Introduction to Astronomy and Cosmology

Ian Morison
University of Manchester, UK

WILEY
A John Wiley and Sons, Ltd., Publication
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xv</td>
</tr>
<tr>
<td>Biography</td>
<td>xvii</td>
</tr>
<tr>
<td>Chapter 1: Astronomy, an Observational Science</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Galileo Galilei’s proof of the Copernican theory of the solar system</td>
<td>1</td>
</tr>
<tr>
<td>1.3 The celestial sphere and stellar magnitudes</td>
<td>4</td>
</tr>
<tr>
<td>1.3.1 The constellations</td>
<td>4</td>
</tr>
<tr>
<td>1.3.2 Stellar magnitudes</td>
<td>5</td>
</tr>
<tr>
<td>1.3.3 Apparent magnitudes</td>
<td>5</td>
</tr>
<tr>
<td>1.3.4 Magnitude calculations</td>
<td>6</td>
</tr>
<tr>
<td>1.4 The celestial coordinate system</td>
<td>7</td>
</tr>
<tr>
<td>1.5 Precession</td>
<td>9</td>
</tr>
<tr>
<td>1.6 Time</td>
<td>11</td>
</tr>
<tr>
<td>1.6.1 Local solar time</td>
<td>11</td>
</tr>
<tr>
<td>1.6.2 Greenwich mean time</td>
<td>11</td>
</tr>
<tr>
<td>1.6.3 The equation of time</td>
<td>12</td>
</tr>
<tr>
<td>1.6.4 Universal time</td>
<td>12</td>
</tr>
<tr>
<td>1.6.5 Sidereal time</td>
<td>13</td>
</tr>
<tr>
<td>1.6.6 An absolute time standard — cosmic time</td>
<td>14</td>
</tr>
<tr>
<td>1.7 A second major observational triumph: the laws of planetary motion</td>
<td>16</td>
</tr>
<tr>
<td>1.7.1 Tycho Brahe's observations of the heavens</td>
<td>17</td>
</tr>
<tr>
<td>1.7.2 Johannes Kepler joins Tycho Brahe</td>
<td>20</td>
</tr>
<tr>
<td>1.7.3 The laws of planetary motion</td>
<td>20</td>
</tr>
<tr>
<td>1.8 Measuring the astronomical unit</td>
<td>23</td>
</tr>
<tr>
<td>1.9 Isaac Newton and his Universal Law of Gravity</td>
<td>25</td>
</tr>
<tr>
<td>1.9.1 Derivation of Kepler's third law</td>
<td>30</td>
</tr>
<tr>
<td>1.10 Experimental measurements of G, the Universal constant of gravitation</td>
<td>32</td>
</tr>
<tr>
<td>1.11 Gravity today: Einstein's special and general theories of relativity</td>
<td>33</td>
</tr>
<tr>
<td>1.12 Conclusion</td>
<td>36</td>
</tr>
<tr>
<td>1.13 Questions</td>
<td>36</td>
</tr>
</tbody>
</table>
Chapter 2: Our Solar System 1 - The Sun 39

2.1 The formation of the solar system 39
2.2 The Sun 43
 2.2.1 Overall properties of the Sun 43
 2.2.2 The Sun's total energy output 45
 2.2.3 Black body radiation and the sun's surface temperature 46
 2.2.4 The Fraunhofer lines in the solar spectrum and the composition of the sun 49
2.3 Nuclear fusion 50
 2.3.1 The Proton—proton cycle 53
2.4 The solar neutrino problem 57
 2.4.1 The solar neutrino problem is solved 58
2.5 The solar atmosphere: photosphere, chromosphere and corona 59
 2.5.1 Coronium 61
2.6 The solar wind 61
2.7 The sun's magnetic field and the sunspot cycle 62
 2.7.1 Sunspots 62
 2.7.2 The sunspot cycle 64
2.8 Prominences, flares and the interaction of the solar wind with the earth's atmosphere 65
 2.8.1 The aurora 66
2.9 Solar eclipses 67
 2.9.1 Two significant solar eclipses 69
 2.9.2 The Shapiro delay 71
2.10 Questions 72

Chapter 3: Our Solar System 2 - The Planets 75

3.1 What is a planet? 75
3.2 Planetary orbits 77
 3.2.1 Orbital inclination 78
3.3 Planetary properties 79
 3.3.1 Planetary masses 79
 3.3.2 Planetary densities 80
 3.3.3 Rotation periods 80
 3.3.4 Planetary temperatures 81
 3.3.5 Global warming 83
 3.3.6 Albedo 83
3.4 Planetary atmospheres 84
 3.4.1 Secondary atmospheres 86
 3.4.2 The evolution of the earth's atmosphere 87
3.5 The planets of the solar system 87
 3.5.1 Mercury 88
 3.5.2 Venus 89
 3.5.3 The Earth 92
 3.5.4 The moon 94
 3.5.5 Mars 102
 3.5.6 Ceres and the minor planets 106
 3.5.7 Jupiter 108
 3.5.8 Saturn 113
 3.5.9 Uranus 117
 3.5.10 Neptune 120
 3.5.11 Pluto 124
 3.5.12 Eris 128
3.6 Comets 129
 3.6.1 Halley's comet 130
 3.6.2 Cometary nuclei 131
3.7 Questions 132

Chapter 4: Extra-solar Planets 135
4.1 The radial velocity (Doppler wobble) method of planetary detection 135
 4.1.1 Pulsar planets 138
 4.1.2 The discovery of the first planet around a sun-like star 139
4.2 Planetary transits 142
4.3 Gravitational microlensing 145
4.4 Astrometry 148
4.5 Discovery space 149
4.6 Selection effects and the likelihood of finding solar systems like ours 151
4.7 Questions 151

Chapter 5: Observing the Universe 153
5.1 Thinking about optics in terms of waves rather than rays 153
 5.1.1 The parabolic mirror 153
 5.1.2 Imaging with a thin lens 156
 5.1.3 The achromatic doublet 159
5.2 The human eye 161
5.3 The use of a telescope or pair of binoculars to see fainter objects 163
5.4 Using a telescope to see more detail in an image
 5.4.1 An interesting worked example of the effects of diffraction 166
 5.4.2 The effect of diffraction on the resolution of a telescope 167
5.5 The magnification of a telescope 168
5.6 Image contrast 170
5.7 The classic Newtonian telescope 170
5.8 The Cassegrain telescope 172
5.9 Catadioptric telescopes 172
 5.9.1 The Schmidt camera 172
 5.9.2 The Schmidt—Cassegrain telescope 173
 5.9.3 The Maksutov—Cassegrain telescope 174
5.10 Active and adaptive optics 174
 5.10.1 Active optics 175
 5.10.2 Adaptive optics 175
5.11 Some significant optical telescopes 176
 5.11.1 Gemini North and South telescopes 176
 5.11.2 The Keck telescopes 177
 5.11.3 The South Africa Large Telescope (SALT) 177
 5.11.4 The Very Large Telescope (VLT) 178
 5.11.5 The Hubble Space Telescope (HST) 179
 5.11.6 The future of optical astronomy 180
5.12 Radio telescopes 181
 5.12.1 The feed and low noise amplifier system 182
 5.12.2 Radio receivers 183
 5.12.3 Telescope designs 184
 5.12.4 Large fixed dishes 186
 5.12.5 Telescope arrays 188
 5.12.6 Very Long Baseline Interferometry (VLBI) 189
 5.12.7 The future of radio astronomy 191
5.13 Observing in other wavebands 193
 5.13.1 Infrared 193
 5.13.2 Submillimetre wavelengths 193
 5.13.3 The Spitzer space telescope 195
 5.13.4 Ultraviolet, X-ray and gamma-ray observatories 195
5.14 Observing the universe without using electromagnetic radiation
 5.14.1 Cosmic rays 197
 5.14.2 Gravitational waves 199
5.15 Questions 202

Chapter 6: The Properties of Stars 205
6.1 Stellar luminosity 205
6.2 Stellar distances 205
 6.2.1 The parsec 207
6.3 Proper motion 208
 6.3.1 Hipparcos and GAIA 208
6.4 The absolute magnitude scale 209
 6.4.1 The standard formula to derive absolute magnitudes 210
6.5 Colour and surface temperature 212
6.6 Stellar photometry 214
6.7 Stellar spectra 214
 6.7.1 The hydrogen spectrum 215
 6.7.2 Spectral types 216
6.8 Spectroscopic parallax 217
6.9 The Hertzsprung—Russell Diagram 219
 6.9.1 The main sequence 220
 6.9.2 The giant region 220
 6.9.3 The white dwarf region 222
 6.9.4 Pressure broadening 222
6.10 The size of stars 223
 6.10.1 Direct measurement 223
 6.10.2 Using binary star systems to calculate stellar sizes 225
 6.10.3 Using the Stephan—Boltzman law to estimate stellar sizes 226
6.11 The masses and densities of stars 227
6.12 The stellar mass—luminosity relationship 228
6.13 Stellar lifetimes 229
6.14 Questions 230
Chapter 7: Stellar Evolution - The Life and Death of Stars

7.1 Low mass stars: 0.05-0.5 solar masses
7.2 Mid mass stars: 0.5--8 solar masses
 7.2.1 Moving up the main sequence
 7.2.2 The triple alpha process
 7.2.3 The helium flash
7.3 Variable stars
7.4 Planetary nebula
7.5 White dwarfs
 7.5.1 The discovery of white dwarfs
 7.5.2 The future of white dwarfs
 7.5.3 Black dwarfs
7.6 The evolution of a sun-like star
7.7 Evolution in close binary systems — the Algol paradox
7.8 High mass stars in the range >8 solar masses
7.9 Type II supernova
 7.9.1 The Crab Nebula
 7.9.2 Supernova 1987A
7.10 Neutron stars and black holes
7.11 The discovery of pulsars
 7.11.1 What can pulsars tell us about the universe?
7.12 Pulsars as tests for general relativity
7.13 Black holes
 7.13.1 The detection of stellar mass black holes
 7.13.2 Black holes are not entirely black
7.14 Questions

Chapter 8: Galaxies and the Large Scale Structure of the Universe

8.1 The Milky Way
 8.1.1 Open star clusters
 8.1.2 Globular clusters
 8.1.3 The interstellar medium and emission nebulae
 8.1.4 Size, shape and structure of the Milky Way
 8.1.5 Observations of the hydrogen line
 8.1.6 A super-massive black hole at the heart of our galaxy
8.2 Other galaxies
 8.2.1 Elliptical galaxies
 8.2.2 Spiral galaxies
 8.2.3 Evidence for an unseen component in spiral galaxies — dark matter
 8.2.4 Weighing a galaxy
 8.2.5 Irregular galaxies
 8.2.6 The Hubble classification of galaxies

8.3 The universe
 8.3.1 The cosmic distance scale
 8.3.2 Using Supernova 1987A to measure the distance of the Large Magellanic Cloud
 8.3.3 The Cepheid variable distance scale
 8.3.4 Starburst galaxies
 8.3.5 Active galaxies
 8.3.6 Groups and clusters of galaxies
 8.3.7 Superclusters
 8.3.8 The structure of the universe

8.4 Questions

Chapter 9: Cosmology — the Origin and Evolution of the Universe

9.1 Einstein's blunder?

9.2 Big Bang models of the universe

9.3 The blueshifts and redshifts observed in the spectra of galaxies

9.4 The expansion of the universe
 9.4.1 A problem with age

9.5 The steady state model of the universe

9.6 Big Bang or Steady State?

9.7 The cosmic microwave background
 9.7.1 The discovery of the cosmic microwave background

9.8 Inflation

9.9 The Big Bang and the formation of the primeval elements

9.10 The 'ripples' in the Cosmic Microwave Background

9.11 How dark matter affects the cosmic microwave background

9.12 The hidden universe: dark matter and dark energy
 9.12.1 Evidence for dark matter
 9.12.2 How much non-baryonic dark matter is there?
 9.12.3 What is dark matter?
9.12.4 Dark energy 322
9.12.5 Evidence for dark energy 322
9.12.6 The nature of dark energy 324
9.13 The makeup of the universe 325
9.14 A universe fit for intelligent life 326
 9.14.1 A 'multiverse' 328
 9.14.2 String theory: another approach to a multiverse 328
9.15 Intelligent life in the universe 329
 9.15.1 The Drake equation 329
 9.15.2 The Search for Extra Terrestrial Intelligence (SETI) 331
9.16 The future of the universe 332

Index 335