodesic completeness of FLRW spacetime was recently considered in [33].
[61] Usually, the Friedmann equation is presented in terms of the density parameter $\Omega = (\kappa \rho) / (3H^2)$ as $\Omega - 1 = \epsilon / A^2 H^2$, were H is the Hubble parameter $H = \dot{A} / A$.
[62] The slope field for a differential equation as $dz/dt = f(t, z)$ consists in the vector field that takes a point (t, z) to a unit vector with slope given by $f(t, z)$ [49].
[63] This can be understood directly from Eq. 31 by taking $t \rightarrow -t$.
[64] In the singular model, an additional phase of decelerated expansion appears before the inflationary phase.
[65] For the case of an electric condensate in a flat model, a solution presenting inflation in minimal Y-M theory was proposed in [50].