2.1.4 Straight Incident Shock Wave Reflections over Straight Reflecting Surfaces 44

2.2 Modifications of the Perfect Inviscid Two- and Three-Shock Theories 48
   2.2.1 Nonstraight Discontinuities 49
   2.2.2 Viscous Effects 49
   2.2.3 Thermal Conduction Effects 51
   2.2.4 Real Gas Effects 52

2.3 Prediction of the Mach Reflection Shape and the Mach Stem Height 53
   2.3.1 Assumptions and Concepts of the Models 54
   2.3.2 Governing Equations 58
   2.3.3 Derivation of a General Expression for a Curved Line as a Function of Some Boundary Conditions at Its Ends 64
   2.3.4 Estimation of the Strength of the Expansion Waves that are Reflected at the Slipstream 66
   2.3.5 Geometric Relations of the Wave Configuration Shown in Figs. 2.12 and 2.15 67
   2.3.6 Results 70

2.4 Hysteresis Processes in the RR $\leftrightarrow$ MR Transition 76
   2.4.1 Introduction 76
   2.4.2 Hysteresis Processes in the Reflection of Symmetric Shock Waves 79
   2.4.3 Hysteresis Process in the Reflection of Asymmetric Shock Waves 90
   2.4.4 Hysteresis Process in the Reflection of Axisymmetric (Conical) Shock Waves 101

References 131

3 Shock Wave Reflections in Pseudosteady Flows 135
   3.1 "Old" State-of-the-Knowledge 139
      3.1.1 Reflection Configurations 140
      3.1.2 The Transition Criteria 143
      3.1.3 Second Triple Point Trajectory and Some Critical Remarks Regarding the Old State-of-the-Knowledge 151
   3.2 "New" (Present) State-of-the-Knowledge 156
      3.2.1 Introductory Remarks 156
      3.2.2 Shock-Diffraction Process 157
      3.2.3 Transition Criteria 159
      3.2.4 Single-Mach Reflection (SMR) 161
      3.2.5 Formation of Transitional-Mach Reflection (TMR) or Double-Mach Reflection (DMR) 161
      3.2.6 Transitional-Mach Reflection (TMR) 162
      3.2.7 Double-Mach Reflection – DMR 167