Observation of a $J^{PC} = 1^{--} +$ exotic resonance in diffractive dissociation of $190\text{ GeV/c }\pi^- \rightarrow \pi^- \pi^- \pi^+$

COMPASS Collaboration

Abstract

The COMPASS experiment at the CERN SPS has studied the diffractive dissociation of negative pions into the $\pi^- \pi^- \pi^+$ final state using a 190 GeV/c pion beam hitting a lead target. A partial wave analysis has been performed on a sample of 420,000 events taken at values of the squared 4-momentum transfer t' between 0.1 and 1 GeV2/c2. The well-known resonances $a_1(1260)$, $a_2(1320)$, and $\pi_2(1670)$ are clearly observed. In addition, the data show a significant natural parity exchange production of a resonance with spin-exotic quantum numbers $J^{PC} = 1^{--} +$ at 1.66 GeV/c2 decaying to $\rho \pi$. The resonant nature of this wave is evident from the mass-dependent phase differences to the $J^{PC} = 2^{-+}$ and 1^{++} waves. From a mass-dependent fit a resonance mass of $1660 \pm 10^{+40}_{-64}$ MeV/c2 and a width of $269 \pm 21^{+42}_{-64}$ MeV/c2 are deduced.

PACS: 13.20.Fc, 13.20.Gd, 14.40.Lb, 29.30.-h
Keywords: hadron spectroscopy; light meson spectrum; gluonic excitations; exotic mesons; hybrids

to be submitted to Physical Review Letters
M. Alekseev(30), V.Yu. Alexakhin(8), Yu. Alexandrov(16), G.D. Alexeev(8), A. Amoroso(28), A. Austregesilo(1,18), B. Badelek(31), F. Balestra(28), J. Bai(23), J. Barth(9), G. Baum(1), Y. Bedfer(23), J. Bernhard(14), R. Bertini(28), M. Bettinelli(17), R. Birsa(25), J. Bisplinghoff(9), P. Bordalo(13), F. Bradamante(26), A. Bravar(25), A. Bressan(26), G. Brona(31), E. Burtin(23), M.P. Bussa(28), A. Chapiro(27), M. Chiosso(28), S.U. Chung(18), A. Cicutti(25,27), M. Colantonio(29), M.L. Crespo(25,27), S. Dalla Torre(25), T. Dafni(23), S. Das(7), S.S. Dasgupta(6), O.Yu. Denisov(29,31), L. Dhara(7), V. Diaz(25,27), A.M. Dinkelbach(18), S.V. Donskov(22), N. Doshiita(2,23), V. Duc(26), W. Dünnweber(17), A. Efremov(8), P.D. Eversheim(3), W. Eyrich(9), M. Faessler(17), A. Ferrero(28,11), M. Finger(29), M. Finger jr.(8), H. Fischer(10), C. Franco(13), J.M. Friedrich(18), R. Garfagnini(28), F. Gautheron(1), O.P. Gavrichtchouk(8), R. Gazda(31), S. Gerassimov(16,18), R. Geyer(17), M. Giorgi(26), B. Gobbo(25), S. Goertz(2,4), S. Grabmüller(18), O.A. Grajek(31), A. Grasso(28), B. Grube(18), R. Gushterski(8), A. Guskov(8), F. Haas(18), D. von Harrach(14), T. Hasegawa(15), J. Heckmann(2), F.H. Heinsius(10), R. Herrmann(14), F. Herrmann(10), C. He(2), F. Hinterberger(3), N. Horikawa(19,23), Ch. Höppner(18), N. d’Hose(23), C. Ilgen(11,17), S. Ishimoto(19,23), O. Ivanov(8), Yu. Ivanishin(8), T. Iwata(33), R. Jahn(3), P. Jasinski(14), G. Jegou(23), R. Joosten(3), E. Kabuβ(14), D. Kang(10), B. Ketzer(18), G.V. Khaustov(22), Yu.A. Khokhlov(22), Yu. Kissel(1,2), F. Klein(9), K. Klimaszewski(21), S. Koblietz(14), J.H. Koivuniemi(2), V.N. Kolosov(22), E.V. Komissarov(8,18), K. Kondo(2,33), K. Königsmann(10), R. Konopka(18), I. Konorov(1,18), V.F. Konstantinov(22), A. Korzenev(14,b), A.M. Kotzinian(9), O. Kouznetsov(8,23), K. Kowalik(31,23), M. Krämer(18), A. Kral(21), Z.V. Kroumchtein(8), R. Kühn(18), F. Kunne(23), K. Kurek(31), L. Lauser(10), J.M. Le Goff(23), A.A. Lednev(22), A. Lehmann(9), S. Levorato(26), J. Lichtenstadt(24), T. Liska(21), A. Maggiora(29), M. Maggiora(28), A. Magnon(23), G.K. Mallot(11), A. Mann(18), C. Marchand(23), J. Marrone(24), A. Martin(26), J. Marzec(32), F. Massmann(3), T. Matsuda(15), W. Meyer(2), T. Michigami(33), Yu.V. Mikhailov(22), M.A. Moinester(24), A. Mutter(10,14), A. Nagaytsev(8), T. Nagel(18), J. Nassalski(31,23), S. Negrini(9), F. Nerling(10), S. Neubert(18), D. Neyret(23), V.I. Nikolaenko(22), A.G. Olshevsky(8), M. Ostrick(4,14), A. Padee(32), R. Panknin(3), D. Pauzieri(30), B. Parsamyan(8,28), S. Pau(18), B. Pawlukiewicz-Kaminska(31), E. Perevalova(8), G. Pesaro(26), D.V. Peshekhonov(8), G. Piragino(28), S. Platichkov(23), J. Pochodzalla(14), J. Polak(12,26), V.A. Polyakov(22), G. Pontecorvo(8), J. Pretz(4), C. Quintans(13), J.-F. Rajotte(17), S. Ramos(13), V. Rapatsky(8), G. Reicherz(2), D. Reggiani(11), A. Richter(9), F. Robinet(23), E. Rocco(28), E. Rondio(31), D.I. Ryabchikov(22), V.D. Samoylenko(22), A. Sandacz(31), H. Santos(13), M.G. Sapozhnikov(8), S. Sarkar(7), I.A. Savin(3), G. Sbrizzai(26), P. Schiavon(26), C. Schirolli(10), L. Schmitt(18), S. Schopferer(10), W. Schröder(9), O.Yu. Shevchenko(8), H.-W. Siebert(14), L. Silva(13), L. Sinha(7), A.N. Sissakin(8), M. Shneeba(8), G.I. Smirnov(8), S. Sosio(28), F. Sozzi(26), A. Srnka(3), M. Stolarski(31,11), M. Sulc(12), R. Sulej(32), S. Takekawa(26), S. Tissero(25), F. Tessaro(25), A. Teufel(9), L.G. Tkatchev(8), I. Uman(17), G. Venugopala(3), M. Virius(21), N.V. Vlassov(8), A. Vossen(10), Q. Weitzel(18), R. Windmolders(4), W. Wiślicki(31), H. Wollny(10), K. Zaremba(32), M. Zavertyaev(16), E. Zemlyanichkina(8), M. Ziembicki(32), J. Zhao(14,25), N. Zhuravlev(8) and A. Zvyagin(17)
In the SU(3)$_{\text{flavor}}$ constituent quark model, light mesons are described as bound states of a quark q and an antiquark \bar{q}' with quark flavors u,d,s. Mesons are classified in J^{PC} multiplets, with the total angular momentum J, the parity P, and the particle-antiparticle conjugation parity C, which is defined through the neutral flavorless members of a given multiplet. The isospin I and the G-parity further characterize mesons containing light quarks. In the quark model, P, C and G are given by

$$P = (-1)^{L+1}, \quad C = (-1)^{L+S}, \quad G = (-1)^{I+L+S},$$

where L is the relative orbital angular momentum of q and \bar{q}', and S the total intrinsic spin of the $q\bar{q}'$ pair, with $S = 0, 1$. The constituent quark model has been quite successful in explaining many of the properties of mesons as well as, to a large extent, the observed meson spectrum, even though it makes no assumptions concerning the nature of the binding force, except that hadrons are postulated to be color-singlet states. In Quantum Chromodynamics (QCD), the interaction between colored quarks is described by the exchange of gluons which carry color themselves. Owing to this particular structure of QCD, color-singlet mesons can be formed not only by constituent quarks, but also by other configurations like four-quark objects or gluonic excitations. These non-$q\bar{q}'$ configurations, however, will mix with ordinary $q\bar{q}'$ states with the same J^{PC}, making it difficult to disentangle the contribution of each configuration. The observation of exotic states with quantum numbers not allowed in the simple quark model, e.g. $J^{PC} = 0^{--}, 0^{+-}, 1^{--}, \ldots$, would give clear evidence that quark-gluon configurations beyond the quark model, as allowed by QCD, are realized in nature.

The lowest-lying hybrid, i.e. a system consisting of a color octet $q\bar{q}'$ pair neutralized in color by a gluonic excitation, is expected [1] to have exotic quantum numbers $J^{PC} = 1^{--}$, and thus will not mix with ordinary mesons. Its mass is predicted in the region $1.3 - 2.2$ GeV/c^2. The systematics of hybrid meson production and decay has been worked out in the flux-tube model [2]. There are three experimental candidates for a light 1^{+-} hybrid. The $\pi_1(1400)$ was observed by E852 [3] and by VES [4] in the reaction $\pi^- N \rightarrow \eta \pi^- N$, and by Crystal Barrel [5, 6] in $\overline{p}n \rightarrow \pi^- \pi^0 \eta$ and $\overline{p}p \rightarrow 2\pi^0 \eta$ Dalitz plot analyses. Another 1^{-+} state, the $\pi_1(1600)$, decaying into $\rho \pi$ [7, 8, 9], $\eta' \pi$ [10, 11], $f_1(1285)\pi$ [12, 13], and $b_1(1235)\pi$ [13, 14] was observed in peripheral $\pi^- p$ interactions in E852 and VES, and confirmed in $\overline{p}p \rightarrow b_1 \pi$ [15]. The resonant nature of both states, however, is still heavily disputed in the community [4, 13]. In a different analysis of a larger data set of E852 no evidence for an exotic resonance at 1.6 GeV/c^2 in the 3π final state was found [16]. A third exotic state, $\pi_1(2000)$, decaying to $f_1 \pi$ and $b_1 \pi$, was seen in only one experiment [12, 14].

In order to shed new light on these questions, the COMPASS collaboration, operating a large-acceptance and high-resolution spectrometer [17] situated at the CERN Super Proton Synchrotron (SPS), is gathering high-statistics event samples of diffractive reactions of hadronic probes into final states containing both charged and neutral particles. Diffractive dissociation is a reaction of the type $a + b \rightarrow c + d$ with $c \rightarrow 1 + 2 + \cdots + n$, where a is the incoming beam particle, b the target, c the diffractively produced object decaying into n particles, and d the target recoil particle, with 4-momenta $p_a \ldots p_d$, respectively. The production kinematics is described by two variables: s and $t' = |t| - |t|_{\text{min}}$, where $s = (p_a + p_b)^2$ is the square of the total center of mass energy, $t = (p_a - p_c)^2$ is the square of the four momentum transferred from the incoming beam to the outgoing system c, and $|t|_{\text{min}}$ is the minimum value of $|t|$ which is allowed by kinematics for a given mass m_c. 1
First studies of diffractive reactions of 190 GeV/c π^- on a 3 mm lead target were carried out by COMPASS in 2004. The $\pi^-\pi^-\pi^+$ final state was chosen because the disputed $\pi_1(1600)$ meson with exotic J^{PC} had previously been reported in this channel. The trigger selected events with one incoming particle and at least two outgoing charged particles detected in the spectrometer. In the offline analysis, a primary vertex inside the target with 3 outgoing charged particles is required. Since the recoil particle was not detected, the following procedure is applied in order to select exclusive events. The beam energy E_a is very well approximated by the measured total energy E_c of the 3π system with a small correction arising from the target recoil, which can be calculated from the measured scattering angle $\theta = \angle(\vec{p}_a,\vec{p}_c)$, assuming that the target particle remained intact throughout the scattering process. Then an exclusivity cut is applied, requiring E_a to be within ± 4 GeV of the mean beam energy. Events with a wide range of momentum transfers t' from zero up to a few GeV$^2/c^2$ were recorded. For the analysis presented in this letter we restrict ourselves to the range where candidates for spin exotic states have been reported in the past: 0.1 GeV$^2/c^2 < t' < 1.0$ GeV$^2/c^2$, far beyond the region of coherent scattering on the Pb nucleus. Figure 1 shows the invariant mass of the corresponding events. In our sample of 420,000 events in the mass range between 0.5 and 2.5 GeV$^2/c^2$, the well-known resonances $a_1(1260)$, $a_2(1320)$, and $\pi_2(1670)$ are clearly visible in the 3π mass spectrum.

A partial wave analysis (PWA) of this data set was performed using a program which was originally developed at Illinois [18], and later modified at Protvino and Munich. An independent cross-check of the results was performed using a different PWA program developed at Brookhaven [19] and adapted for COMPASS [20]. At high \sqrt{s}, the reaction can be assumed to proceed via t-channel Reggeon exchange, thus justifying the factorization of the total cross section into a resonance and a recoil vertex without final state interaction. The exchanged Reggeon may excite the incident pion ($J^P = 0^-$) to a state X with different J^P, limited only by conservation laws for strong interactions. For the $(3\pi)^-$ final state $I \geq 1$; we assume $I = 1$ since no flavor-exotic mesons have been found. Since in addition $G = -1$ for a system with an odd number of pions, $C = +1$ follows from eq. 1.

We take the phenomenological approach of the isobar model, in which all multi-particle final states can be described by sequential two-body decays into intermediate resonances (isobars), which eventually decay into the final state observed in the experiment. For the $\pi^-\pi^-\pi^+$ final state, the excited state is thus assumed to disintegrate into a di-pion resonance and an unpaired (bachelor) pion, followed by the decay of the resonance.
into two pions. All known isovector and isoscalar $\pi\pi$ resonances have been included in our fit: $(\pi\pi)_S$ (comprising the broad $\sigma(600)$ and $f_0(1370)$), $\rho(770)$, $f_0(980)$, $f_2(1270)$, and $\rho_0(1690)$ [8]. It is possible that there exists a direct 3-body decay into $(3\pi)^-$ without an intermediate di-pion resonance; in the isobar model, such a decay mode without angular correlations is represented by $J^P = 0^+ \sigma(600) + \pi^-$ with $L = 0$. Possible complications to the isobar model from unitarity constraints are not an issue here; such effects enter in the formulation of the model only when all possible decay modes are simultaneously fit, which may include the final states containing π^0, η, η', ω, KK or NN.

The spin-parity composition of the excited state X is studied in the Gottfried-Jackson frame, which is the center of mass frame of X with the z-axis along the beam direction, and the y-axis perpendicular to the production plane, formed by the momentum vectors of the target and the recoil particle.

The PWA is done in two steps. In the first step, a fit of the probability density in 3π phase space is performed in 40 MeV/c2 bins of the 3π invariant mass m. No dependence of the production strength for a given wave on the mass of the 3π system is introduced at this point (mass-independent fit):

$$
\sigma_{\text{indep}}(\tau, m, t') = \sum_{\epsilon = \pm 1} \sum_{r=1}^{N_r} \left| \sum_i T^r_{ir} f^\epsilon_i(t') \psi^\epsilon_i(\tau, m) \right|^2 \int |\psi^\epsilon_i(\tau', m)|^2 d\tau'.
$$

(2)

Here, T^r_{ir} are the production amplitudes and ψ^ϵ_i the decay amplitudes, the indices i and ϵ denoting different partial waves, characterized by a set of quantum numbers $J^{PC} \, M^f \, \text{isobar} \, L$; M is the absolute value of the spin projection onto the z-axis; ϵ is the reflectivity [21], which describes the symmetry under a reflection through the production plane, and which is defined such that it corresponds to the naturality of the exchanged Regge trajectory; L is the orbital angular momentum between the isobar and the bachelor pion. The different t' dependence of the cross section for $M = 0$ and $M = 1$ is taken into account by including different functions of t', $f^\epsilon_i(t') \propto \exp(-bt')$ ($M = 0$) and $f^\epsilon_i(t') \propto t' \exp(-bt')$ ($M = 1$), where the slope b has been obtained from the data by first making fits in slices of t'. The ψ^ϵ_i are constructed using non-relativistic Zemach tensors [22]. They depend on the set of five parameters τ specifying the 3-body decay kinematics, but do not contain any free parameters. Dividing each decay amplitude by its normalization integral compensates its dependence on the mass inside each mass bin. The sum contains two non-coherent sums over the reflectivity ϵ and the rank N_r [21]. Assuming that the recoiling target particle is a nucleon, and neglecting nuclear effects, we set $N_r = 2$, corresponding to helicity-flip and helicity-non-flip processes at the baryon vertex. A total of 42 partial waves are included in the first step of the fit. It comprises the non-exotic positive-reflectivity waves with $J^{PC} = 0^+ (M = 0)$, $1^{++}, 2^{++}, 3^{++}, 4^{++}$ ($M = 0, 1$), $2^{++}, 4^{++}$ ($M = 1$), the exotic 1^{-+} ($M = 1$), and the negative-reflectivity waves $1^{-+}, 2^{++}$ ($M = 0, 1$), $1^{++}, 2^{-+}$ ($M = 1$), taking into account all relevant known decay modes into the isobars listed above. It also contains a background wave, characterized by a uniform distribution in 3-body phase space, which is added incoherently to the other waves. The complex production amplitudes T^r_{ir} are determined using an extended maximum likelihood method, which also takes into account the experimental acceptance of the spectrometer, determined from a phase-space Monte Carlo simulation of the apparatus. It is worth stressing that COMPASS has an excellent acceptance for diffractively produced 3π events of the order of 60% over the whole phase space. In order to verify that indeed the global maximum has been found by the fit, up to 100 attempts with randomly chosen start parameters are performed for
In the second step of the PWA a mass-dependent χ^2 fit to the results of the first step is performed in the mass range from 0.8 to 2.32 GeV/c^2, taking into account the mass dependence of the produced resonances through relativistic Breit-Wigner functions (and possibly a coherent background). In this fit only a subset of six waves of the first step is used, the selected waves showing either significant amplitudes or rapid relative phase changes in the 1.7 GeV/c^2 mass range: $0^{++} f_0(980) \rho \pi S$, $1^{++} 0^+ \rho \pi S$, $2^{++} 0^+ f_2 \pi S$, $2^{++} 1^+ \rho \pi D$, $4^{++} 1^+ \rho \pi G$, and the exotic $1^{++} 1^+ \rho \pi P$. Figures 2 (a)-(c) show the intensities of the three most prominent waves $1^{++} 0^+ \rho \pi S$, $2^{++} 0^+ f_2 \pi S$, and $2^{++} 1^+ \rho \pi D$, determined in the mass-independent fit (black data points), and the result of the mass-dependent fit (solid line), respectively. The intensity of the exotic $1^{++} 1^+ \rho \pi P$ wave is shown in Fig. 2 (d). In addition to the Breit-Wigner resonance at 1.66 GeV/c^2, which is represented by the dashed line and which we interpret as the $\pi_1(1600)$, the intensity of the 1^{++} wave has a shoulder at lower masses. In our fit this shoulder is modeled by a non-resonant background (dotted line), possibly caused by a Deck-like effect [23].

The resonance nature of this wave is demonstrated via its phase differences to the two prominent waves shown in Fig. 2 (a) and (b), namely $1^{++} 0^+ \rho \pi S$ and $2^{++} 0^+ f_2 \pi S$. For the latter, shown in Fig. 3 (b), no significant change in the phase difference between 1.4 and 1.9 GeV/c^2 is observed, which is attributed to the fact that there are two resonances, $\pi_1(1600)$ and $\pi_2(1670)$, with very similar masses and widths, causing the relative phase differences to be very small.
Figure 3: Phase differences of the exotic $1^{-+}1^{+} \rho \pi P$ wave to the $1^{++}0^{+} \rho \pi S$ (a) and the $2^{-+}0^{+} f_{2} \pi S$ (b) waves.

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Mass (MeV/c^2)</th>
<th>Width (MeV/c^2)</th>
<th>Intensity (%)</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_1(1260)$</td>
<td>$1255 \pm 6^{+17}_{-15}$</td>
<td>$367 \pm 92^{+28}_{-25}$</td>
<td>$67 \pm 3^{+4}_{-20}$</td>
<td>$1^{++}0^{+} \rho \pi S$</td>
</tr>
<tr>
<td>$a_2(1320)$</td>
<td>$1321 \pm 1^{+0}_{-7}$</td>
<td>$110 \pm 2^{+2}_{-15}$</td>
<td>$19.2 \pm 0.6^{+0.3}_{-2.2}$</td>
<td>$2^{++}1^{+} \rho \pi D$</td>
</tr>
<tr>
<td>$\pi_1(1600)$</td>
<td>$1660 \pm 10^{+40}_{-64}$</td>
<td>$269 \pm 21^{+42}_{-64}$</td>
<td>$1.7 \pm 0.2^{+0.9}_{-0.1}$</td>
<td>$1^{-+}1^{+} \rho \pi P$</td>
</tr>
<tr>
<td>$\pi_2(1670)$</td>
<td>$1658 \pm 3^{+24}_{-8}$</td>
<td>$271 \pm 9^{+22}_{-24}$</td>
<td>$10.0 \pm 0.4^{+0.7}_{-0.6}$</td>
<td>$2^{-+}0^{+} f_{2}\pi S$</td>
</tr>
<tr>
<td>$\pi(1800)$</td>
<td>$1785 \pm 9^{+12}_{-6}$</td>
<td>$208 \pm 22^{+21}_{-37}$</td>
<td>$0.8 \pm 0.1^{+0.3}_{-0.1}$</td>
<td>$0^{-+}0^{+} f_{2}\pi S$</td>
</tr>
<tr>
<td>$a_4(2040)$</td>
<td>$1885 \pm 13^{+50}_{-2}$</td>
<td>$294 \pm 25^{+46}_{-19}$</td>
<td>$1.0 \pm 0.3^{+0.1}_{-0.1}$</td>
<td>$4^{++}1^{+} \rho \pi G$</td>
</tr>
</tbody>
</table>

Table 1: Resonance masses, total widths, and intensities for the specified decay channel of the six waves included in the mass-dependent fit to the data. The first uncertainty corresponds to the statistical error, the asymmetric second one to the systematic error.

The parameters deduced for the masses, widths and intensities of the resonances included in the mass-dependent fit, are given in Table 1, where the first uncertainty corresponds to the statistical error, the second to the systematic error. The intensities are given for the resonant part of the corresponding wave integrated over the mass range from 0.8 to 2.32 GeV/c^2, and are normalized to the total intensity from the mass-dependent fit, corresponding to 38.7(2)% of the acceptance-corrected data sample in the same mass range.

The systematic errors were estimated from the data by testing the stability of the result with respect to various assumptions made in the analysis, e.g. adding or removing certain waves, varying cuts or initial parameters for the fit. One such study concerns the difference to be almost constant. In contrast to this the phase difference to the 1^{++} wave, shown in Fig. 3 (a), clearly shows an increase around 1.7 GeV/c^2. As the $a_1(1260)$ is no longer resonating at this mass, this observation can be regarded as an independent verification of the resonating nature of the 1^{-+} wave. The dominance of natural- over unnatural-parity exchange is more pronounced than in the BNL case at 18 GeV/c [8]. This is possibly due to the decreasing contribution of unnatural-parity exchange with an increasing beam energy, if the natural-parity exchange is mediated mostly by the Pomeron. However, comparing different $\pi_1(1600)$ decay channels observed at 18 GeV/c, a common parity transfer characteristics is not evident [14] though mandatory for a single resonance at given bombarding energy.

The parameters deduced for the masses, widths and intensities of the resonances included in the mass-dependent fit, are given in Table 1, where the first uncertainty corresponds to the statistical error, the second to the systematic error. The intensities are given for the resonant part of the corresponding wave integrated over the mass range from 0.8 to 2.32 GeV/c^2, and are normalized to the total intensity from the mass-dependent fit, corresponding to 38.7(2)% of the acceptance-corrected data sample in the same mass range.

The systematic errors were estimated from the data by testing the stability of the result with respect to various assumptions made in the analysis, e.g. adding or removing certain waves, varying cuts or initial parameters for the fit. One such study concerns the
choice of the rank N_r used in the PWA. Although $N_r = 2$ is physically motivated from the fact that, at high t', incoherent diffraction from individual nucleons dominates the reaction, fits with $N_r = 1$ and 3 were tried as well. The intensity in the background wave relative to the total acceptance-corrected data sample in the mass range from 0.5 to 2.5 GeV/c^2 increases from 5.8% for $N_r = 2$ to 19% for $N_r = 1$, while it drops to 1.2% for $N_r = 3$. At the same time, however, $N_r = 3$ was found to cause larger bin-to-bin fluctuations without significantly altering the result. Given the level of the present statistics, we therefore conclude that the optimum rank is $N_r = 2$. In an attempt to account for the low-mass shoulder in the intensity of the $1^{-+}1^+ \rho \pi P$ wave we also tried to include a $\pi_1(1400)$ into the fit, with parameters fixed to PDG values [24]. This shifted the resonance mass of the $\pi_1(1600)$ to a slightly smaller value, which is reflected in its systematic error, but did not affect the intensity or the phase differences of any of the waves in the mass-dependent fit. Releasing the parameters of the $\pi_1(1400)$, however, causes the fit to become unstable. This can be attributed to the fact that the $\pi_1(1400)$, if present at all, couples only weakly to the $\pi^-\pi^-\pi^+$ final state. Other studies included a shift of the 40 MeV/c^2 mass bins by 20 MeV/c^2, the use of rotation functions with relativistic factors [25] instead of Zemach tensors for the mass-independent fit, and the inclusion of four waves with $M = 2$. The use of different parameterizations for the σ and ρ mesons also did not influence the result.

An incomplete acceptance of the spectrometer, not properly taken into account in the Monte Carlo simulation, or an incomplete set of waves may introduce leakage of non-exotic waves into the 1^{-+} wave. In order to study this effect, Monte Carlo events were generated using the parameters of 16 dominant waves, excluding the 1^{-+}, which were determined in a mass-dependent fit, and simulating the decay patterns of the corresponding decay channels. Performing the same PWA for the Monte Carlo data as for the real data it was found that the fraction of ‘fake’ intensity in the observed 1^{-+} wave in the Monte Carlo case is less than 5%, and thus negligible.

In order to test the significance of the exotic wave, a second mass-independent fit was performed excluding the exotic wave from the wave set. A likelihood ratio test yields a log-likelihood difference of 47.3 between the two fits, averaged over a mass range of twice the experimental width around the resonance mass of the $\pi_1(1600)$, for a difference in the numbers of degrees of freedom of 4, and thus confirms the presence of the exotic wave in the wave set with a probability very close to unity.

In conclusion, a partial wave analysis of COMPASS data from the diffractive dissociation of 190 GeV/c π^- on a lead target into the $\pi^-\pi^-\pi^+$ final state at $0.1 \text{GeV}^2/c^2 < t' < 1.0 \text{GeV}^2/c^2$ was performed. In addition to well-known $q\overline{q}'$ states, a spin-exotic wave with $J^{PC} = 1^{-+}$ decaying to $\rho \pi$ is found, with an intensity of the resonant part corresponding to 1.7% of the total intensity in the mass-dependent fit. Its mass-dependent phase differences to the $J^{PC} = 2^{-+}$ and 1^{++} waves are consistent with the highly debated $\pi_1(1600)$ meson. In 2008 COMPASS started its spectroscopy program with hadron beams on a liquid hydrogen target. With the expected considerable increase of the world statistics on diffractive and central production of light mesons, new results including other channels will emerge in the near future.

We gratefully acknowledge the support of the CERN management and staff as well as the skills and efforts of the technicians of the collaborating institutions.

References