Electromagnetic Compatibility Engineering

Henry W. Ott
Henry Ott Consultants

WILEY
A JOHN WILEY & SONS, INC., PUBLICATION
CONTENTS

<table>
<thead>
<tr>
<th>Preface</th>
<th>xxiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART 1 EMC THEORY</td>
<td>1</td>
</tr>
<tr>
<td>1. Electromagnetic Compatibility</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Noise and Interference</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Designing for Electromagnetic Compatibility</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Engineering Documentation and EMC</td>
<td>6</td>
</tr>
<tr>
<td>1.5 United States' EMC Regulations</td>
<td>6</td>
</tr>
<tr>
<td>1.5.1 FCC Regulations</td>
<td>6</td>
</tr>
<tr>
<td>1.5.2 FCC Part 15, Subpart B</td>
<td>8</td>
</tr>
<tr>
<td>1.5.3 Emissions</td>
<td>11</td>
</tr>
<tr>
<td>1.5.4 Administrative Procedures</td>
<td>14</td>
</tr>
<tr>
<td>1.5.5 Susceptibility</td>
<td>17</td>
</tr>
<tr>
<td>1.5.6 Medical Equipment</td>
<td>17</td>
</tr>
<tr>
<td>1.5.7 Telecom</td>
<td>18</td>
</tr>
<tr>
<td>1.5.8 Automotive</td>
<td>19</td>
</tr>
<tr>
<td>1.6 Canadian EMC Requirements</td>
<td>19</td>
</tr>
<tr>
<td>1.7 European Union's EMC Requirements</td>
<td>20</td>
</tr>
<tr>
<td>1.7.1 Emission Requirements</td>
<td>20</td>
</tr>
<tr>
<td>1.7.2 Harmonics and Flicker</td>
<td>22</td>
</tr>
<tr>
<td>1.7.3 Immunity Requirements</td>
<td>23</td>
</tr>
<tr>
<td>1.7.4 Directives and Standards</td>
<td>23</td>
</tr>
<tr>
<td>1.8 International Harmonization</td>
<td>26</td>
</tr>
<tr>
<td>1.9 Military Standards</td>
<td>27</td>
</tr>
<tr>
<td>1.10</td>
<td>Avionics</td>
</tr>
<tr>
<td>1.11</td>
<td>The Regulatory Process</td>
</tr>
<tr>
<td>1.12</td>
<td>Typical Noise Path</td>
</tr>
<tr>
<td>1.13</td>
<td>Methods of Noise Coupling</td>
</tr>
<tr>
<td>1.13.1</td>
<td>Conductively Coupled Noise</td>
</tr>
<tr>
<td>1.13.2</td>
<td>Common Impedance Coupling</td>
</tr>
<tr>
<td>1.13.3</td>
<td>Electric and Magnetic Field Coupling</td>
</tr>
<tr>
<td>1.14</td>
<td>Miscellaneous Noise Sources</td>
</tr>
<tr>
<td>1.14.1</td>
<td>Galvanic Action</td>
</tr>
<tr>
<td>1.14.2</td>
<td>Electrolytic Action</td>
</tr>
<tr>
<td>1.14.3</td>
<td>Triboelectric Effect</td>
</tr>
<tr>
<td>1.14.4</td>
<td>Conductor Motion</td>
</tr>
<tr>
<td>1.15</td>
<td>Use of Network Theory</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
</tr>
</tbody>
</table>

<p>| 2. | Cabling | 44 |
| 2.1 | Capacitive Coupling | 45 |
| 2.2 | Effect of Shield on Capacitive Coupling | 48 |
| 2.3 | Inductive Coupling | 52 |
| 2.4 | Mutual Inductance Calculations | 54 |
| 2.5 | Effect of Shield on Magnetic Coupling | 56 |
| 2.5.1 | Magnetic Coupling Between Shield and Inner Conductor | 58 |
| 2.5.2 | Magnetic Coupling—Open Wire to Shielded Conductor | 61 |
| 2.6 | Shielding to Prevent Magnetic Radiation | 64 |
| 2.7 | Shielding a Receptor Against Magnetic Fields | 67 |
| 2.8 | Common Impedance Shield Coupling | 69 |
| 2.9 | Experimental Data | 70 |
| 2.10 | Example of Selective Shielding | 74 |
| 2.11 | Shield Transfer Impedance | 75 |
| 2.12 | Coaxial Cable Versus Twisted Pair | 75 |</p>
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>155</td>
</tr>
<tr>
<td>Problems</td>
<td>156</td>
</tr>
<tr>
<td>References</td>
<td>157</td>
</tr>
<tr>
<td>Further Reading</td>
<td>157</td>
</tr>
<tr>
<td>4. Balancing and Filtering</td>
<td>158</td>
</tr>
<tr>
<td>4.1 Balancing</td>
<td>158</td>
</tr>
<tr>
<td>4.1.1 Common-Mode Rejection Ratio</td>
<td>161</td>
</tr>
<tr>
<td>4.1.2 Cable Balance</td>
<td>165</td>
</tr>
<tr>
<td>4.1.3 System Balance</td>
<td>166</td>
</tr>
<tr>
<td>4.1.4 Balanced Loads</td>
<td>166</td>
</tr>
<tr>
<td>4.2 Filtering</td>
<td>174</td>
</tr>
<tr>
<td>4.2.1 Common-Mode Filters</td>
<td>174</td>
</tr>
<tr>
<td>4.2.2 Parasitic Effects in Filters</td>
<td>177</td>
</tr>
<tr>
<td>4.3 Power Supply Decoupling</td>
<td>178</td>
</tr>
<tr>
<td>4.3.1 Low-Frequency Analog Circuit Decoupling</td>
<td>183</td>
</tr>
<tr>
<td>4.3.2 Amplifier Decoupling</td>
<td>185</td>
</tr>
<tr>
<td>4.4 Driving Capacitive Loads</td>
<td>186</td>
</tr>
<tr>
<td>4.5 System Bandwidth</td>
<td>188</td>
</tr>
<tr>
<td>4.6 Modulation and Coding</td>
<td>190</td>
</tr>
<tr>
<td>Summary</td>
<td>190</td>
</tr>
<tr>
<td>Problems</td>
<td>191</td>
</tr>
<tr>
<td>References</td>
<td>192</td>
</tr>
<tr>
<td>Further Reading</td>
<td>193</td>
</tr>
<tr>
<td>5. Passive Components</td>
<td>194</td>
</tr>
<tr>
<td>5.1 Capacitors</td>
<td>194</td>
</tr>
<tr>
<td>5.1.1 Electrolytic Capacitors</td>
<td>195</td>
</tr>
<tr>
<td>5.1.2 Film Capacitors</td>
<td>197</td>
</tr>
<tr>
<td>5.1.3 Mica and Ceramic Capacitors</td>
<td>198</td>
</tr>
<tr>
<td>5.1.4 Feed-Through Capacitors</td>
<td>200</td>
</tr>
<tr>
<td>5.1.5 Paralleling Capacitors</td>
<td>202</td>
</tr>
<tr>
<td>5.2 Inductors</td>
<td>203</td>
</tr>
<tr>
<td>5.3 Transformers</td>
<td>204</td>
</tr>
<tr>
<td>5.4 Resistors</td>
<td>206</td>
</tr>
<tr>
<td>5.4.1 Noise in Resistors</td>
<td>207</td>
</tr>
</tbody>
</table>
CONTENTS

5.5 Conductors
5.5.1 Inductance of Round Conductors
5.5.2 Inductance of Rectangular Conductors
5.5.3 Resistance of Round Conductors
5.5.4 Resistance of Rectangular Conductors

5.6 Transmission Lines
5.6.1 Characteristic Impedance
5.6.2 Propagation Constant
5.6.3 High-Frequency Loss
5.6.4 Relationship Among C, L and ε_r
5.6.5 Final Thoughts

5.7 Ferrites

Summary
Problems
References
Further Reading

6. Shielding
6.1 Near Fields and Far Fields
6.2 Characteristic and Wave Impedances
6.3 Shielding Effectiveness
6.4 Absorption Loss
6.5 Reflection Loss
6.5.1 Reflection Loss to Plane Waves
6.5.2 Reflection Loss in the Near Field
6.5.3 Electric Field Reflection Loss
6.5.4 Magnetic Field Reflection Loss
6.5.5 General Equations for Reflection Loss
6.5.6 Multiple Reflections in Thin Shields
6.6 Composite Absorption and Reflection Loss
6.6.1 Plane Waves
6.6.2 Electric Fields
6.6.3 Magnetic Fields
6.7 Summary of Shielding Equations
6.8 Shielding with Magnetic Materials
6.9 Experimental Data
CONTENTS

6.10 Apertures 267
 6.10.1 Multiple Apertures 270
 6.10.2 Seams 273
 6.10.3 Transfer Impedance 277
6.11 Waveguide Below Cutoff 280
6.12 Conductive Gaskets 282
 6.12.1 Joints of Dissimilar Metals 283
 6.12.2 Mounting of Conductive Gaskets 284
6.13 The “IDEAL” Shield 287
6.14 Conductive Windows 288
 6.14.1 Transparent Conductive Coatings 288
 6.14.2 Wire Mesh Screens 289
 6.14.3 Mounting of Windows 289
6.15 Conductive Coatings 289
 6.15.1 Conductive Paints 291
 6.15.2 Flame/Arc Spray 291
 6.15.3 Vacuum Metalizing 291
 6.15.4 Electroless Plating 292
 6.15.5 Metal Foil Linings 292
 6.15.6 Filled Plastic 293
6.16 Internal Shields 293
6.17 Cavity Resonance 295
6.18 Grounding of Shields 296
 Summary 296
 Problems 297
 References 299
 Further Reading 300

7. Contact Protection 302
 7.1 Glow Discharges 302
 7.2 Metal-Vapor or Arc Discharges 303
 7.3 AC Versus DC Circuits 305
 7.4 Contact Material 306
 7.5 Contact Rating 306
 7.6 Loads with High Inrush Currents 307
CONTENTS

7. Inductive Loads

- **7.7 Inductive Loads** 308
- **7.8 Contact Protection Fundamentals** 310
- **7.9 Transient Suppression for Inductive Loads** 314
- **7.10 Contact Protection Networks for Inductive Loads** 318
 - 7.10.1 *C* Network 318
 - 7.10.2 *R–C* Network 318
 - 7.10.3 *R–C–D* Network 321
- **7.11 Inductive Loads Controlled by a Transistor Switch** 322
- **7.12 Resistive Load Contact Protection** 323
- **7.13 Contact Protection Selection Guide** 323
- **7.14 Examples** 324
 - Summary 325
 - Problems 326
 - References 327
 - Further Reading 327

8. Intrinsic Noise Sources

- **8. Intrinsic Noise Sources** 328
 - **8.1 Thermal Noise** 328
 - **8.2 Characteristics of Thermal Noise** 332
 - **8.3 Equivalent Noise Bandwidth** 334
 - **8.4 Shot Noise** 337
 - **8.5 Contact Noise** 338
 - **8.6 Popcorn Noise** 339
 - **8.7 Addition of Noise Voltages** 340
 - **8.8 Measuring Random Noise** 341
 - Summary 342
 - Problems 343
 - References 345
 - Further Reading 345

9. Active Device Noise

- **9. Active Device Noise** 346
 - **9.1 Noise Factor** 346
 - **9.2 Measurement of Noise Factor** 349
9.2.1 Single-Frequency Method
9.2.2 Noise Diode Method
9.3 Calculating S/N Ratio and Input Noise Voltage from Noise Factor
9.4 Noise Voltage and Current Model
9.5 Measurement of V_n and I_n
9.6 Calculating Noise Factor and S/N Ratio from $V_n^2 - I_n$
9.7 Optimum Source Resistance
9.8 Noise Factor of Cascaded Stages
9.9 Noise Temperature
9.10 Bipolar Transistor Noise
 9.10.1 Transistor Noise Factor
 9.10.2 $V_n^2 - I_n$ for Transistors
9.11 Field-Effect Transistor Noise
 9.11.1 FET Noise Factor
 9.11.2 $V_n^2 - I_n$ Representation of FET Noise
9.12 Noise in Operational Amplifiers
 9.12.1 Methods of Specifying Op-Amp Noise
 9.12.2 Op-Amp Noise Factor
Summary
Problems
References
Further Reading

10. Digital Circuit Grounding
10.1 Frequency Versus Time Domain
10.2 Analog Versus Digital Circuits
10.3 Digital Logic Noise
10.4 Internal Noise Sources
10.5 Digital Circuit Ground Noise
 10.5.1 Minimizing Inductance
 10.5.2 Mutual Inductance
 10.5.3 Practical Digital Circuit Ground Systems
 10.5.4 Loop Area
10.6 Ground Plane Current Distribution and Impedance
 10.6.1 Reference Plane Current Distribution
 10.6.2 Ground Plane Impedance
 10.6.3 Ground Plane Voltage
 10.6.4 End Effects

10.7 Digital Logic Current Flow
 10.7.1 Microstrip Line
 10.7.2 Stripline
 10.7.3 Digital Circuit Current Flow Summary

Summary

Problems

References

Further Reading

PART 2 EMC APPLICATIONS

11. Digital Circuit Power Distribution
 11.1 Power Supply Decoupling
 11.2 Transient Power Supply Currents
 11.2.1 Transient Load Current
 11.2.2 Dynamic Internal Current
 11.2.3 Fourier Spectrum of the Transient Current
 11.2.4 Total Transient Current
 11.3 Decoupling Capacitors
 11.4 Effective Decoupling Strategies
 11.4.1 Multiple Decoupling Capacitors
 11.4.2 Multiple Capacitors of the Same Value
 11.4.3 Multiple Capacitors of Two Different Values
 11.4.4 Multiple Capacitors of Many Different Values
 11.4.5 Target Impedance
 11.4.6 Embedded PCB Capacitance
 11.4.7 Power Supply Isolation
 11.5 The Effect of Decoupling on Radiated Emissions
 11.6 Decoupling Capacitor Type and Value
 11.7 Decoupling Capacitor Placement and Mounting
 11.8 Bulk Decoupling Capacitors
CONTENTS

11.9 Power Entry Filters 460
 Summary 461
 Problems 461
 References 463
 Further Reading

12. Digital Circuit Radiation 464
 12.1 Differential-Mode Radiation 465
 12.1.1 Loop Area 468
 12.1.2 Loop Current 468
 12.1.3 Fourier Series 468
 12.1.4 Radiated Emission Envelope 470
 12.2 Controlling Differential-Mode Radiation 471
 12.2.1 Board Layout 471
 12.2.2 Canceling Loops 474
 12.2.3 Dithered Clocks 475
 12.3 Common-Mode Radiation 477
 12.4 Controlling Common-Mode Radiation 480
 12.4.1 Common-Mode Voltage 481
 12.4.2 Cable Filtering and Shielding 482
 12.4.3 Separate I/O Grounds 485
 12.4.4 Dealing With Common-Mode Radiation Issues 488
 Summary 488
 Problems 489
 References 490
 Further Reading 491

13. Conducted Emissions 492
 13.1 Power Line Impedance 492
 13.1.1 Line Impedance Stabilization Network 494
 13.2 Switched-Mode Power Supplies 495
 13.2.1 Common-Mode Emissions 498
 13.2.2 Differential-Mode Emissions 501
 13.2.3 DC-to-DC Converters 509
 13.2.4 Rectifier Diode Noise 509
13. Power-Line Filters

- **13.3 Power-Line Filters**
 - 13.3.1 Common-Mode Filtering 512
 - 13.3.2 Differential-Mode Filtering 512
 - 13.3.3 Leakage Inductance 513
 - 13.3.4 Filter Mounting 516
 - 13.3.5 Power Supplies with Integral Power-Line Filters 519
 - 13.3.6 High-Frequency Noise 520

- **13.4 Primary-to-Secondary Common-Mode Coupling** 523

- **13.5 Frequency Dithering** 524

- **13.6 Power Supply Instability** 524

- **13.7 Magnetic Field Emissions** 525

- **13.8 Variable Speed Motor Drives** 528

- **13.9 Harmonic Suppression** 536
 - 13.9.1 Inductive Input Filters 538
 - 13.9.2 Active Power Factor Correction 538
 - 13.9.3 AC Line Reactors 539

- **Summary** 541

- **Problems** 542

- **References** 544

- **Further Reading** 544

14. RF and Transient Immunity

- **14.1 Performance Criteria** 545

- **14.2 RF Immunity** 546
 - 14.2.1 The RF Environment 547
 - 14.2.2 Audio Rectification 548
 - 14.2.3 RFI Mitigation Techniques 549

- **14.3 Transient Immunity** 557
 - 14.3.1 Electrostatic Discharge 558
 - 14.3.2 Electrical Fast Transient 558
 - 14.3.3 Lightning Surge 559
 - 14.3.4 Transient Suppression Networks 560
 - 14.3.5 Signal Line Suppression 561
 - 14.3.6 Protection of High-Speed Signal Lines 564
 - 14.3.7 Power Line Transient Suppression 566
 - 14.3.8 Hybrid Protection Network 570
14.4 Power Line Disturbances
14.4.1 Power Line Immunity Curve
Summary
Problems
References
Further Reading

15. Electrostatic Discharge
15.1 Static Generation
15.1.1 Inductive Charging
15.1.2 Energy Storage
15.2 Human Body Model
15.3 Static Discharge
15.3.1 Decay Time
15.4 ESD Protection in Equipment Design
15.5 Preventing ESD Entry
15.5.1 Metallic Enclosures
15.5.2 Input/Output Cable Treatment
15.5.3 Insulated Enclosures
15.5.4 Keyboards and Control Panels
15.6 Hardening Sensitive Circuits
15.7 ESD Grounding
15.8 Nongrounded Products
15.9 Field-Induced Upset
15.9.1 Inductive Coupling
15.9.2 Capacitive Coupling
15.10 Transient Hardened Software Design
15.10.1 Detecting Errors in Program Flow
15.10.2 Detecting Errors in Input/Output
15.10.3 Detecting Errors in Memory
15.11 Time Windows
Summary
Problems
16. PCB Layout and Stackup

16.1 General PCB Layout Considerations
16.1.1 Partitioning
16.1.2 Keep Out Zones
16.1.3 Critical Signals
16.1.4 System Clocks

16.2 PCB-to-Chassis Ground Connection

16.3 Return Path Discontinuities
16.3.1 Slots in Ground/Power Planes
16.3.2 Split Ground/Power Planes
16.3.3 Changing Reference Planes
16.3.4 Referencing the Top and Bottom of the Same Plane
16.3.5 Connectors
16.3.6 Ground Fill

16.4 PCB Layer Stackup
16.4.1 One- and Two-Layer Boards
16.4.2 Multilayer Boards
16.4.3 General PCB Design Procedure

Summary

Problems
References
Further Reading

17. Mixed-Signal PCB Layout

17.1 Split Ground Planes

17.2 Microstrip Ground Plane Current Distribution

17.3 Analog and Digital Ground Pins

17.4 When Should Split Ground Planes Be Used?

17.5 Mixed Signal ICs
17.5.1 Multi-Board Systems

17.6 High-Resolution A/D and D/A Converters
17.6.1 Stripline
CONTENTS

17.6.2 Asymmetric Stripline 674
17.6.3 Isolated Analog and Digital Ground Planes 675
17.7 A/D and D/A Converter Support Circuitry 676
 17.7.1 Sampling Clocks 676
 17.7.2 Mixed-Signal Support Circuitry 678
17.8 Vertical Isolation 679
17.9 Mixed-Signal Power Distribution 681
 17.9.1 Power Distribution 681
 17.9.2 Decoupling 682
17.10 The IPC Problem 684
 Summary 685
 Problems 686
 References 687
 Further Reading 687

18. Precompliance EMC Measurements 688

18.1 Test Environment 689
18.2 Antennas Versus Probes 689
18.3 Common-Mode Currents on Cables 690
 18.3.1 Test Procedure 693
 18.3.2 Cautions 693
18.4 Near Field Measurements 694
 18.4.1 Test Procedure 695
 18.4.2 Cautions 696
 18.4.3 Seams and Apertures in Enclosures 697
18.5 Noise Voltage Measurements 697
 18.5.1 Balanced Differential Probe 698
 18.5.2 DC to 1-GHz Probe 700
 18.5.3 Cautions 700
18.6 Conducted Emission Testing 700
 18.6.1 Test Procedure 702
 18.6.2 Cautions 703
 18.6.3 Separating C-M from D-M Noise 704
18.7 Spectrum Analyzers 707