Introduction

- Various models of new physics predict long-lived particles which travel a significant distance from the interaction point before decaying.

- Strategies capitalizing on the unique signatures improve triggering and reconstruction for such events at ATLAS.

- This talk will focus on Hidden Valley particles produced through Higgs decays.
Outline

- Hidden Valley Scenario
- Experimental Challenges
- ATLAS Trigger
- Decays within the Detector
 - Muon Spectrometer
 - Calorimeter
 - Inner Detector
- Status and Plans
Beyond the Standard Model is a hidden sector (or v-sector) and a communicator interacts with both sectors.

A barrier “hides” the v-sector making production of v-particles rare at low energies:
- Communicator’s high mass
- Weak couplings…

Production of v-particles may be observable at the LHC.

Some v-particles may be stable (dark matter candidates) and others decay to Standard Model particles.

†see:

Hidden Valley & Higgs Decays

Higgs decay to ν-pions

- V-pion is neutral pseudo-scalar
 - Displaced decay mainly to bottom quark
- We use 2 samples to study trigger strategies for this process:
 - Ideal sample (signal only)
 - Signal with pileup
 - pileup for $L=10^{32}$ cm$^{-2}$ s$^{-1}$
 - 4.1 collisions/crossing
 - 450ns bunch spacing
- Parameters:
 - Higgs Mass = 140 GeV
 - π_{ν} Mass = 40 GeV
 - π_{ν} $c\tau$ = 1500 mm
- Events simulated using PYTHIA
- Work in collaboration with M. Strassler

see also:
Experimental Challenges

• Neutral states decaying far from the interaction point lead to challenges for the trigger
 ◦ Current ATLAS triggers center on particles originating from the Interaction Point

• Long-lived Hidden Valley particles will decay throughout the detector volume
 ◦ Depending on where the decay occurs different approaches are required

• We need special triggers for each the signature produced in each system
ATLAS Trigger

Level 1 (hardware):
- Uses Calo cells and Muon chambers with reduced granularity.
- \(e/\gamma, \mu, \tau, \) jet candidates
- Defines Regions of Interest (RoI)

75 kHz

High Level Trigger (HLT)

Level 2 O(500PCs):
- Seeded by LVL1 RoI
- Full granularity of the detector
- Performs calo-track matching

1-2 kHz

Event Filter O(1900PCs):
- Offline-like algorithms
- Refines LVL2 decision
- Full event building

2\(\mu\)s

Execution Time

10ms

Full Event to tape

100-200 Hz

Raw Data from detector

40 MHz
Decays within ATLAS Detector

Probability for π^0 from gg fusion to decay in each detector region vs $c\tau$ for $|\eta|<2.5$ (Inner Detector coverage)
Decays in Muon Spectrometer

- Little or no energy deposited in the calorimeter
- Characterized by a large number of charged tracks and a cluster of muon Regions of Interest (Rols)
- Only 1 muon reconstructed per muon RoI with standard trigger

![Decay Length (mm)](image-url)
Decays in Muon Spectrometer

- Define a new Level 2 trigger algorithm using these signatures as:
 - At least 3 muon Regions of Interest at Level 1
 - Isolation wrt jets and Inner Detector tracks
- >70% Efficient for decays in the barrel Muon Spectrometer
- >25% in the endcap region
Decays in the Hadronic Calorimeter

- Decays in the calorimeter produce very narrow jets
- No reconstructed tracks in the Inner Detector
- Large energy deposited in the Hadronic Calorimeter (HCAL)
- Little energy in the Electromagnetic Calorimeter (ECAL)
Decays in the Hadronic Calorimeter

- Narrow jet shape allows of use a Level-1 \(\tau \) trigger to select these decays
- We define a Level 2 trigger using these signatures as:
 - \(\log_{10}(E_{HCAL}/E_{ECAL}) > 1 \)
 - Isolation wrt Inner Detector tracks
Decays in the Inner Detector:
- low efficiency for normal tracking algorithms
- Trigger on trackless jets containing muons
- Level 2 jet trigger
 - $E_T \geq 35 \text{GeV}$ in Electromagnetic Calorimeter (ECAL)
 - no reconstructed tracks
 - Seed with Level 1 muon
- Absolute efficiency $\sim 2\%$ (due to requiring the muon in the event)
- Studies ongoing to define a more efficient trigger in the Inner Detector
 - Backtracking and vertex finding in ID
 - jet substructure in the ECAL
Status of Improvements

- New L2Trigger Algorithms
 - Cluster of Muon objects isolated from tracks and jets
 - L1 dimuon trigger
 - Narrow trackless jets with high hadronic/EM Energy
 - L1 tau trigger
 - Trackless EM jet with a muon
 - L1 muon & L1 jet triggers

- Backgrounds
 - None of 3M minbias events pass the triggers
 - Sample of 10 TeV di-jet events at 10^{32} cm$^{-2}$s$^{-1}$ have less than 1 Hz combined L2 trigger rates
Related Searches

- Ongoing work using similar strategies for neutral long-lived particles decaying to lepton jets (Weiner et al., Lin-Tao et al.)
- Trigger and reconstruction improvements for charged stable massive particles in each part of ATLAS
 - Muon system (see talk by Shlomit Tarem)
 - Calorimeters (see talk by Philippe Mermod)
 - Ongoing work on Inner Detector
Conclusions

• New signature-based triggers have been created to reconstruct long-lived neutral particles decaying in ATLAS
 ◦ Improvement in overall Higgs to Hidden Valley event efficiency from ~2% to >20%

• Ongoing work on Inner Detector Decays and Event Filter trigger selection may contribute further improvements

• We are developing strategies to use ATLAS to search for neutral and charged massive long-lived particles in new physics models