Contents

Preface XIII

Part One Coherent States 1

1 Introduction 3
1.1 The Motivations 3

2 The Standard Coherent States: the Basics 13
2.1 Schrödinger Definition 13
2.2 Four Representations of Quantum States 13
2.2.1 Position Representation 14
2.2.2 Momentum Representation 14
2.2.3 Number or Fock Representation 15
2.2.4 A Little (Lie) Algebraic Observation 16
2.2.5 Analytical or Fock–Bargmann Representation 16
2.2.6 Operators in Fock–Bargmann Representation 17
2.3 Schrödinger Coherent States 18
2.3.1 Bergman Kernel as a Coherent State 18
2.3.2 A First Fundamental Property 19
2.3.3 Schrödinger Coherent States in the Two Other Representations 19
2.4 Glauber–Klauder–Sudarshan or Standard Coherent States 20
2.5 Why the Adjective Coherent? 20

3 The Standard Coherent States: the (Elementary) Mathematics 25
3.1 Introduction 25
3.2 Properties in the Hilbertian Framework 26
3.2.1 A “Continuity” from the Classical Complex Plane to Quantum States 26
3.2.2 “Coherent” Resolution of the Unity 26
3.2.3 The Interplay Between the Circle (as a Set of Parameters) and the Plane (as a Euclidean Space) 27
3.2.4 Analytical Bridge 28
3.2.5 Overcompleteness and Reproducing Properties 29
3.3 Coherent States in the Quantum Mechanical Context 30
3.3.1 Symbols 30
3.3.2 Lower Symbols 30
5.2 A Bayesian Probabilistic Duality in Standard Coherent States 70
5.2.1 Poisson and Gamma Distributions 70
5.2.2 Bayesian Duality 71
5.2.3 The Fock–Bargmann Option 71
5.2.4 A Scheme of Construction 72
5.3 General Setting: “Quantum” Processing of a Measure Space 72
5.4 Coherent States for the Motion of a Particle on the Circle 76
5.5 More Coherent States for the Motion of a Particle on the Circle 78

6 The Spin Coherent States 79
6.1 Introduction 79
6.2 Preliminary Material 79
6.3 The Construction of Spin Coherent States 80
6.4 The Binomial Probabilistic Content of Spin Coherent States 82
6.5 Spin Coherent States: Group-Theoretical Context 82
6.6 Spin Coherent States: Fock–Bargmann Aspects 86
6.7 Spin Coherent States: Spherical Harmonics Aspects 86
6.8 Other Spin Coherent States from Spin Spherical Harmonics 87
6.8.1 Matrix Elements of the $SU(2)$ Unitary Irreducible Representations 87
6.8.2 Orthogonality Relations 89
6.8.3 Spin Spherical Harmonics 89
6.8.4 Spin Spherical Harmonics as an Orthonormal Basis 91
6.8.5 The Important Case: $\sigma = j$ 91
6.8.6 Transformation Laws 92
6.8.7 Infinitesimal Transformation Laws 92
6.8.8 “Sigma-Spin” Coherent States 93
6.8.9 Covariance Properties of Sigma-Spin Coherent States 95

7 Selected Pieces of Applications of Standard and Spin Coherent States 97
7.1 Introduction 97
7.2 Coherent States and the Driven Oscillator 98
7.3 An Application of Standard or Spin Coherent States in Statistical Physics: Superradiance 103
7.3.1 The Dicke Model 103
7.3.2 The Partition Function 105
7.3.3 The Critical Temperature 106
7.3.4 Average Number of Photons per Atom 108
7.3.5 Comments 109
7.4 Application of Spin Coherent States to Quantum Magnetism 109
7.5 Application of Spin Coherent States to Classical and Thermodynamical Limits 111
7.5.1 Symbols and Traces 112
7.5.2 Berezin–Lieb Inequalities for the Partition Function 114
7.5.3 Application to the Heisenberg Model 116
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>SU(1,1) or SL(2,R) Coherent States</td>
<td>117</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>117</td>
</tr>
<tr>
<td>8.2</td>
<td>The Unit Disk as an Observation Set</td>
<td>117</td>
</tr>
<tr>
<td>8.3</td>
<td>Coherent States</td>
<td>119</td>
</tr>
<tr>
<td>8.4</td>
<td>Probabilistic Interpretation</td>
<td>120</td>
</tr>
<tr>
<td>8.5</td>
<td>Poincaré Half-Plane for Time-Scale Analysis</td>
<td>121</td>
</tr>
<tr>
<td>8.6</td>
<td>Symmetries of the Disk and the Half-Plane</td>
<td>122</td>
</tr>
<tr>
<td>8.7</td>
<td>Group-Theoretical Content of the Coherent States</td>
<td>123</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Cartan Factorization</td>
<td>123</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Discrete Series of SU(1,1)</td>
<td>124</td>
</tr>
<tr>
<td>8.7.3</td>
<td>Lie Algebra Aspects</td>
<td>126</td>
</tr>
<tr>
<td>8.7.4</td>
<td>Coherent States as a Transported Vacuum</td>
<td>127</td>
</tr>
<tr>
<td>8.8</td>
<td>A Few Words on Continuous Wavelet Analysis</td>
<td>129</td>
</tr>
<tr>
<td>9</td>
<td>Another Family of SU(1,1) Coherent States for Quantum Systems</td>
<td>135</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>135</td>
</tr>
<tr>
<td>9.2</td>
<td>Classical Motion in the Infinite-Well and Pöschl–Teller Potentials</td>
<td>135</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Motion in the Infinite Well</td>
<td>136</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Pöschl–Teller Potentials</td>
<td>138</td>
</tr>
<tr>
<td>9.3</td>
<td>Quantum Motion in the Infinite-Well and Pöschl–Teller Potentials</td>
<td>141</td>
</tr>
<tr>
<td>9.3.1</td>
<td>In the Infinite Well</td>
<td>141</td>
</tr>
<tr>
<td>9.3.2</td>
<td>In Pöschl–Teller Potentials</td>
<td>142</td>
</tr>
<tr>
<td>9.4</td>
<td>The Dynamical Algebra su(1,1)</td>
<td>143</td>
</tr>
<tr>
<td>9.5</td>
<td>Sequences of Numbers and Coherent States on the Complex Plane</td>
<td>146</td>
</tr>
<tr>
<td>9.6</td>
<td>Coherent States for Infinite-Well and Pöschl–Teller Potentials</td>
<td>150</td>
</tr>
<tr>
<td>9.6.1</td>
<td>For the Infinite Well</td>
<td>150</td>
</tr>
<tr>
<td>9.6.2</td>
<td>For the Pöschl–Teller Potentials</td>
<td>152</td>
</tr>
<tr>
<td>9.7</td>
<td>Physical Aspects of the Coherent States</td>
<td>153</td>
</tr>
<tr>
<td>9.7.1</td>
<td>Quantum Revivals</td>
<td>153</td>
</tr>
<tr>
<td>9.7.2</td>
<td>Mandel Statistical Characterization</td>
<td>155</td>
</tr>
<tr>
<td>9.7.3</td>
<td>Temporal Evolution of Symbols</td>
<td>158</td>
</tr>
<tr>
<td>9.7.4</td>
<td>Discussion</td>
<td>162</td>
</tr>
<tr>
<td>10</td>
<td>Squeezed States and Their SU(1,1) Content</td>
<td>165</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>165</td>
</tr>
<tr>
<td>10.2</td>
<td>Squeezed States in Quantum Optics</td>
<td>166</td>
</tr>
<tr>
<td>10.2.1</td>
<td>The Construction within a Physical Context</td>
<td>166</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Algebraic (su(1,1)) Content of Squeezed States</td>
<td>171</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Using Squeezed States in Molecular Dynamics</td>
<td>175</td>
</tr>
<tr>
<td>11</td>
<td>Fermionic Coherent States</td>
<td>179</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>179</td>
</tr>
<tr>
<td>11.2</td>
<td>Coherent States for One Fermionic Mode</td>
<td>179</td>
</tr>
<tr>
<td>11.3</td>
<td>Coherent States for Systems of Identical Fermions</td>
<td>180</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Fermionic Symmetry SU(r)</td>
<td>180</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Fermionic Symmetry SO(2r)</td>
<td>185</td>
</tr>
</tbody>
</table>
11.3.3 Fermionic Symmetry $SO(2r + 1)$ 187
11.3.4 Graphic Summary 188
11.4 Application to the Hartree–Fock–Bogoliubov Theory 189

Part Two Coherent State Quantization 191

12 Standard Coherent State Quantization: the Klauder–Berezin Approach 193
12.1 Introduction 193
12.2 The Berezin–Klauder Quantization of the Motion of a Particle on the Line 193
12.3 Canonical Quantization Rules 196
12.3.1 Van Hove Canonical Quantization Rules [161] 196
12.4 More Upper and Lower Symbols: the Angle Operator 197
12.5 Quantization of Distributions: Dirac and Others 199
12.6 Finite-Dimensional Canonical Case 202

13 Coherent State or Frame Quantization 207
13.1 Introduction 207
13.2 Some Ideas on Quantization 207
13.3 One more Coherent State Construction 209
13.4 Coherent State Quantization 211
13.5 A Quantization of the Circle by 2×2 Real Matrices 214
13.5.1 Quantization and Symbol Calculus 214
13.5.2 Probabilistic Aspects 216
13.6 Quantization with k-Fermionic Coherent States 218
13.7 Final Comments 220

14 Coherent State Quantization of Finite Set, Unit Interval, and Circle 223
14.1 Introduction 223
14.2 Coherent State Quantization of a Finite Set with Complex 2×2 Matrices 223
14.3 Coherent State Quantization of the Unit Interval 227
14.3.1 Quantization with Finite Subfamilies of Haar Wavelets 227
14.3.2 A Two-Dimensional Noncommutative Quantization of the Unit Interval 228
14.4 Coherent State Quantization of the Unit Circle and the Quantum Phase Operator 229
14.4.1 A Retrospective of Various Approaches 229
14.4.2 Pegg–Barnett Phase Operator and Coherent State Quantization 234
14.4.3 A Phase Operator from Two Finite-Dimensional Vector Spaces 235
14.4.4 A Phase Operator from the Interplay Between Finite and Infinite Dimensions 237

15 Coherent State Quantization of Motions on the Circle, in an Interval, and Others 241
15.1 Introduction 241
15.2 Motion on the Circle 241
Contents

18 Conclusion and Outlook 287

Appendix A The Basic Formalism of Probability Theory 289
A.1 Sigma-Algebra 289
A.1.1 Examples 289
A.2 Measure 290
A.3 Measurable Function 290
A.4 Probability Space 291
A.5 Probability Axioms 291
A.6 Lemmas in Probability 292
A.7 Bayes's Theorem 292
A.8 Random Variable 293
A.9 Probability Distribution 293
A.10 Expected Value 294
A.11 Conditional Probability Densities 294
A.12 Bayesian Statistical Inference 295
A.13 Some Important Distributions 296
A.13.1 Degenerate Distribution 296
A.13.2 Uniform Distribution 296

Appendix B The Basics of Lie Algebra, Lie Groups, and Their Representations 303
B.1 Group Transformations and Representations 303
B.2 Lie Algebras 304
B.3 Lie Groups 306
B.3.1 Extensions of Lie algebras and Lie groups 310

Appendix C SU(2) Material 313
C.1 SU(2) Parameterization 313
C.2 Matrix Elements of SU(2) Unitary Irreducible Representation 313
C.3 Orthogonality Relations and 3 j Symbols 314
C.4 Spin Spherical Harmonics 315
C.5 Transformation Laws 317
C.6 Infinitesimal Transformation Laws 318
C.7 Integrals and 3 j Symbols 319
C.8 Important Particular Case: j = 1 320
C.9 Another Important Case: σ = j 321

Appendix D Wigner–Eckart Theorem for Coherent State Quantized Spin Harmonics 323

Appendix E Symmetrization of the Commutator 325

References 329

Index 339