USER GUIDE FOR MINPACK-1

by

Jorge J. Moré, Burton S. Garbow,
and Kenneth E. Hillstrom

CERN LIBRARIES, GENEVA

CM-P00068642

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Prepared for the U. S. DEPARTMENT OF ENERGY
under Contract W-31-109-Eng-38
The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) among the U. S. Department of Energy, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona The University of Kansas The Ohio State University
Carnegie-Mellon University Kansas State University Ohio University
Case Western Reserve University Loyola University of Chicago The Pennsylvania State University
The University of Chicago Marquette University Purdue University
University of Cincinnati The University of Michigan Saint Louis University
Illinois Institute of Technology Michigan State University Southern Illinois University
University of Illinois University of Minnesota The University of Texas at Austin
Indiana University University of Missouri Washington University
The University of Iowa Northwestern University Wayne State University
Iowa State University University of Notre Dame The University of Wisconsin-Madison

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Printed in the United States of America
Available from
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

NTIS price codes
Printed copy: A12
Microfiche copy: A01
USER GUIDE FOR MINPACK-1

by

Jorge J. Moré, Burton S. Garbow, Kenneth E. Hillstrom

Applied Mathematics Division

August 1980
TABLE OF CONTENTS

Abstract ... 5

Preface .. 5

Acknowledgments .. 8

CHAPTER 1. Introduction to MINPACK-1 ... 9
 1.1 Systems of Nonlinear Equations .. 9
 1.2 Nonlinear Least Squares Problems ... 9
 1.3 Derivative Checking ... 10
 1.4 Algorithmic Paths: Core Subroutines and Easy-to-Use Drivers 10
 1.5 MINPACK-1 Subroutines: Systems of Nonlinear Equations 10
 1.6 MINPACK-1 Subroutines: Nonlinear Least Squares Problems 12
 1.7 Machine-Dependent Constants ... 13
 1.8 MINPACK-1 Internal Subprograms ... 14

CHAPTER 2. Algorithmic Details ... 17
 2.1 Mathematical Background .. 17
 2.2 Overview of the Algorithms .. 19
 2.3 Convergence Criteria .. 21
 2.4 Approximations to the Jacobian Matrix ... 26
 2.5 Scaling .. 28
 2.6 Subroutine FCN: Calculation of the Function and Jacobian Matrix ... 30
 2.7 Constraints .. 33
 2.8 Error Bounds ... 35
 2.9 Printing .. 43

CHAPTER 3. Notes and References ... 45

CHAPTER 4. Documentation .. 49

CHAPTER 5. Program Listings .. 139
ABSTRACT

MINPACK-1 is a package of Fortran subprograms for the numerical solution of systems of nonlinear equations and nonlinear least squares problems. This report provides an overview of the algorithms and software in the package and includes the documentation and program listings.

Preface

The MINPACK Project is a research effort whose goal is the development of a systematized collection of quality optimization software. The first step towards this goal has been realized in MINPACK-1, a package of Fortran programs for the numerical solution of systems of nonlinear equations and nonlinear least squares problems.

The design of the algorithms and software in MINPACK-1 has several objectives; the main ones are reliability, ease of use, and transportability.

At the algorithmic level, reliability derives from the underlying algorithms having a sound theoretical basis. Entirely satisfactory global convergence results are available for the MINPACK-1 algorithms and, in addition, their properties allow scale invariant implementations.

At the software level, reliability derives from extensive testing. The heart of the testing aids is a large collection of test problems (Moré, Garbow, and Hillstrom [1978]). These test problems have been used to measure the performance of the software on the following computing systems: IBM 360/370, CDC 6000-7000, Univac 1100, Cray-1, Burroughs 6700, DEC PDP-10, Honeywell 6000, Prime 400, Itel AS/6, and ICL 2980. At Argonne, software performance has been further measured with the help of WATFIV and BRNANL (Fosdick [1974]). WATFIV detects run-time errors such as undefined variables and out-of-range subscripts, while BRNANL provides execution counts for each block of a program and, in particular, has established that the MINPACK-1 test problems execute every non-trivial program block.

Reliability further implies efficient and robust implementations. For example, MINPACK-1 programs access matrices sequentially along columns (rather than rows), since this improves efficiency, especially on paged systems. Also, there are extensive checks on the input parameters, and computations are
formulated to avoid destructive underflows and overflows. Underflows can then be safely ignored; overflows due to the problem should of course be investigated.

Ease of use derives from the design of the user interface. Each algorithmic path in MINPACK-1 includes a core subroutine and a driver with a simplified calling sequence made possible by assuming default settings for certain parameters and by returning a limited amount of information; many applications do not require full flexibility and in these cases the drivers can be invoked. On the other hand, the core subroutines enable, for example, scaling of the variables and printing of intermediate results at specified iterations.

Ease of use is also facilitated by the documentation. Machine-readable documentation is provided for those programs normally called by the user. The documentation includes discussions of all calling sequence parameters and an actual example illustrating the use of the corresponding algorithm. In addition, each program includes detailed prologue comments on its purpose and the roles of its parameters; in-line comments introduce major blocks in the body of the program.

To further clarify the underlying structure of the algorithms, the programs have been formatted by the TAMPR system of Boyle and Dritz [1974]. TAMPR produces implementations in which the loops and logical structure of the programs are clearly delineated. In addition, TAMPR has been used to produce the single precision version of the programs from the master (double precision) version.

Transportability requires that a satisfactory transfer to a different computing system be possible with only a small number of changes to the software. In MINPACK-1, a change to a new computing system only requires changes to one program in each precision; all other programs are written in a portable subset of ANSI standard Fortran acceptable to the PFORT verifier (Ryder [1974]). This one machine-dependent program provides values of the machine precision, the smallest magnitude, and the largest magnitude. Most of the values for these parameters were obtained from the corresponding PORT library program (Fox, Hall, and Schryer [1978]); in particular, values are provided for all of the computing systems on which the programs were tested.
MINPACK-1 is fully supported. Comments, questions, and reports of poor or incorrect performance of the MINPACK-1 programs should be directed to

Burton S. Garbow
Applied Mathematics Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439
Phone: (312) 972-7184

Of particular interest would be reports of performance of the MINPACK-1 package on machines not covered in the testing.

The MINPACK-1 package consists of the programs, their documentation, and the testing aids. The package comprises approximately 28,000 card images and is transmitted on magnetic tape. The tape is available from the following two sources.

National Energy Software Center
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439
Phone: (312) 972-7250

IMSL
Sixth Floor-NBC Building
7500 Bellaire Blvd.
Houston, TX 77036
Phone: (713) 772-1927

The package includes both single and double precision versions of the programs, and for those programs normally called by the user machine-readable documentation is provided in both single and double precision forms. An implementation guide (Garbow, Hillstrom, and Moré [1980]) is also included with the tape.
Acknowledgments

The MINPACK-1 testing was conducted by the following individuals; their assistance and suggestions were invaluable to the project.

Poul Arendal, The World Bank (Burroughs)
Richard Bartels, University of Waterloo (Honeywell)
Mary Ann Berg, University of Illinois at Urbana-Champaign (CDC)
W. Robert Boland, Air Force Weapons Laboratory (CDC)
Roger Crane, RCA Laboratories (IBM)
Dona Crawford, Sandia Laboratories, Livermore (CDC)
John Dennis, Rice University (Itel)
Jeremy DuCroz, Numerical Algorithms Group Ltd. (ICL)
Jay Fleisher, The University of Wisconsin (Univac)
Fred Fritsch, Lawrence Livermore Laboratory (CDC, Cray)
Patrick Gaffney, Union Carbide Corporation (CDC, Cray, DEC, IBM)
David Gay, Massachusetts Institute of Technology (IBM)
Kathie Hiebert, Sandia Laboratories, Albuquerque (CDC)
L. W. Lucas, Naval Weapons Center (Univac)
Dan O'Reilly, Data Resources, Inc. (Burroughs)
Gerald Ruderman, Management Decision Systems, Inc. (Prime)
Nora Sabelli, University of Illinois at Chicago Circle (IBM)
Susan Sherry, Federal Reserve Board (IBM)
Danny Sorensen, University of Kentucky (IBM)
Jesse Wang, Argonne National Laboratory (IBM)

Many others have contributed to the package in various ways; in particular, we acknowledge Beverly Arnoldy, Jim Boyle, Ken Brown, Wayne Cowell, Jim Cody, Tom Coleman, Bill Davidon, Jack Dongarra, Dudley Goetschel, Jerry Kreuser, James Lyness, Mike Minkoff, Larry Nazareth, Mike Powell, Rich Raffenetti, Bob Schnabel, Greg Shubert, Brian Smith, David Thuente, and Richard Wilk.

Special thanks go to Jim Pool, the originator of the project, and to Paul Messina, the head of the Applied Mathematical Sciences section of the Applied Mathematics Division at Argonne. Finally, thanks to Judy Beumer for her usual outstanding job of typing this report.
CHAPTER 1
Introduction to MINPACK-1

The purpose of this chapter is to provide an overview of the algorithms and software in MINPACK-1. Most users need only be acquainted with the first six sections of this chapter; the remaining two sections describe lower-level software called from the main programs.

1.1 Systems of Nonlinear Equations

If \(n \) functions \(f_1, f_2, \ldots, f_n \) of the \(n \) variables \(x_1, x_2, \ldots, x_n \) are specified, then MINPACK-1 subroutines can be used to find values for \(x_1, x_2, \ldots, x_n \) that solve the system of nonlinear equations

\[
f_i(x_1, x_2, \ldots, x_n) = 0, \quad 1 \leq i \leq n.
\]

To solve this system we have implemented a modification of Powell's hybrid algorithm. There are two variants of this algorithm. The first variant only requires that the user calculate the functions \(f_i \), while the second variant requires that the user calculate both the functions \(f_i \) and the \(n \) by \(n \) Jacobian matrix

\[
\begin{pmatrix}
\frac{\partial f_i(x)}{\partial x_j}
\end{pmatrix}, \quad 1 \leq i \leq n, \quad 1 \leq j \leq n.
\]

1.2 Nonlinear Least Squares Problems

If \(m \) functions \(f_1, f_2, \ldots, f_m \) of the \(n \) variables \(x_1, x_2, \ldots, x_n \) are specified with \(m \geq n \), then MINPACK-1 subroutines can be used to find values for \(x_1, x_2, \ldots, x_n \) that solve the nonlinear least squares problem

\[
\min_{x \in \mathbb{R}^n} \left\{ \sum_{i=1}^{m} f_i(x)^2 \right\}.
\]

To solve this problem we have implemented a modification of the Levenberg-Marquardt algorithm. There are three variants of this algorithm. The first
variant only requires that the user calculate the functions f_i, while the second variant requires that the user calculate both the functions f_i and the m by n Jacobian matrix

$$\left(\frac{\partial f_i(x)}{\partial x_j} \right), \quad 1 \leq i \leq m, \quad 1 \leq j \leq n. $$

The third variant also requires that the user calculate the functions and the Jacobian matrix, but the latter only one row at a time. This organization only requires the storage of an n by n matrix (rather than m by n), and is thus attractive for nonlinear least squares problems with a large number of functions and a moderate number of variables.

1.3 Derivative Checking

The main advantage of providing the Jacobian matrix is increased reliability; for example, the algorithm is then much less sensitive to functions subject to errors. However, providing the Jacobian matrix is an error-prone task. To help identify errors, MINPACK-1 also contains a subroutine CHKDER that checks the Jacobian matrix for consistency with the function values.

1.4 Algorithmic Paths: Core Subroutines and Easy-to-Use Drivers

There are five general algorithmic paths in MINPACK-1. Each path includes a core subroutine and an easy-to-use driver with a simplified calling sequence made possible by assuming default settings for certain parameters and by returning a limited amount of information; many applications do not require full flexibility and in these cases easy-to-use drivers can be invoked. On the other hand, the core subroutines enable, for example, scaling of the variables and printing of intermediate results at specified iterations.

1.5 MINPACK-1 Subroutines: Systems of Nonlinear Equations

The MINPACK-1 subroutines for the numerical solution of systems of nonlinear equations are HYBRDI, HYBRD, HYBRJ1, and HYBRJ. These subroutines provide alternative ways to solve the system of nonlinear equations

$$f_i(x_1, x_2, \ldots, x_n) = 0, \quad 1 \leq i \leq n$$
by a modification of Powell's hybrid algorithm. The principal requirements of the subroutines are as follows (see also Figure 1).

HYBRD1, HYBRD
The user must provide a subroutine to calculate the functions f_1, f_2, \ldots, f_n. The Jacobian matrix is then calculated by a forward-difference approximation or by an update formula of Broyden. HYBRD1 is the easy-to-use driver for the core subroutine HYBRD.

HYBRJ1, HYBRJ
The user must provide a subroutine to calculate the functions f_1, f_2, \ldots, f_n and the Jacobian matrix

$$
\left(\frac{\partial f_i(x)}{\partial x_j} \right), \quad 1 \leq i \leq n, \quad 1 \leq j \leq n.
$$

(Subroutine CHKDER can be used to check the Jacobian matrix for consistency with the function values.) HYBRJ1 is the easy-to-use driver for the core subroutine HYBRJ.

Figure 1
Decision Tree for Systems of Nonlinear Equations
1.6 MINPACK-1 Subroutines: Nonlinear Least Squares Problems

The MINPACK-1 subroutines for the numerical solution of nonlinear least squares problems are LMDIF1, LMDIF, LMDER1, LMDER, LMSTR1, and LMSTR. These subroutines provide alternative ways to solve the nonlinear least squares problem

$$\min_{x \in \mathbb{R}^n} \left\{ \sum_{i=1}^{m} f_i(x)^2 \right\}$$

by a modification of the Levenberg-Marquardt algorithm. The principal requirements of the subroutines are as follows (see also Figure 2).

LMDIF1, LMDIF
The user must provide a subroutine to calculate the functions f_1, f_2, \ldots, f_m. The Jacobian matrix is then calculated by a forward-difference approximation. LMDIF1 is the easy-to-use driver for the core subroutine LMDIF.

LMDER1, LMDER
The user must provide a subroutine to calculate the functions f_1, f_2, \ldots, f_m and the Jacobian matrix

$$\left(\frac{\partial f_i(x)}{\partial x_j} \right), \quad 1 \leq i \leq m, \quad 1 \leq j \leq n.$$

(Subroutine CHKDER can be used to check the Jacobian matrix for consistency with the function values.) LMDER1 is the easy-to-use driver for the core subroutine LMDER.

LMSTR1, LMSTR
The user must provide a subroutine to calculate the functions f_1, f_2, \ldots, f_m and the rows of the Jacobian matrix

$$\left(\frac{\partial f_i(x)}{\partial x_j} \right), \quad 1 \leq i \leq m, \quad i \leq j \leq n,$$

one row per call. (Subroutine CHKDER can be used to check the row of the Jacobian matrix for consistency with the corresponding function value.) LMSTR1 is the easy-to-use driver for the core subroutine LMSTR.
1.7 Machine-Dependent Constants

There are three machine-dependent constants that have to be set before the single or double precision version of MINPACK-1 can be used; for most machines the correct values of these constants are encoded into DATA statements in functions SPMPAR (single precision) and DPMPAR (double precision). These constants are:

\[\beta^{1-k}, \] the machine precision,
\[\beta^{e_{min}-1}, \] the smallest magnitude,
\[(1 - \beta^{-k}) \beta^{e_{max}}, \] the largest magnitude,

where \(k \) is the number of base \(\beta \) digits on the machine, \(e_{min} \) is the smallest machine exponent, and \(e_{max} \) is the largest machine exponent.

The most critical of the constants is the machine precision \(\epsilon_M \), since the MINPACK-1 subroutines treat two numbers \(a \) and \(b \) as equal if they satisfy

\[|b-a| \leq \epsilon_M|a|, \]
and the above test forms the basis for deciding that no further improvement is possible with the algorithm.

1.8 MINPACK-1 Internal Subprograms

Most users of MINPACK-1 need only be acquainted with the core subroutines and easy-to-use drivers described in the previous sections. Some users, however, may wish to experiment by modifying an algorithmic path to improve the performance of the algorithm on a particular application. A modification to an algorithmic path can often be achieved by modifying or replacing one of the internal subprograms. Additionally, the internal subprograms may be useful independent of the MINPACK-1 algorithmic paths in which they are employed.

For these reasons brief descriptions of the MINPACK-1 internal subprograms are included below; more complete descriptions can be found in the prologue comments in the program listings of Chapter 5.

DOGLEG

Given the QR factorization of an m by n matrix A, an n by n nonsingular diagonal matrix D, an m-vector b, and a positive number Δ, this subroutine determines the convex combination of the Gauss-Newton and scaled gradient directions that solves the problem

\[
\min \{ \| Ax - b \| : \| Dx \| \leq \Delta \}.
\]

ENORM

This function computes the Euclidean norm of a vector x.

FDJAC1

This subroutine computes a forward-difference approximation to the Jacobian matrix associated with n functions in n variables. It includes a banded Jacobian option.

FDJAC2

This subroutine computes a forward-difference approximation to the Jacobian matrix associated with m functions in n variables.
LMPAR
Given the QR factorization of an \(m \) by \(n \) matrix \(A \), an \(n \) by \(n \) nonsingular diagonal matrix \(D \), an \(m \)-vector \(b \), and a positive number \(\Delta \), this subroutine is used to solve the problem

\[
\min \{ \|Ax-b\| : \|Dx\| \leq \Delta \}.
\]

QFORM
Given the QR factorization of a rectangular matrix, this subroutine accumulates the orthogonal matrix \(Q \) from its factored form.

QRFAC
This subroutine uses Householder transformations with optional column pivoting to compute a QR factorization of an arbitrary rectangular matrix.

QRSOLV
Given the QR factorization of an \(m \) by \(n \) matrix \(A \), an \(n \) by \(n \) diagonal matrix \(D \), and an \(m \)-vector \(b \), this subroutine solves the linear least squares problem

\[
\begin{pmatrix}
A \\
D
\end{pmatrix}x \sim \begin{pmatrix}
b \\
0
\end{pmatrix}.
\]

RWUPDT
This subroutine is used in updating the upper triangular part of the QR decomposition of a matrix \(A \) after a row is added to \(A \).

R1MPYQ
This subroutine multiplies a matrix by an orthogonal matrix given as a product of Givens rotations.

R1UPDT
This subroutine is used in updating the lower triangular part of the LQ decomposition of a matrix \(A \) after a rank-1 matrix is added to \(A \).
CHAPTER 2
Algorithmic Details

The purpose of this chapter is to provide information about the algorithms and to point out some of the ways in which this information can be used to improve their performance. The first two sections are essential for the rest of the chapter since they provide the necessary background, but the other sections are independent of each other.

2.1 Mathematical Background

To describe the algorithms for the solution of systems of nonlinear equations and nonlinear least squares problems, it is necessary to introduce some notation.

Let \mathbb{R}^n represent the n-dimensional Euclidean space of real n-vectors

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix},$$

and $\|x\|$ the Euclidean norm of x,

$$\|x\| = \left(\sum_{j=1}^{n} x_j^2 \right)^{1/2}.$$

A function F with domain in \mathbb{R}^n and range in \mathbb{R}^m is denoted by $F: \mathbb{R}^n \rightarrow \mathbb{R}^m$. Such a function can be expressed as

$$F(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_m(x) \end{pmatrix},$$

where the component function $f_i: \mathbb{R}^n \rightarrow \mathbb{R}$ is sometimes called the i-th residual of F. The terminology derives from the fact that a common problem is to fit a model $g(t,x)$ to data y, in which case the f_i are of the form
\[f_i(x) = y_i - g(t_i, x), \]

where \(y_i \) is measured at \(t_i \) and \(x \) is the set of fit parameters.

In this notation a system of nonlinear equations is specified by a function \(F: \mathbb{R}^n \rightarrow \mathbb{R}^n \), and a solution vector \(x^* \) in \(\mathbb{R}^n \) is such that

\[F(x^*) = 0. \]

Similarly, a nonlinear least squares problem is specified by a function \(F: \mathbb{R}^n \rightarrow \mathbb{R}^m \) with \(m \geq n \), and a solution vector \(x^* \) in \(\mathbb{R}^n \) is such that

\[\|F(x^*)\| \leq \|F(x)\| \quad \text{for} \quad x \in N(x^*), \]

where \(N(x^*) \) is a neighborhood of \(x^* \). If \(N(x^*) \) is the entire domain of definition of the function, then \(x^* \) is a global solution; otherwise, \(x^* \) is a local solution.

Some of the MINPACK-1 algorithms require the specification of the Jacobian matrix of the mapping \(F: \mathbb{R}^n \rightarrow \mathbb{R}^m \); that is, the \(m \) by \(n \) matrix \(F'(x) \) whose \((i,j)\) entry is

\[\frac{\partial f_i(x)}{\partial x_j}. \]

A related concept is the gradient of a function \(f: \mathbb{R}^n \rightarrow \mathbb{R} \), which is the mapping \(\nabla f: \mathbb{R}^n \rightarrow \mathbb{R}^n \) defined by

\[\nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{pmatrix}. \]

Note that the \(i \)-th row of the Jacobian matrix \(F'(x) \) is the gradient \(\nabla f_i(x) \) of the \(i \)-th residual.
It is well-known that if x^* is a solution of the nonlinear least squares problem, then x^* solves the system of nonlinear equations

$$
\sum_{i=1}^{m} f_i(x) \nabla f_i(x) = 0 .
$$

In terms of the Jacobian matrix this implies that

$$
F'(x^*)^T F(x^*) = 0 ,
$$

and shows that at the solution the vector of residuals is orthogonal to the columns of the Jacobian matrix. This orthogonality condition is also satisfied at maximizers and saddle points, but algorithms usually take precautions to avoid these critical points.

2.2 Overview of the Algorithms

Consider a mapping $F: \mathbb{R}^n \rightarrow \mathbb{R}^m$, where $m = n$ for systems of nonlinear equations and $m \geq n$ for nonlinear least squares problems. The MINPACK-1 algorithms in these two problem areas seek a solution x^* of the problem

(1) \hspace{1cm} \min \{ \|F(x)\| : x \in \mathbb{R}^n \} .

In particular, if $m = n$ it is expected that $F(x^*) = 0$.

Our initial description of the algorithms will be at the macroscopic level where the techniques used in each problem area are similar.

With each algorithm the user provides an initial approximation $x = x_0$ to the solution of the problem. The algorithm then determines a correction p to x that produces a sufficient decrease in the residuals of F at the new point $x + p$; it then sets

$$
x_+ = x + p
$$

and begins a new iteration with x_+ replacing x.

A sufficient decrease in the residuals implies, in particular, that

$$
\|F(x+p)\| < \|F(x)\| ,
$$
and thus the algorithms guarantee that

$$\|F(x_+)\| < \|F(x)\|.$$

The correction p depends upon a diagonal scaling matrix D, a step bound Δ, and an approximation J to the Jacobian matrix of F at x. Users of the core subroutines can specify initial values D_0 and Δ_0; in the easy-to-use drivers D_0 and Δ_0 are set internally. If the user is providing the Jacobian matrix, then $J_0 = F'(x_0)$; otherwise the algorithm sets J_0 to a forward difference approximation to $F'(x_0)$.

To compute p, the algorithm solves (approximately) the problem

$$(2) \quad \min\{\|f+Jp\|: \|Dp\| \leq \Delta\},$$

where f is the m-vector of residuals of F at x. If the solution of this problem does not provide a suitable correction, then Δ is decreased and, if appropriate, J is updated. A new problem is now solved, and this process is repeated (usually only once or twice) until a p is obtained at which there is sufficient decrease in the residuals, and then x is replaced by $x+p$. Before the start of the next iteration, D, Δ, and J are also replaced.

The motivation for using (2) to obtain the correction p is that for appropriate choices of J and Δ, the solution of (2) is an approximate solution of

$$\min\{\|F(x+p)\|: \|Dp\| \leq \Delta\}.$$

It follows that if there is a solution x^* such that

$$(3) \quad \|D(x-x^*)\| \leq \Delta,$$

then $x+p$ is close to x^*. If this is not the case, then at least $x+p$ is a better approximation to x^* than x. Under reasonable conditions, it can be shown that (3) eventually holds.

The algorithms for systems of nonlinear equations and for nonlinear least squares problems differ, for example, in the manner in which the correction p
is obtained as an approximate solution of (2). The nonlinear equations algorithm obtains a p that minimizes $\|f+Jp\|$ in a two-dimensional subspace of the ellipsoid $\{p: \|Dp\| \leq \Delta\}$. The nonlinear least squares algorithm obtains a p that is the exact solution of (2) with a small (10%) perturbation of Δ. Other differences in the algorithms include convergence criteria (Section 2.3) and the manner in which J is computed (Section 2.4).

It is appropriate to close this overview of the algorithms by discussing two of their limitations. First, the algorithms are limited by the precision of the computations. Although the algorithms are globally convergent under reasonable conditions, the convergence proofs are only valid in exact arithmetic and the algorithms may fail in finite precision due to roundoff. This implies that the algorithms tend to perform better in higher precision. It also implies that the calculation of the function and the Jacobian matrix should be as accurate as possible and that improved performance results when the user can provide the Jacobian analytically.

Second, the algorithms are only designed to find local solutions. To illustrate this point, consider

$$F(x) = x^3 - 3x + 18.$$

In this case, problem (1) has the global solution $x^* = -3$ with $F(x^*) = 0$ and the local solution $x^* = 1$ with $F(x^*) = 16$; depending on the starting point, the algorithms may converge either to the global solution or to the local solution.

2.3 Convergence Criteria

The convergence test in the MINPACK-1 algorithms for systems of nonlinear equations is based on an estimate of the distance between the current approximation x and an actual solution x^* of the problem. If D is the current scaling matrix, then this convergence test $(X$-convergence) attempts to guarantee that

$$\|D(x-x^*)\| \leq XTOL\|Dx^*\|,$$

where $XTOL$ is a user-supplied tolerance.
There are three convergence tests in the MINPACK-1 algorithms for nonlinear least squares problems. One test is again for X-convergence, but the main convergence test is based on an estimate of the distance between the Euclidean norm $\|F(x)\|$ of the residuals at the current approximation x and the optimal value $\|F(x^*)\|$ at an actual solution x^* of the problem. This convergence test (F-convergence) attempts to guarantee that

$$\|F(x)\| \leq (1 + FTOL)\|F(x^*)\|,$$

where FTOL is a second user-supplied tolerance.

The third convergence test for the nonlinear least squares problem (G-convergence) guarantees that

$$\max\left\{ \frac{|a_i^T f|}{\|a_i\|_{L_2} \|f\|} : 1 \leq i \leq n \right\} \leq GTOL,$$

where a_1, a_2, \ldots, a_n are the columns of the current approximation to the Jacobian matrix, f is the vector of residuals, and GTOL is a third user-supplied tolerance.

Note that individual specification of the above three tolerances for the nonlinear least squares problem requires direct user call of the appropriate core subroutine. The easy-to-use driver only accepts the single value TOL. It then internally sets FTOL = XTOL = TOL and GTOL = 0.

The X-convergence condition (1) is a relative error test; it thus fails when $x^* = 0$ unless $x = 0$ also. Also note that if (1) is satisfied with XTOL $= 10^{-k}$, then the larger components of Dx have k significant digits, but smaller components may not be as accurate. For example, if D is the identity matrix, XTOL $= 0.001$, and

$$x^* = (2.0, 0.003),$$

then

$$x = (2.001, 0.002)$$

satisfies (1), yet the second component of x has no significant digits. This may or may not be important. However, note that if instead
\[D = \text{diag}(1,1000), \]
then (1) is not satisfied even for XTOL = 0.1. These scaling considerations can make it important to choose D carefully. See Section 2.5 for more information on scaling.

Since \(x^* \) is unknown, the actual criterion for X-convergence cannot be based on (1); instead it depends on the step bound \(\Delta \). That is, the actual convergence test is

\[\Delta \leq \text{XTOL}\|Dx\|. \]

The F-convergence condition (2) is a relative error test; it thus fails when \(F(x^*) = 0 \) unless \(F(x) = 0 \) also. It is for this reason that F-convergence is not tested for systems of nonlinear equations where \(F(x^*) = 0 \) is the expected result. Also note that if (2) is satisfied with \(\text{FTOL} = 10^{-k} \), then \(\|F(x)\| \) has \(k \) significant digits, but \(x \) may not be as accurate. For example, if \(\text{FTOL} = 10^{-6} \) and

\[F(x) = \begin{pmatrix} x - 1 \\ 1 \end{pmatrix}, \]
then \(x^* = 1, \|F(x^*)\| = 1 \), and if \(x = 1.001 \) then (2) is satisfied with \(\text{FTOL} = 10^{-6} \), but (1) is only satisfied with \(\text{XTOL} = 10^{-3} \).

In many least squares problems, if \(\text{FTOL} = (\text{XTOL})^2 \) then X-convergence implies F-convergence. This result, however, does not hold if \(\|F(x^*)\| \) is very small. For example, if

\[F(x) = \begin{pmatrix} x - 1 \\ 0.0001 \end{pmatrix}, \]
then \(x^* = 1 \) and \(\|F(x^*)\| = 0.0001 \), but if \(x = 1.001 \) then (1) is satisfied with \(\text{XTOL} = 10^{-3} \) and yet

\[\|F(x)\| \geq 10\|F(x^*)\|. \]

Since \(\|F(x^*)\| \) is unknown, the actual criterion for F-convergence cannot be literally (2); instead it is based on estimates of the terms in (2). If f
and f_+ are the vectors of residuals at the current solution approximation x and at $x+p$, respectively, then the (relative) actual reduction is

$$\text{ACTRED} = \frac{\|f\| - \|f_+\|}{\|f\|},$$

while the (relative) predicted reduction is

$$\text{PRERED} = \frac{\|f\| - \|f+Jp\|}{\|f\|}.$$

The F-convergence test then requires that

$$\text{PRERED} \leq \text{FTOL}$$
$$|\text{ACTRED}| \leq \text{FTOL}$$
$$\text{ACTRED} \leq 2 \cdot \text{PRERED}$$

all hold.

The X-convergence and F-convergence tests are quite reliable, but it is important to note that their validity depends critically on the correctness of the Jacobian. If the user is providing the Jacobian, he may make an error. (CHKDER can be used to check the Jacobian.) If the algorithm is estimating the Jacobian matrix, then the approximation may be incorrect if, for example, the function is subject to large errors and EPSFCN is chosen poorly. (For more details see Section 2.4.) In either case the algorithm usually terminates suspiciously near the starting point; recommended action if this occurs is to rerun the problem from a different starting point. If the algorithm also terminates near the new starting point, then it is very likely that the Jacobian is being determined incorrectly.

The X-convergence and F-convergence tests may also fail if the tolerances are too large. In general, XTOL and FTOL should be smaller than 10^{-5}; recommended values for these tolerances are on the order of the square root of the machine precision. As described in Section 1.7, the single precision value of the machine precision can be obtained from the MINPACK-1 function SPMPAR and the double precision value from DPMPAR. Note, however, that on some machines the square root of machine precision is larger than 10^{-5}.
The G-convergence test (3) measures the angle between the residual vector and the columns of the Jacobian matrix and thus can be expected to fail if either $F(x^*) = 0$ or any column of $F'(x^*)$ is zero. Also note that there is no clear relationship between G-convergence and either X-convergence or F-convergence. Furthermore, the G-convergence test detects other critical points, namely maximizers and saddle points; therefore, termination with G-convergence should be examined carefully.

An important property of the tests described above is that they are scale invariant. (See Section 2.5 for more details on scaling.) Scale invariance is a feature not shared by many other convergence tests. For example, the convergence test

$$
\|f\| \leq \text{AFTOL} ,
$$

where AFTOL is a user-supplied tolerance, is not scale invariant, and this makes it difficult to choose an appropriate AFTOL. As an illustration of the difficulty with this test, consider the function

$$
F(x) = (3x - 10)\exp(10x) .
$$

On a computer with 15 decimal digits

$$
|F(x^*)| \geq 1 ,
$$

where x^* is the closest machine-representable number to $10/3$, and thus a suitable AFTOL is not apparent.

If the user, however, wants to use (4) as a termination test, then he can do this by setting NPRINT positive in the call to the respective core subroutine. (See Section 2.9 for more information on NPRINT.) This provides him periodic opportunity, through subroutine FCN with IFLAG = 0, to affect the iteration sequence, and in this instance he might insert the following program segment into FCN.
IF (IFLAGE .NE. 0) GO TO 10
FNORM = ENORM(LFVEC,FVEC)
IF (FNORM .LE. AFTOL) IFLAG = -1
RETURN
10 CONTINUE

In this program segment it is assumed that LFVEC = N for systems of nonlinear
equations and LFVEC = M for nonlinear least squares problems. It is also
assumed that the MINPACK-1 function ENORM is declared to the precision of the
computation.

2.4 Approximations to the Jacobian Matrix

If the user does not provide the Jacobian matrix, then the MINPACK-1
algorithms compute an approximation J. In the algorithms for nonlinear least
squares problems, J is always determined by a forward difference approxima-
tion, while in the algorithms for systems of nonlinear equations, J is
sometimes determined by a forward-difference approximation but more often by
an update formula of Broyden. It is important to note that the update formula
is also used in the algorithms for systems of nonlinear equations where the
user is providing the Jacobian matrix, since the updating tends to improve the
efficiency of the algorithms.

The forward-difference approximation to the j-th column of the Jacobian
matrix can be written

\[F(x + h \cdot e_j) - F(x) \]
\[h_j \]

(1)

where \(e_j \) is the j-th column of the identity matrix and \(h_j \) is the difference
parameter. The choice of \(h_j \) depends on the precision of the function
evaluations, which is specified in the MINPACK-1 algorithms by the parameter
EPSFCN. To be specific,

\[h_j = (\text{EPSFCN})^{1/5} |x_j| \]

unless \(x_j = 0 \), in which case
\[h_j = (\text{EPSFCN})^{\frac{1}{2}}. \]

In the easy-to-use drivers EPSFCN is set internally to the machine precision (see Section 1.7), since these subroutines assume that the functions can be evaluated accurately. In the core subroutines EPSFCN is a user-supplied parameter; if there are errors in the evaluations of the functions, then EPSFCN may need to be much larger than the machine precision. For example, if the specification of the function requires the numerical evaluation of an integral, then EPSFCN should probably be on the order of the tolerance in the integration routine.

One advantage of approximation (1) is that it is scale invariant. (See Section 2.5 for more details on scaling.) A disadvantage of (1) is that it assumes EPSFCN the same for each variable, for each component function of \(F \), and for each vector \(x \). These assumptions may make it difficult to determine a suitable value for EPSFCN. The user who is uncertain of an appropriate value of EPSFCN can run the algorithm with two or three values of EPSFCN and retain the value that gives the best results. In general, overestimates are better than underestimates.

The update formula of Broyden depends on the current approximation \(x \), the correction \(p \), and \(J \). Since

\[
F(x+p) - F(x) = \left[\int_0^1 F'(x+\theta p) d\theta \right] p,
\]

it is natural to ask that the approximation \(J_+ \) at \(x+p \) satisfy the equation

\[
J_+ p = F(x+p) - F(x),
\]

and among the possible choices be the one closest to \(J \). To define an appropriate measure of distance, let \(D \) be the current diagonal scaling matrix and define the matrix norm

\[
\| A \|_D = \left(\frac{\sum_{j=1}^n \left(\frac{\| a_j \|_2}{d_j} \right)^2}{n} \right)^{\frac{1}{2}},
\]

where \(a_1, a_2, \ldots, a_n \) are the columns of \(A \). It is now easy to verify that the solution of the problem
\[
\min \{ \| \tilde{J} - J \|_D : \tilde{J}p = F(x+p) - F(x) \},
\]

is given by
\[
J_+ = J + \frac{(F(x+p) - F(x) - Jp)(D_p^T D_p)^T}{\| D_p \|^2}.
\]

There are many properties of this formula that justify its use in algorithms for systems of nonlinear equations, but a discussion of these properties is beyond the scope of this work.

2.5 Scaling

Scale invariance is a desirable feature of an optimization algorithm. Algorithms for systems of nonlinear equations and nonlinear least squares problems are scale invariant if, given problems related by the change of scale

\[
\tilde{F}(x) = \alpha F(D_V x), \\
\tilde{x}_o = D_V^{-1} x_o,
\]

where \(\alpha \) is a positive scalar and \(D_V \) is a diagonal matrix with positive entries, the approximations \(x \) and \(\tilde{x} \) generated by the algorithms satisfy

\[
\tilde{x} = D_V^{-1} x.
\]

Scale invariance is a natural requirement that can have a significant effect on the implementation and performance of an algorithm. To the user scale invariance means, in particular, that he can work with either problem and obtain equivalent results.

The core subroutines in MINPACK-1 are scale invariant provided that the initial choice of the scaling matrix satisfies

\[
(1) \quad \tilde{D}_o = \alpha D_V D_o,
\]

where \(D_o \) and \(\tilde{D}_o \) are the initial scaling matrices of the respective problems defined by \(F \) and \(x_o \) and by \(\tilde{F} \) and \(\tilde{x}_o \). If the user of the core subroutines has
requested internal scaling (MODE = 1), then the internal scaling matrix is set to

$$\text{diag}(\|a_1\|, \|a_2\|, \ldots, \|a_n\|),$$

where a_i is the i-th column of the initial Jacobian approximation, and (1) holds. If the user has stipulated external scaling (MODE = 2), then the initial scaling matrix is specified by the contents of the array DIAG, and scale invariance is only achieved if the user's choice satisfies (1).

There are certain cases in which scale invariance may be lost, as when the Jacobian matrix at the starting point has a column of zeroes and internal scaling is requested. In this case D_0 would have a zero element and be singular, but this possibility is not catered to in the current implementation. Instead, the zero element is arbitrarily set to 1, preserving nonsingularity but giving up scale invariance. In practice, however, these cases seldom arise and scale invariance is usually maintained.

Our experience is that internal scaling is generally preferable for nonlinear least squares problems and external scaling for systems of nonlinear equations. This experience is reflected in the settings built into the easy-to-use drivers; MODE = 1 is specified in the drivers for nonlinear least squares problems and MODE = 2 for systems of nonlinear equations. In the latter case, D_0 is set to the identity matrix, a choice that generally works out well in practice; if this choice is not appropriate, recourse to the core subroutine would be indicated.

It is important to note that scale invariance does not relieve the user of choosing an appropriate formulation of the problem or a reasonable starting point. In particular, note that an appropriate formulation may involve a scaling of the equations or a nonlinear transformation of the variables and that the performance of the MINPACK-1 algorithms can be affected by these transformations. For example, the algorithm for systems of nonlinear equations usually generates different approximations for problems defined by functions \tilde{F} and F, where

$$\tilde{F}(x) = D_E F(x),$$

$$\tilde{x}_0 = x_0,$$
and D_E is a diagonal matrix with positive entries. The main reason for this is that the algorithm usually decides that x_* is a better approximation than x if

$$
\|F(x_*)\| < \|F(x)\|,
$$

and it is entirely possible that

$$
\|\tilde{F}(x_*)\| > \|\tilde{F}(x)\|.
$$

The user should thus scale his equations (i.e., choose D_E) so that the expected errors in the residuals are of about the same order of magnitude.

2.6 Subroutine FCN: Calculation of the Function and Jacobian Matrix

The MINPACK-1 algorithms require that the user provide a subroutine with name of his choosing, say FCN, to calculate the residuals of the function $F: \mathbb{R}^n \to \mathbb{R}^m$, where $m = n$ for systems of nonlinear equations and $m \geq n$ for nonlinear least squares problems. Some of the algorithms also require that FCN calculate the Jacobian matrix of the mapping F.

It is important that the calculation of the function and Jacobian matrix be as accurate as possible. It is also important that the coding of FCN be as efficient as possible, since the timing of the algorithm is strongly influenced by the time spent in FCN. In particular, when the residuals f_i have common subexpressions it is usually worthwhile to organize the computation so that these subexpressions need be evaluated only once. For example, if the residuals are of the form

$$
f_i(x) = g(x) + h_i(x), \quad 1 \leq i \leq m
$$

with $g(x)$ common to all of them, then the coding of FCN is best expressed in the following form.

$$
\begin{align*}
\tau &= g(x) \\
\text{For } i = 1, 2, \ldots, m \\
f_i(x) &= \tau + h_i(x).
\end{align*}
$$

As another example, assume that the residuals are of the form
\[f_i(x) = \sum_{j=1}^{n} \left(\alpha_{ij} \cos(x_j) + \beta_{ij} \sin(x_j) \right), \]

where the \(\alpha_{ij} \) and \(\beta_{ij} \) are given constants. The following program segment evaluates the \(f_i \) efficiently.

For \(i = 1,2,\ldots,m \)

\[
f_i(x) = 0
\]

For \(j = 1,2,\ldots,n \)

\[
\gamma = \cos(x_j) \\
\sigma = \sin(x_j)
\]

For \(i = 1,2,\ldots,m \)

\[
f_i(x) = f_i(x) + \gamma \alpha_{ij} + \sigma \beta_{ij}.
\]

If the user is providing the Jacobian matrix of the mapping \(F \), then it is important that its calculation also be as efficient as possible. In particular, when the elements of the Jacobian matrix have common subexpressions, it is usually worthwhile to organize the computation so that these subexpressions need be evaluated only once. For example, if

\[
f_i(x) = g(x) + h_i(x), \quad 1 \leq i \leq m,
\]

then the rows of the Jacobian matrix are

\[
\nabla f_i(x) = \nabla g(x) + \nabla h_i(x), \quad 1 \leq i \leq m,
\]

and the subexpression \(\nabla g(x) \) is thus common to all the rows of the Jacobian matrix.

As another example, assume that

\[
f_i(x) = \sum_{j=1}^{n} \left(\alpha_{ij} \cos(x_j) + \beta_{ij} \sin(x_j) \right),
\]

where the \(\alpha_{ij} \) and \(\beta_{ij} \) are given constants. In this case,

\[
\frac{\partial f_i(x)}{\partial x_j} = -\alpha_{ij} \sin(x_j) + \beta_{ij} \cos(x_j),
\]
and the following program segment evaluates the Jacobian matrix efficiently.

For \(j = 1, 2, \ldots, n \)
\[
\gamma = \cos(x_j) \\
\sigma = \sin(x_j)
\]
For \(i = 1, 2, \ldots, m \)
\[
\frac{\partial f_i(x)}{\partial x_j} = -\sigma_{ij} + \gamma \beta_{ij}.
\]

The previous example illustrates further the possibility of common sub-expressions between the function and the Jacobian matrix. For the nonlinear least squares algorithms advantage can be taken of this, because a call to FCN to evaluate the Jacobian matrix at \(x \) is always preceded by a call to evaluate the function at \(x \). This is not the case for the nonlinear equations algorithms.

To specifically illustrate this possibility of sharing information between function and Jacobian matrix, assume that

\[
f_i(x) = g(x)^2 + h_i(x), \quad 1 \leq i \leq m.
\]

Then the rows of the Jacobian matrix are

\[
\nabla f_i(x) = 2g(x)\nabla g(x) + \nabla h_i(x), \quad 1 \leq i \leq m,
\]

and the coding of FCN is best done as follows.

If FUNCTION EVALUATION then
\[
\tau = g(x)
\]
Save \(\tau \) in COMMON
For \(i = 1, 2, \ldots, m \)
\[
f_i(x) = \tau^2 + h_i(x)
\]
If JACOBIAN EVALUATION then
\[
v = \nabla g(x)
\]
For \(i = 1, 2, \ldots, m \)
\[
\nabla f_i(x) = 2\tau v + \nabla h_i(x).
\]
2.7 Constraints

Systems of nonlinear equations and nonlinear least squares problems often impose constraints on the solution. For example, on physical grounds it is sometimes necessary that the solution vector have positive components.

At present there are no algorithms in MINPACK that formally admit constraints, but in some cases they can be effectively achieved with ad hoc strategies. In this section we describe two strategies for restricting the solution approximations to a region \(D \) of \(\mathbb{R}^n \).

The user has control over the initial approximation \(x_0 \). It may happen, however, that \(x \) is in \(D \) but the algorithm computes a correction \(p \) such that \(x+p \) is not in \(D \). If this correction is permitted, the algorithm may never recover; that is, the approximations may now converge to an unacceptable solution outside of \(D \).

The simplest strategy to restrict the corrections is to impose a penalty on the function if the algorithm attempts to step outside of \(D \). For example, let \(\mu \) be any number such that

\[
|f_i(x_0)| \leq \mu, \quad 1 \leq i \leq m,
\]

and in FCN define

\[
f_i(x) = \mu, \quad 1 \leq i \leq m
\]

whenever \(x \) does not belong to \(D \). If FCN is coded in this way, a correction \(p \) for which \(x+p \) lies outside of \(D \) will not decrease the residuals and is therefore not acceptable. It follows that this penalty on FCN forces all the approximations \(x \) to lie in \(D \).

Note that this strategy restricts all the corrections, and as a consequence may lead to very slow convergence if the solution is near the boundary of \(D \). It usually suffices to only restrict the initial correction, and users of the core subroutines can do this in several ways.

Recall from Section 2.2 that the initial correction \(p_0 \) satisfies a bound of the form
\[\| D_0 p_0 \| \leq \Delta_o, \]

where \(D_0 \) is a diagonal scaling matrix and \(\Delta_o \) is a step bound. The contents of \(D_0 \) are governed by the parameter MODE. If \(\text{MODE} = 1 \) then \(D_0 \) is internally set, while if \(\text{MODE} = 2 \) then \(D_0 \) is specified by the user through the array DIAG. The step bound \(\Delta_o \) is determined from the parameter FACTOR. By definition

\[\Delta_o = \text{FACTOR} \cdot \| D_0 x_o \|, \]

unless \(x_o \) is the zero vector, in which case

\[\Delta_o = \text{FACTOR}. \]

It is clear from this definition that smaller values of FACTOR lead to smaller steps. For a sufficiently small value of FACTOR (usually 0.01 suffices), an improved point \(x_0 + p_0 \) will be found that belongs to \(D \).

Be aware that the step restriction is on \(D_0 p_0 \) and not on \(p_0 \) directly. A small element of \(D_0 \), which can be set by internal scaling when \(\text{MODE} = 1 \), may lead to a large component in the correction \(p_0 \). In many cases it is not necessary to control \(p_0 \) directly, but if this is desired then \(\text{MODE} = 2 \) must be used.

When \(\text{MODE} = 2 \), the contents of \(D_0 \) are specified by the user, and this allows direct control of \(p_0 \). If, for example, it is desired to restrict the components of \(p_0 \) to small relative corrections of the corresponding components of \(x_0 \) (assumed nonzero), then this can be done by setting

\[D_0 = \text{diag} \left(\frac{1}{|\xi_1|}, \frac{1}{|\xi_2|}, \ldots, \frac{1}{|\xi_n|} \right), \]

where \(\xi_i \) is the i-th component of \(x_o \), and by choosing FACTOR appropriately. To justify this choice, note that \(p_0 \) satisfies

\[\| D_0 p_0 \| \leq \Delta_o = \text{FACTOR} \cdot \| D_0 x_0 \|, \]

and that the choice of \(D_0 \) guarantees that
\[\|D_o x_o\| = n^{\frac{1}{2}}. \]

Thus, if \(\rho_i \) is the \(i \)-th component of \(p_o \), then

\[|\rho_i| \leq n^{\frac{1}{2}} \text{FACTOR} |\xi_i|, \]

which justifies the choice of \(D_o \).

2.8 Error Bounds

A problem of general interest is the determination of error bounds on the components of a solution vector. It is beyond the scope of this work to discuss this topic in depth, so the discussion below is limited to the computation of bounds on the sensitivity of the parameters, and of the covariance matrix. The discussion is in terms of the nonlinear least squares problem, but some of the results also apply to systems of nonlinear equations.

Let \(F: \mathbb{R}^n + \mathbb{R}^m \) define a nonlinear least squares problem \((m \geq n) \), and let \(x^* \) be a solution. Given \(\varepsilon > 0 \), the problem is to determine sensitivity (upper) bounds \(\sigma_1, \sigma_2, \ldots, \sigma_n \) such that, for each \(i \), the condition

\[|x_i - x_i^*| \leq \sigma_i, \quad \text{with } x_j = x_j^* \text{ for } j \neq i, \]

implies that

\[\|F(x)\| \leq (1 + \varepsilon)\|F(x^*)\|. \]

Of particular interest are values of \(\sigma_i \) which are large relative to \(|x_i| \), since then the residual norm \(\|F(x)\| \) is insensitive to changes in the \(i \)-th parameter and may therefore indicate a possible deficiency in the formulation of the problem.

A first order estimate of the sensitivity bounds \(\sigma_i \) shows that

\[\sigma_i = \varepsilon \left(\frac{\|F(x^*)\|}{\|F'(x^*) e_i\|} \right), \]

where \(F'(x^*) \) is the Jacobian matrix of \(F \) at \(x^* \) and \(e_i \) is the \(i \)-th column of the identity matrix. Note that if \(\|F'(x^*) e_i\| \) is small relative to \(\|F(x^*)\| \), then the residual norm is insensitive to changes in the \(i \)-th parameter.
If \(x \) is an approximation to the solution \(x^* \) and \(J \) is an approximation to \(F'(x^*) \), then the bounds (1) can usually be replaced by

\[
\sigma_i = \varepsilon^{1/2} \left(\frac{\|F(x)\|}{\|J e_i\|} \right).
\]

The MINPACK-1 nonlinear least squares programs (except LMDIF1) return enough information to compute the sensitivity bounds (2). On a normal exit, these programs return \(F(x) \) and part of the QR decomposition of \(J \); namely, an upper triangular matrix \(R \) and a permutation matrix \(P \) such that

\[
JP = QR
\]

for some matrix \(Q \) with orthogonal columns. The vector \(F(x) \) is returned in the array \(FVEC \) and the matrix \(R \) is returned in the upper triangular part of the array \(FJAC \). The permutation matrix \(P \) is defined by the contents of the integer array \(IPVT \); if

\[
IPVT = (p(1), p(2), \ldots, p(n)),
\]

then the \(j \)-th column of \(P \) is the \(p(j) \)-th column of the identity matrix.

The norms of the columns of the Jacobian matrix can be computed by noting that (3) implies that

\[
J e_{p(j)} = Q R e_j ,
\]

and hence,

\[
\|J e_{p(j)}\| = \|R e_j\| .
\]

The following loop uses this relationship to store \(\|J e_{p(j)}\| \) in the \(j \)-th position of an array \(FJNORM \); with this information it is then easy to compute the sensitivity bounds (2).

\[
\text{DO 10 J = 1, N}
\]
\[
L = IPVT(J)
\]
\[
FJNORM(L) = ENORM(J,FJAC(1,J))
\]
\[
10 \quad \text{CONTINUE}
\]
This loop assumes that ENORM and PJNORM have been declared to the precision of the computation.

In addition to sensitivity bounds for the individual parameters, it is sometimes desirable to determine a bound for the sensitivity of the residual norm to changes in some linear combination of the parameters. Given $\varepsilon > 0$ and a vector v with $\|v\| = 1$, the problem is to determine a bound σ such that

$$\|F(x^*+\sigma v)\| \leq (1 + \varepsilon)\|F(x^*)\|.$$

A first order estimate of σ is now

$$\sigma = \varepsilon \frac{\frac{\|F(x^*)\|}{\|F'(x^*) \cdot v\|}}{\|F'(x^*) \cdot v\|};$$

if $\|F'(x^*) \cdot v\|$ is small relative to $\|F(x^*)\|$, then σ is large and the residual norm is insensitive to changes in the linear combination of the parameters specified by v.

For example, if the level set

$$\{x: \|F(x)\| \leq (1 + \varepsilon)\|F(x^*)\|\}$$

is as in Figure 3, then the residual norm, although sensitive to changes in x_1 and x_2, is relatively insensitive to changes along $v = (1,1)$.

If the residual norm is relatively insensitive to changes in some linear combination of the parameters, then the Jacobian matrix at the solution is nearly rank-deficient, and in these cases it may be worthwhile to attempt to determine a set of linearly independent parameters. In some statistical applications, the covariance matrix

$$(J^T J)^{-1}$$

is used for this purpose.
Subroutine COVAR, which appears at the end of this section, will compute the covariance matrix. The computation of the covariance matrix from the QR factorization of J depends on the relationship

$$ (J^T J)^{-1} = P(R^T R)^{-1} p^T, $$

which is an easy consequence of (3). Subroutine COVAR overwrites R with the upper triangular part of $(R^T R)^{-1}$ and then computes the covariance matrix from (4).

Note that for proper execution of COVAR the QR factorization of J must have used column pivoting. This guarantees that for the resulting R

$$ |r_{kk}| > |r_{ij}|, \quad k \leq i \leq j, $$
thereby allowing a reasonable determination of the numerical rank of J. Most of the MINPACK-1 nonlinear least squares subroutines return the correct factorization; the QR factorization in LMSTR1 and LMSTR, however, satisfies

\[J P_1 = Q_1 R_1 \]

but \(R_1 \) does not usually satisfy (5). To obtain the correct factorization, note that the QR factorization with column pivoting of \(R_1 \) satisfies

\[R_1 P_2 = Q_2 R_2 \]

where \(R_2 \) satisfies (5), and therefore

\[J (P_1 P_2) = (Q_1 Q_2) R_2 \]

is the desired factorization of \(J \). The program segment below uses the MINPACK-1 subroutine QRFAC to compute \(R_2 \) from \(R_1 \).

```
DO 30 J = 1, N
   JP1 = J + 1
   IF (N .LT. JP1) GO TO 20
   DO 10 I = JP1, N
      FJAC(I,J) = ZERO
   10   CONTINUE
   20  CONTINUE
   30  CONTINUE
   CALL QRFAC(N,N,FJAC,LDFJAC,.TRUE.,IPVT2,N,W1,W2,W3)
DO 40 J = 1, N
   FJAC(J,J) = W1(J)
   L = IPVT2(J)
   IPVT2(J) = IPVT1(L)
40  CONTINUE
```

Note that QRFAC sets the contents of the array IPVT2 to define the permutation matrix \(P_2 \), and the final loop in the program segment overwrites IPVT2 to define the permutation matrix \(P_1 P_2 \).
SUBROUTINE COVAR(N,R,LDR,IPVT,TOL,WA)
INTEGER N,LDR
INTEGER IPVT(N)
DOUBLE PRECISION TOL
DOUBLE PRECISION R(LDR,N),WA(N)

SUBROUTINE COVAR

GIVEN AN M BY N MATRIX A, THE PROBLEM IS TO DETERMINE
THE COVARIANCE MATRIX CORRESPONDING TO A, DEFINED AS

T

INVERSE(A*A).

THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM
IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE
QR FACTORIZATION, WITH COLUMN PIVOTING, OF A. THAT IS, IF
A*P = Q*R, WHERE P IS A PERMUTATION MATRIX, Q HAS ORTHOGONAL
COLUMNS, AND R IS AN UPPER TRIANGULAR MATRIX WITH DIAGONAL
ELEMENTS OF NONINCREASING MAGNITUDE, THEN COVAR EXPECTS
THE FULL UPPER TRIANGLE OF R AND THE PERMUTATION MATRIX P.
THE COVARIANCE MATRIX IS THEN COMPUTED AS

T
P*INVERSE(R*R)*P

IF A IS NEARLY RANK DEFICIENT, IT MAY BE DESIRABLE TO COMPUTE
THE COVARIANCE MATRIX CORRESPONDING TO THE LINEARLY INDEPENDENT
COLUMNS OF A. TO DEFINE THE NUMERICAL RANK OF A, COVAR USES
THE TOLERANCE TOL. IF L IS THE LARGEST INTEGER SUCH THAT

ABS(R(L,L)) .GT. TOL*ABS(R(1,1)) ,

THEN COVAR COMPUTES THE COVARIANCE MATRIX CORRESPONDING TO
THE FIRST L COLUMNS OF R. FOR K GREATER THAN L, COLUMN
AND ROW IPVT(K) OF THE COVARIANCE MATRIX ARE SET TO ZERO.

THE SUBROUTINE STATEMENT IS

SUBROUTINE COVAR(N,R,LDR,IPVT,TOL,WA)

WHERE

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.
R IS AN M BY N ARRAY. ON INPUT THE FULL UPPER TRIANGLE MUST
CONTAIN THE FULL UPPER TRIANGLE OF THE MATRIX R. ON OUTPUT
R CONTAINS THE SQUARE SYMMETRIC COVARIANCE MATRIX.

LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.

IPVT IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH DEFINES THE
PERMUTATION MATRIX P SUCH THAT A*P = Q*R. COLUMN J OF P
IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

TOL IS A NONNEGATIVE INPUT VARIABLE USED TO DEFINE THE
NUMERICAL RANK OF A IN THE MANNER DESCRIBED ABOVE.
WA IS A WORK ARRAY OF LENGTH N.

SUBPROGRAMS CALLED
FORTRAN-SUPPLIED ... DABS

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. AUGUST 1980.
BURTON S. GARROW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER I,II,J,JJ,K,KM1,L
LOGICAL SING
DOUBLE PRECISION ONE,TEMP,TOLR,ZERO
DATA ONE,ZERO /1.0D0,0.0D0/

FORM THE INVERSE OF R IN THE FULL UPPER TRIANGLE OF R.

TOLR = TOL*DABS(R(1,1))
L = 0
DO 40 K = 1, N
 IF (DABS(R(K,K)) .LE. TOLR) GO TO 50
 R(K,K) = ONE/R(K,K)
 KM1 = K - 1
 IF (KM1 .LT. 1) GO TO 30
 DO 20 J = 1, KM1
 TEMP = R(K,K)*R(J,K)
 R(J,K) = ZERO
 DO 10 I = 1, J
 R(I,K) = R(I,K) - TEMP*R(I,J)
 10 CONTINUE
 20 CONTINUE
 30 CONTINUE
 L = K
 40 CONTINUE
50 CONTINUE

FORM THE FULL UPPER TRIANGLE OF THE INVERSE OF (R TRANSPOSE)*R
IN THE FULL UPPER TRIANGLE OF R.

IF (L .LT. 1) GO TO 110
DO 100 K = 1, L
 KM1 = K - 1
 IF (KM1 .LT. 1) GO TO 80
 DO 70 J = 1, KM1
 TEMP = R(J,K)
 DO 60 I = 1, J
 R(I,J) = R(I,J) + TEMP*R(I,K)
 60 CONTINUE
 70 CONTINUE
100 CONTINUE
110 END
70 CONTINUE
80 CONTINUE
 TEMP = R(K,K)
 DO 90 I = 1, K
 R(I,K) = TEMP*R(I,K)
90 CONTINUE
100 CONTINUE
110 CONTINUE

C
C FORM THE FULL LOWER TRIANGLE OF THE COVARIANCE MATRIX
C IN THE STRICT LOWER TRIANGLE OF R AND IN WA.
C
 DO 130 J = 1, N
 JJ = IPVT(J)
 SING = J .GT. L
 DO 120 I = 1, J
 IF (SING) R(I,J) = ZERO
 II = IPVT(I)
 IF (II .GT. JJ) R(II,JJ) = R(I,J)
 IF (II .LT. JJ) R(JJ,II) = R(I,J)
120 CONTINUE
 WA(JJ) = R(J,J)
130 CONTINUE

C
C SYMMETRIZE THE COVARIANCE MATRIX IN R.
C
 DO 150 J = 1, N
 DO 140 I = 1, J
 R(I,J) = R(J,I)
140 CONTINUE
 R(J,J) = WA(J)
150 CONTINUE
 RETURN

C
C LAST CARD OF SUBROUTINE COVAR.
C
END
2.9 **Printing**

No printing is done in any of the MINPACK-1 subroutines. However, printing of certain parameters through FCN can be facilitated with the integer parameter NPRINT that is available to users of the core subroutines. For these subroutines, setting NPRINT positive results in special calls to FCN with IFLAG = 0 at the beginning of the first iteration and every NPRINT iterations thereafter and immediately prior to return. On these calls to FCN, the parameters X and FVEC are available for printing; FJAC is additionally available if using LMDER.

Often it suffices to print some simple measure of the iteration progress, and the Euclidean norm of the residuals is usually a good choice. This norm can be printed by inserting the following program segment into FCN.

```fortran
IF (IFLAG .NE. 0) GO TO 10
FNorm = ENORM(LFVEC,FVEC)
WRITE (----,1000) FNorm
1000 FORMAT (---)  
RETURN
10 CONTINUE
```

In this program segment it is assumed that LFVEC = N for systems of nonlinear equations and LFVEC = M for nonlinear least squares problems. It is also assumed that the MINPACK-1 function ENORM is declared to the precision of the computation.
CHAPTER 3
Notes and References

This chapter provides notes relating the MINPACK-1 algorithms and software to other work. The list of references appears at the end.

Powell's Hybrid Method

The MINPACK-1 version of Powell's [1970] hybrid method differs in many respects from the original version. For example, the "special iterations" used in the original algorithm proved to be inefficient and have been replaced. The updating method used is due to Broyden [1965]; the MINPACK-1 algorithm is a scaled version of the original. A comparison of an earlier version of the MINPACK-1 algorithm with other algorithms for systems of nonlinear equations has been made by Hiebert [1980].

The Levenberg-Marquardt Algorithm

There are many versions of the algorithm proposed by Levenberg [1944] and modified by Marquardt [1963]. An advantage of the MINPACK-1 version is that it avoids the difficulties associated with choosing the Levenberg-Marquardt parameter, and this allows a very strong global convergence result. The MINPACK-1 algorithm is based on the work of Hebden [1973] and follows the ideas of Moré [1977]. A comparison of an earlier version of the MINPACK-1 algorithm with other algorithms for nonlinear least squares problems has been made by Hiebert [1979].

Derivative Checking

Subroutine CHKDER is new, but similar routines exist in the Numerical Algorithms Group (NAG) library. An advantage of CHKDER is its generality; it can be used to check Jacobians, gradients, and Hessians (second derivatives). To enable this generality, CHKDER presumes no specific parameter sequence for the function evaluation program, returning control instead to the user. This in turn makes necessary a second call to CHKDER for each check.
MINPACK-1 Internal Subprograms

Subroutines DOGLEG and LMPAR are used to generate search directions in the algorithms for systems of nonlinear equations and nonlinear least squares problems, respectively. The algorithm used in DOGLEG is a fairly straightforward implementation of the ideas of Powell [1970], while LMPAR is a refined version of the algorithm described by More [1977]. The LMPAR algorithm is the more complicated; in particular, it requires the solution of a sequence of linear least squares problems of special form. It is for this purpose that subroutine QRSOLV is used.

The algorithm used in ENORM is a simplified version of Blue's [1978] algorithm. An advantage of the MINPACK-1 version is that it does not require machine constants; a disadvantage is that nondestructive underflows are allowed.

The banded Jacobian option in FDJAC1 is based on the work of Curtis, Powell, and Reid [1974].

QRFAC and RWUPDT are based on the corresponding algorithms in LINPACK (Dongarra, Bunch, Moler, and Stewart [1979]).

The algorithm used in RIUPDT is based on the work of Gill, Golub, Murray, and Saunders [1974].

References

CHAPTER 4
Documentation

This chapter contains the double precision version of the MINPACK-1 documentation; both single and double precision versions of the documentation are available in machine-readable form with the MINPACK-1 package. The documentation appears in the following order:

Systems of nonlinear equations
 HYBRD1, HYBRD, HYBRJ1, HYBRJ

Nonlinear least squares problems
 LMDIF1, LMDIF, LMDER1, LMDER, LMSTR1, LMSTR

Derivative checking
 CHKDER
Documentation for MINPACK subroutine HYBRD1

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of HYBRD1 is to find a zero of a system of N nonlinear functions in N variables by a modification of the Powell hybrid method. This is done by using the more general nonlinear equation solver HYBRD. The user must provide a subroutine which calculates the functions. The Jacobian is then calculated by a forward-difference approximation.

2. Subroutine and type statements.

SUBROUTINE HYBRD1(FCN,N,X,FVEC,TOL,INFO,WA,LWA)
INTEGER N,INFO,LWA
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(N),WA(LWA)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on entry to HYBRD1 and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from HYBRD1.

FCN is the name of the user-supplied subroutine which calculates the functions. FCN must be declared in an EXTERNAL statement in the user calling program, and should be written as follows.

SUBROUTINE FCN(N,X,FVEC,IFLAG)
INTEGER N,IFLAG
DOUBLE PRECISION X(N),FVEC(N)

CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

RETURN
END

The value of IFLAG should not be changed by FCN unless the user wants to terminate execution of HYBRD1. In this case set IFLAG to a negative integer.
N is a positive integer input variable set to the number of functions and variables.

X is an array of length N. On input X must contain an initial estimate of the solution vector. On output X contains the final estimate of the solution vector.

FVEC is an output array of length N which contains the functions evaluated at the output X.

TOL is a nonnegative input variable. Termination occurs when the algorithm estimates that the relative error between X and the solution is at most TOL. Section 4 contains more details about TOL.

INFO is an integer output variable. If the user has terminated execution, INFO is set to the (negative) value of IFLAG. See description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Algorithm estimates that the relative error between X and the solution is at most TOL.

INFO = 2 Number of calls to FCN has reached or exceeded 200*(N+1).

INFO = 3 TOL is too small. No further improvement in the approximate solution X is possible.

INFO = 4 Iteration is not making good progress.

Sections 4 and 5 contain more details about INFO.

WA is a work array of length LWA.

LWA is a positive integer input variable not less than (N*(3*N+13))/2.

4. Successful completion.

The accuracy of HYBRD1 is controlled by the convergence parameter TOL. This parameter is used in a test which makes a comparison between the approximation X and a solution XSOL. HYBRD1 terminates when the test is satisfied. If TOL is less than the machine precision (as defined by the MINPACK function DPMPAR(1)), then HYBRD1 only attempts to satisfy the test defined by the machine precision. Further progress is not usually possible. Unless high precision solutions are required, the recommended value for TOL is the square root of the machine precision.

The test assumes that the functions are reasonably well behaved.
If this condition is not satisfied, then HYBRD1 may incorrectly indicate convergence. The validity of the answer can be checked, for example, by rerunning HYBRD1 with a tighter tolerance.

Convergence test. If $\text{ENORM}(Z)$ denotes the Euclidean norm of a vector Z, then this test attempts to guarantee that

$$\text{ENORM}(X-\text{XSOL}) \leq \text{TOL} \times \text{ENORM}(\text{XSOL}).$$

If this condition is satisfied with $\text{TOL} = 10^{-K}$, then the larger components of X have K significant decimal digits and INFO is set to 1. There is a danger that the smaller components of X may have large relative errors, but the fast rate of convergence of HYBRD1 usually avoids this possibility.

5. Unsuccessful completion.

Unsuccessful termination of HYBRD1 can be due to improper input parameters, arithmetic interrupts, an excessive number of function evaluations, errors in the functions, or lack of good progress.

Improper input parameters. INFO is set to 0 if $N \leq 0$, or $\text{TOL} < 0.00$, or $\text{LWA} < (N \times (3 \times N + 13)) / 2$.

Arithmetic interrupts. If these interrupts occur in the FCN subroutine during an early stage of the computation, they may be caused by an unacceptable choice of X by HYBRD1. In this case, it may be possible to remedy the situation by not evaluating the functions here, but instead setting the components of FVEC to numbers that exceed those in the initial FVEC, thereby indirectly reducing the step length. The step length can be more directly controlled by using instead HYBRD, which includes in its calling sequence the step-length-governing parameter FACTOR.

Excessive number of function evaluations. If the number of calls to FCN reaches $200 \times (N+1)$, then this indicates that the routine is converging very slowly as measured by the progress of FVEC, and INFO is set to 2. This situation should be unusual because, as indicated below, lack of good progress is usually diagnosed earlier by HYBRD1, causing termination with $\text{INFO} = 4$.

Errors in the functions. The choice of step length in the forward-difference approximation to the Jacobian assumes that the relative errors in the functions are of the order of the machine precision. If this is not the case, HYBRD1 may fail (usually with $\text{INFO} = 4$). The user should then use HYBRD instead, or one of the programs which require the analytic Jacobian (HYBRJ1 and HYBRJ).
Lack of good progress. HYBRD1 searches for a zero of the system by minimizing the sum of the squares of the functions. In so doing, it can become trapped in a region where the minimum does not correspond to a zero of the system and, in this situation, the iteration eventually fails to make good progress. In particular, this will happen if the system does not have a zero. If the system has a zero, rerunning HYBRD1 from a different starting point may be helpful.

HYBRD1 is a modification of the Powell hybrid method. Two of its main characteristics involve the choice of the correction as a convex combination of the Newton and scaled gradient directions, and the updating of the Jacobian by the rank-1 method of Broyden. The choice of the correction guarantees (under reasonable conditions) global convergence for starting points far from the solution and a fast rate of convergence. The Jacobian is approximated by forward differences at the starting point, but forward differences are not used again until the rank-1 method fails to produce satisfactory progress.

Timing. The time required by HYBRD1 to solve a given problem depends on N, the behavior of the functions, the accuracy requested, and the starting point. The number of arithmetic operations needed by HYBRD1 is about 11.5*(N**2) to process each call to FCN. Unless FCN can be evaluated quickly, the timing of HYBRD1 will be strongly influenced by the time spent in FCN.

Storage. HYBRD1 requires (3*N**2 + 17*N)/2 double precision storage locations, in addition to the storage required by the program. There are no internally declared storage arrays.

7. Subprograms required.

USER-supplied FCN

MINPACK-supplied ... DOGLE, DPMPAR, ENORM, FDJAC1, HYBRD,
QFORM, QRFAC, R1MPYQ, R1UPDT

FORTRAN-supplied ... DABS, DMAX1, DMIN1, DSQRT, MIN0, MOD

8. References.

9. Example.
The problem is to determine the values of $x(1), x(2), \ldots, x(9)$, which solve the system of tridiagonal equations

$$(3-2x(1))x(1) - 2x(2) = -1$$
$$-x(i-1) + (3-2x(i))x(i) - 2x(i+1) = -1, \quad i=2-8$$
$$-x(8) + (3-2x(9))x(9) = -1$$

DRIVER FOR HYBRD1 EXAMPLE.
DOUBLE PRECISION VERSION

INTEGER J,N,INFO,LWA,NWRITE
DOUBLE PRECISION TOL,FNORM
DOUBLE PRECISION X(9),FVEC(9),WA(180)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.

DATA NWRITE /6/

N = 9

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.

DO 10 J = 1, 9
 X(J) = -1.D0
10 CONTINUE

LWA = 180

SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
THIS IS THE RECOMMENDED SETTING.

TOL = DSQRT(DPMPAR(1))

CALL HYBRD1(FCN,N,X,FVEC,TOL,INFO,WA,LWA)
FNORM = ENORM(N,FVEC)
WRITE (NWRITE,1000) FNORM,INFO,(X(J),J=1,N)
STOP
1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 /
 * 5X,15H EXIT PARAMETER,16X,110 /
 * 5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))

LAST CARD OF DRIVER FOR HYBRD1 EXAMPLE.

END
SUBROUTINE FCN(N,X,FVEC,IFLAG)
INTEGER N,IFLAG
DOUBLE PRECISION X(N),FVEC(N)
SUBROUTINE FCN FOR HYBRD1 EXAMPLE.

INTEGER K
DOUBLE PRECISION ONE, TEMP, TEMP1, TEMP2, THREE, TWO, ZERO
DATA ZERO, ONE, TWO, THREE /0.D0, 1.D0, 2.D0, 3.D0/

DO 10 K = 1, N
 TEMP = (THREE - TWO*X(K))*X(K)
 TEMP1 = ZERO
 IF (K .NE. 1) TEMP1 = X(K-1)
 TEMP2 = ZERO
 IF (K .NE. N) TEMP2 = X(K+1)
 FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
10 CONTINUE
RETURN

LAST CARD OF SUBROUTINE FCN.
END

Results obtained with different compilers or machines may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.1192636D-07
EXIT PARAMETER 1

FINAL APPROXIMATE SOLUTION

-0.5706545D+00 -0.6816283D+00 -0.7017325D+00
-0.7042129D+00 -0.7013690D+00 -0.6918656D+00
-0.6657920D+00 -0.5960342D+00 -0.4164121D+00
Documentation for MINPACK subroutine HYBRD

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of HYBRD is to find a zero of a system of N nonlinear functions in N variables by a modification of the Powell hybrid method. The user must provide a subroutine which calculates the functions. The Jacobian is then calculated by a forward-difference approximation.

2. Subroutine and type statements.

```
SUBROUTINE HYBRD(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,DIAG,
   *     MODE,FACTOR,NPRINT,INFO,NFEV,FJAC,LDFJAC,
   *     R,LR,QTFLWA1,WALWA3,WALA4)
   INTEGER N,MAXFEV,ML,MU,MODE,NPRINT,INFO,NFEV,LDFJAC,LR
   DOUBLE PRECISION XTOL,EPSFCN,FACTOR
   DOUBLE PRECISION X(N),FVEC(N),DIAG(N),FJAC(LDFJAC,N),R(LR),QTFLWA1(N),WAL(N),WAL(N),WAL(N),WAL(N)
   EXTERNAL FCN
```

3. Parameters.

Parameters designated as input parameters must be specified on entry to HYBRD and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from HYBRD.

FCN is the name of the user-supplied subroutine which calculates the functions. FCN must be declared in an EXTERNAL statement in the user calling program, and should be written as follows.

```
SUBROUTINE FCN(N,X,FVEC,IFLAG)
   INTEGER N,IFLAG
   DOUBLE PRECISION X(N),FVEC(N)
   -------
   CALCULATE THE FUNCTIONS AT X AND
   RETURN THIS VECTOR IN FVEC.
   -------
   RETURN
   END
```

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of HYBRD. In this case set
IFLAG to a negative integer.

N is a positive integer input variable set to the number of
functions and variables.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length N which contains the functions
evaluated at the output X.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FCN is at least MAXFEV by the end
of an iteration.

ML is a nonnegative integer input variable which specifies the
number of subdiagonals within the band of the Jacobian matrix.
If the Jacobian is not banded, set ML to at least N - 1.

MU is a nonnegative integer input variable which specifies the
number of superdiagonals within the band of the Jacobian
matrix. If the Jacobian is not banded, set MU to at least
N - 1.

EPSFCN is an input variable used in determining a suitable step
for the forward-difference approximation. This approximation
assumes that the relative errors in the functions are of the
order of EPSFCN. If EPSFCN is less than the machine preci-
sion, it is assumed that the relative errors in the functions
are of the order of the machine precision.

DIAG is an array of length N. If MODE = 1 (see below), DIAG is
internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the
variables.

MODE is an integer input variable. If MODE = 1, the variables
will be scaled internally. If MODE = 2, the scaling is speci-
fied by the input DIAG. Other values of MODE are equivalent
to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound is set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended value.
NPRINT is an integer input variable that enables controlled printing of iterates if it is positive. In this case, FCN is called with IFLAG = 0 at the beginning of the first iteration and every NPRINT iterations thereafter and immediately prior to return, with X and FVEC available for printing. If NPRINT is not positive, no special calls of FCN with IFLAG = 0 are made.

INFO is an integer output variable. If the user has terminated execution, INFO is set to the (negative) value of IFLAG. See description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.
INFO = 1 Relative error between two consecutive iterates is at most XTOL.
INFO = 2 Number of calls to FCN has reached or exceeded MAXFEV.
INFO = 3 XTOL is too small. No further improvement in the approximate solution X is possible.
INFO = 4 Iteration is not making good progress, as measured by the improvement from the last five Jacobian evaluations.
INFO = 5 Iteration is not making good progress, as measured by the improvement from the last ten iterations.

Sections 4 and 5 contain more details about INFO.

NFEV is an integer output variable set to the number of calls to FCN.

FJAC is an output N by N array which contains the orthogonal matrix Q produced by the QR factorization of the final approximate Jacobian.

LDFJAC is a positive integer input variable not less than N which specifies the leading dimension of the array FJAC.

R is an output array of length LR which contains the upper triangular matrix produced by the QR factorization of the final approximate Jacobian, stored rowwise.

LR is a positive integer input variable not less than \((N^2(N+1))/2\).

QTF is an output array of length N which contains the vector \((Q^T) \times FVEC\).

WA1, WA2, WA3, and WA4 are work arrays of length N.
4. Successful completion.

The accuracy of HYBRD is controlled by the convergence parameter XTOL. This parameter is used in a test which makes a comparison between the approximation X and a solution XSOL. HYBRD terminates when the test is satisfied. If the convergence parameter is less than the machine precision (as defined by the MINPACK function DMPAR(1)), then HYBRD only attempts to satisfy the test defined by the machine precision. Further progress is not usually possible.

The test assumes that the functions are reasonably well behaved. If this condition is not satisfied, then HYBRD may incorrectly indicate convergence. The validity of the answer can be checked, for example, by rerunning HYBRD with a tighter tolerance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a vector Z and D is the diagonal matrix whose entries are defined by the array DIAG, then this test attempts to guarantee that

\[
\text{ENORM(D*(X-XSOL))) .LE. XTOL*ENORM(D*XSOL)}.
\]

If this condition is satisfied with XTOL = 10**(-K), then the larger components of D*X have K significant decimal digits and INFO is set to 1. There is a danger that the smaller components of D*X may have large relative errors, but the fast rate of convergence of HYBRD usually avoids this possibility. Unless high precision solutions are required, the recommended value for XTOL is the square root of the machine precision.

5. Unsuccessful completion.

Unsuccessful termination of HYBRD can be due to improper input parameters, arithmetic interrupts, an excessive number of function evaluations, or lack of good progress.

Improper input parameters. INFO is set to 0 if N .LE. 0, or XTOL .LT. 0.DO, or MAXFEV .LE. 0, or ML .LT. 0, or MU .LT. 0, or FACTOR .LE. 0.DO, or LDFJAC .LT. N, or LR .LT. (N*(N+1))/2.

Arithmetic interrupts. If these interrupts occur in the FCN subroutine during an early stage of the computation, they may be caused by an unacceptable choice of X by HYBRD. In this case, it may be possible to remedy the situation by rerunning HYBRD with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value for MAXFEV is 200*(N+1). If the number of calls to FCN reaches MAXFEV, then this indicates that the routine is converging very slowly as measured by the progress of FVEC, and
INFO is set to 2. This situation should be unusual because, as indicated below, lack of good progress is usually diagnosed earlier by HYBRD, causing termination with INFO = 4 or INFO = 5.

Lack of good progress. HYBRD searches for a zero of the system by minimizing the sum of the squares of the functions. In so doing, it can become trapped in a region where the minimum does not correspond to a zero of the system and, in this situation, the iteration eventually fails to make good progress. In particular, this will happen if the system does not have a zero. If the system has a zero, rerunning HYBRD from a different starting point may be helpful.

HYBRD is a modification of the Powell hybrid method. Two of its main characteristics involve the choice of the correction as a convex combination of the Newton and scaled gradient directions, and the updating of the Jacobian by the rank-1 method of Broyden. The choice of the correction guarantees (under reasonable conditions) global convergence for starting points far from the solution and a fast rate of convergence. The Jacobian is approximated by forward differences at the starting point, but forward differences are not used again until the rank-1 method fails to produce satisfactory progress.

Timing. The time required by HYBRD to solve a given problem depends on N, the behavior of the functions, the accuracy requested, and the starting point. The number of arithmetic operations needed by HYBRD is about 11.5*(N**2) to process each call to FCN. Unless FCN can be evaluated quickly, the timing of HYBRD will be strongly influenced by the time spent in FCN.

Storage. HYBRD requires (3*N**2 + 17*N)/2 double precision storage locations, in addition to the storage required by the program. There are no internally declared storage arrays.

7. Subprograms required.

USER-supplied FCN

MINPACK-supplied ... DOGLEG,DPMPAR,ENORM,EDJAC1,
 QFORM,QRFAC,R1MPY,R1UPDT

FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MINO,MOD

8. References.

9. Example.

The problem is to determine the values of \(x(1), x(2), \ldots, x(9) \), which solve the system of tridiagonal equations

\[
\begin{align*}
(3-2x(1))x(1) & \quad -2x(2) & \quad = -1 \\
-x(i-1) + (3-2x(i))x(i) & \quad -2x(i+1) & \quad = -1, \quad i=2-8 \\
-x(8) + (3-2x(9))x(9) & \quad = -1
\end{align*}
\]

DRIVER FOR HYBRD EXAMPLE.

DOUBLE PRECISION VERSION

INTEGER J, N, MAXFEV, ML, MU, MODE, NPRINT, INFO, NFEV, LDFJAC, LR, NWRITE
DOUBLE PRECISION X(9), FVEC(9), DIAG(9), FJAC(9,9), R(45), QTF(9),
* WA1(9), WA2(9), WA3(9), WA4(9)
DOUBLE PRECISION ENORM, DPMPAR
EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.

DATA NWRITE /6/

N = 9

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.

DO 10 J = 1, 9
 X(J) = -1.D0
9
 CONTINUE

LDFJAC = 9
LR = 45

SET XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
THIS IS THE RECOMMENDED SETTING.

XTOL = DSQRT(DPMPAR(1))

MAXFEV = 2000
ML = 1
MU = 1
EPSFCN = 0.D0
MODE = 2
DO 20 J = 1, 9
 DIAG(J) = 1.D0
20
20 CONTINUE
 FACTOR = 1.D2
 NPRINT = 0

 CALL HYBRD(FCN,N,X,FVEC,XTOL,MAXFEV,ML,ML,MU,EPSFCN,DIAG,
 * MODE,FACTOR,NPRINT,INFO,NFEV,FJAC,LDFJAC,
 * R,LR,QTF,WA1,WA2,WA3,WA4)
 FNORM = ENORM(N,FVEC)
 WRITE (NWRITE,1000) FNORM,NFEV,INFO,(X(J),J=1,N)
STOP
1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
 * 5X,31H NUMBER OF FUNCTION EVALUATIONS,I10 //
 * 5X,15H EXIT PARAMETER,16X,I10 //
 * 5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))

LAST CARD OF DRIVER FOR HYBRD EXAMPLE.

END
SUBROUTINE FCN(N,X,FVEC,IFLAG)
INTEGER N,IFLAG
DOUBLE PRECISION X(N),FVEC(N)

SUBROUTINE FCN FOR HYBRD EXAMPLE.

INTEGER K
DOUBLE PRECISION ONE,TEMP,TEMP1,TEMP2,THREE,TWO,ZERO
DATA ZERO,ONE,TWO,THREE /0.D0,1.D0,2.D0,3.D0/

IF (IFLAG .NE. 0) GO TO 5

INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.

RETURN
5 CONTINUE
 DO 10 K = 1, N
 TEMP = (THREE - TWO*X(K))*X(K)
 TEMP1 = ZERO
 IF (K .NE. 1) TEMP1 = X(K-1)
 TEMP2 = ZERO
 IF (K .NE. N) TEMP2 = X(K+1)
 FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
10 CONTINUE
RETURN

LAST CARD OF SUBROUTINE FCN.

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.1192636D-07
NUMBER OF FUNCTION EVALUATIONS 14
EXIT PARAMETER

FINAL APPROXIMATE SOLUTION

-0.5706545D+00 -0.6816283D+00 -0.7017325D+00
-0.7042129D+00 -0.7013690D+00 -0.6918656D+00
-0.6657920D+00 -0.5960342D+00 -0.4164121D+00
Documentation for MINPACK subroutine HYBRJ1

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of HYBRJ1 is to find a zero of a system of N nonlinear functions in N variables by a modification of the Powell hybrid method. This is done by using the more general nonlinear equation solver HYBRJ. The user must provide a subroutine which calculates the functions and the Jacobian.

2. Subroutine and type statements.

SUBROUTINE HYBRJ1(FCN,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,WA,LWA)
INTEGER N,LDFJAC,INFO,LWA
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on entry to HYBRJ1 and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from HYBRJ1.

FCN is the name of the user-supplied subroutine which calculates the functions and the Jacobian. FCN must be declared in an EXTERNAL statement in the user calling program, and should be written as follows.

SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER N,LDFJAC,IFLAG
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.

RETURN
END

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of HYBRJ1. In this case set IFLAG to a negative integer.

N is a positive integer input variable set to the number of functions and variables.

X is an array of length N. On input X must contain an initial estimate of the solution vector. On output X contains the final estimate of the solution vector.

FVEC is an output array of length N which contains the functions evaluated at the output X.

FJAC is an output N by N array which contains the orthogonal matrix Q produced by the QR factorization of the final approximate Jacobian. Section 6 contains more details about the approximation to the Jacobian.

LDFJAC is a positive integer input variable not less than N which specifies the leading dimension of the array FJAC.

TOL is a nonnegative input variable. Termination occurs when the algorithm estimates that the relative error between X and the solution is at most TOL. Section 4 contains more details about TOL.

INFO is an integer output variable. If the user has terminated execution, INFO is set to the (negative) value of IFLAG. See description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Algorithm estimates that the relative error between X and the solution is at most TOL.

INFO = 2 Number of calls to FCN with IFLAG = 1 has reached 100*(N+1).

INFO = 3 TOL is too small. No further improvement in the approximate solution X is possible.

INFO = 4 Iteration is not making good progress.

Sections 4 and 5 contain more details about INFO.

WA is a work array of length LWA.

LWA is a positive integer input variable not less than \(N^*(N+13))/2\).

4. Successful completion.

The accuracy of HYBRJ1 is controlled by the convergence
parameter TOL. This parameter is used in a test which makes a
comparison between the approximation X and a solution XSOL.
HYBRJ1 terminates when the test is satisfied. If TOL is less
than the machine precision (as defined by the MINPACK function
DPMPAR(1)), then HYBRJ1 only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The test assumes that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then HYBRJ1 may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning HYBRJ1 with a tighter toler-
ance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a
vector Z, then this test attempts to guarantee that

\[\text{ENORM}(X - XSOL) \leq TOL \times \text{ENORM}(XSOL). \]

If this condition is satisfied with TOL = 10**(-K), then the
larger components of X have K significant decimal digits and
INFO is set to 1. There is a danger that the smaller compo-
nents of X may have large relative errors, but the fast rate
of convergence of HYBRJ1 usually avoids this possibility.

5. Unsuccessful completion.

Unsuccessful termination of HYBRJ1 can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, or lack of good progress.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
LDFJAC .LT. N, or TOL .LT. 0.DO, or LWA .LT. \((N \times (N+13))/2\).

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by HYBRJ1. In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead HYBRJ, which
includes in its calling sequence the step-length- governing
parameter FACTOR.

Excessive number of function evaluations. If the number of
calls to FCN with IFLAG = 1 reaches 100*(N+1), then this indi-
cates that the routine is converging very slowly as measured
by the progress of FVEC, and INFO is set to 2. This situation should be unusual because, as indicated below, lack of good progress is usually diagnosed earlier by HYBRJ1, causing termination with INFO = 4.

Lack of good progress. HYBRJ1 searches for a zero of the system by minimizing the sum of the squares of the functions. In so doing, it can become trapped in a region where the minimum does not correspond to a zero of the system and, in this situation, the iteration eventually fails to make good progress. In particular, this will happen if the system does not have a zero. If the system has a zero, rerunning HYBRJ1 from a different starting point may be helpful.

HYBRJ1 is a modification of the Powell hybrid method. Two of its main characteristics involve the choice of the correction as a convex combination of the Newton and scaled gradient directions, and the updating of the Jacobian by the rank-1 method of Broyden. The choice of the correction guarantees (under reasonable conditions) global convergence for starting points far from the solution and a fast rate of convergence. The Jacobian is calculated at the starting point, but it is not recalculated until the rank-1 method fails to produce satisfactory progress.

Timing. The time required by HYBRJ1 to solve a given problem depends on N, the behavior of the functions, the accuracy requested, and the starting point. The number of arithmetic operations needed by HYBRJ1 is about 11.5*(N**2) to process each evaluation of the functions (call to FCN with IFLAG = 1) and 1.3*(N**3) to process each evaluation of the Jacobian (call to FCN with IFLAG = 2). Unless FCN can be evaluated quickly, the timing of HYBRJ1 will be strongly influenced by the time spent in FCN.

Storage. HYBRJ1 requires (3*N**2 + 17*N)/2 double precision storage locations, in addition to the storage required by the program. There are no internally declared storage arrays.

7. Subprograms required.

USER-supplied FCN

MINPACK-supplied ... DOGLEG, DPMPAR, ENORM, HYBRJ, QFORM, QRFAC, R1MPYQ, R1UPDT

FORTRAN-supplied ... DABS, DMAX1, DMIN1, DSQRT, MIN0, MOD

8. References.
9. Example.

The problem is to determine the values of $x(1), x(2), \ldots, x(9)$, which solve the system of tridiagonal equations

$$
(3-2x(1))x(1) - 2x(2) - x(i-1) + (3-2x(i))x(i) - 2x(i+1) = -1, \ i=2-8
-x(8) + (3-2x(9))x(9) = -1
$$

DRIVER FOR HYBRJ1 EXAMPLE.
DOUBLE PRECISION VERSION

INTEGER J,N,LDIJAC,INFO,LWA,NWRITE
DOUBLE PRECISION TOL,FNORM
DOUBLE PRECISION X(9),FVEC(9),FJAC(9,9),WA(99)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.

DATA NWRITE /6/

N = 9

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.

DO 10 J = 1, 9
 X(J) = -1.DO

10 CONTINUE

LDIJAC = 9
LWA = 99

SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
THIS IS THE RECOMMENDED SETTING.

TOL = DSQRT(DPMPAR(1))

CALL HYBRJ1(FCN,N,X,FVEC,FJAC,LDIJAC,TOL,INFO,WA,LWA)
FNORM = ENORM(N,FVEC)
WRITE (NWRITE,1000) FNORM,INFO,(X(J),J=1,N)
STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,15H EXIT PARAMETER,16X,I10 //
* 5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))
LAST CARD OF DRIVER FOR HYBRJ1 EXAMPLE.

END
SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER N,LDFJAC,IFLAG
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)

SUBROUTINE FCN FOR HYBRJ1 EXAMPLE.

INTEGER J,K
DOUBLE PRECISION ONE,TEMP,TEMP1,TEMP2,THREE,TWO,ZERO
DATA ZERO,ONE,TWO,THREE,FOUR /0.D0,1.D0,2.D0,3.D0,4.D0/

IF (IFLAG .EQ. 2) GO TO 20
DO 10 K = 1, N
 TEMP = (THREE - TWO*X(K))*X(K)
 TEMP1 = ZERO
 IF (K .NE. 1) TEMP1 = X(K-1)
 TEMP2 = ZERO
 IF (K .NE. N) TEMP2 = X(K+1)
 FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
10 CONTINUE
GO TO 50
20 CONTINUE
DO 40 K = 1, N
 DO 30 J = 1, N
 FJAC(K,J) = ZERO
30 CONTINUE
 FJAC(K,K) = THREE - FOUR*X(K)
 IF (K .NE. 1) FJAC(K,K-1) = -ONE
 IF (K .NE. N) FJAC(K,K+1) = -TWO
40 CONTINUE
50 CONTINUE
RETURN

LAST CARD OF SUBROUTINE FCN.

END

Results obtained with different compilers or machines may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.1192636D-07
EXIT PARAMETER 1

FINAL APPROXIMATE SOLUTION

-0.5706545D+00 -0.6816283D+00 -0.7017325D+00
-0.7042129D+00 -0.7013690D+00 -0.6918656D+00
-0.6657920D+00 -0.5960342D+00 -0.4164121D+00
Documentation for MINPACK subroutine HYBRJ

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of HYBRJ is to find a zero of a system of N nonlinear functions in N variables by a modification of the Powell hybrid method. The user must provide a subroutine which calculates the functions and the Jacobian.

2. Subroutine and type statements.

```plaintext
SUBROUTINE HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,
* MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,R,LR,QTF,
* WA1,WA2,WA3,WA4)
INTEGER N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV,LR
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),DIAG(N),R(LR),QTF(N),
* WA1(N),WA2(N),WA3(N),WA4(N)
```

3. Parameters.

Parameters designated as input parameters must be specified on entry to HYBRJ and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from HYBRJ.

FCN is the name of the user-supplied subroutine which calculates the functions and the Jacobian. FCN must be declared in an EXTERNAL statement in the user calling program, and should be written as follows.

```plaintext
SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER N,LDFJAC,IFLAG
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)

--------
IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
--------
RETURN
END
```
The value of IFLAG should not be changed by FCN unless the user wants to terminate execution of HYBRJ. In this case set IFLAG to a negative integer.

N is a positive integer input variable set to the number of functions and variables.

X is an array of length N. On input X must contain an initial estimate of the solution vector. On output X contains the final estimate of the solution vector.

FVEC is an output array of length N which contains the functions evaluated at the output X.

FJAC is an output N by N array which contains the orthogonal matrix Q produced by the QR factorization of the final approximate Jacobian. Section 6 contains more details about the approximation to the Jacobian.

LDFJAC is a positive integer input variable not less than N which specifies the leading dimension of the array FJAC.

XTOL is a nonnegative input variable. Termination occurs when the relative error between two consecutive iterates is at most XTOL. Therefore, XTOL measures the relative error desired in the approximate solution. Section 4 contains more details about XTOL.

MAXFEV is a positive integer input variable. Termination occurs when the number of calls to FCN with IFLAG = 1 has reached MAXFEV.

DIAG is an array of length N. If MODE = 1 (see below), DIAG is internally set. If MODE = 2, DIAG must contain positive entries that serve as multiplicative scale factors for the variables.

MODE is an integer input variable. If MODE = 1, the variables will be scaled internally. If MODE = 2, the scaling is specified by the input DIAG. Other values of MODE are equivalent to MODE = 1.

FACTOR is a positive input variable used in determining the initial step bound. This bound is set to the product of FACTOR and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR itself. In most cases FACTOR should lie in the interval (.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled printing of iterates if it is positive. In this case, FCN is called with IFLAG = 0 at the beginning of the first iteration and every NPRINT iterations thereafter and immediately prior to return, with X and FVEC available for printing. FVEC and FJAC should not be altered. If NPRINT is not positive, no
special calls of FCN with IFLAG = 0 are made.

INFO is an integer output variable. If the user has terminated execution, INFO is set to the (negative) value of IFLAG. See description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Relative error between two consecutive iterates is at most XTOL.

INFO = 2 Number of calls to FCN with IFLAG = 1 has reached MAXFEV.

INFO = 3 XTOL is too small. No further improvement in the approximate solution X is possible.

INFO = 4 Iteration is not making good progress, as measured by the improvement from the last five Jacobian evaluations.

INFO = 5 Iteration is not making good progress, as measured by the improvement from the last ten iterations.

Sections 4 and 5 contain more details about INFO.

NFEV is an integer output variable set to the number of calls to FCN with IFLAG = 1.

NJEV is an integer output variable set to the number of calls to FCN with IFLAG = 2.

R is an output array of length LR which contains the upper triangular matrix produced by the QR factorization of the final approximate Jacobian, stored rowwise.

LR is a positive integer input variable not less than \((N*(N+1))/2\).

QTF is an output array of length N which contains the vector \((Q\text{ transpose})*FVEC\).

WA1, WA2, WA3, and WA4 are work arrays of length N.

4. Successful completion.

The accuracy of HYBRJ is controlled by the convergence parameter XTOL. This parameter is used in a test which makes a comparison between the approximation X and a solution XSOL. HYBRJ terminates when the test is satisfied. If the convergence parameter is less than the machine precision (as defined by the MINPACK function DPMPAR(1)), then HYBRJ only attempts to satisfy the test defined by the machine precision. Further progress is not
usually possible.

The test assumes that the functions and the Jacobian are coded consistently, and that the functions are reasonably well behaved. If these conditions are not satisfied, then HYBRJ may incorrectly indicate convergence. The coding of the Jacobian can be checked by the MINPACK subroutine CHKDER. If the Jacobian is coded correctly, then the validity of the answer can be checked, for example, by rerunning HYBRJ with a tighter tolerance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a vector Z and D is the diagonal matrix whose entries are defined by the array DIAG, then this test attempts to guarantee that

\[\text{ENORM}(D^*(X-XSOL)) \leq \text{XTOL} \cdot \text{ENORM}(D^*XSOL). \]

If this condition is satisfied with XTOL = 10**(\(-K\)), then the larger components of D\(^*\)X have \(K\) significant decimal digits and INFO is set to 1. There is a danger that the smaller components of D\(^*\)X may have large relative errors, but the fast rate of convergence of HYBRJ usually avoids this possibility. Unless high precision solutions are required, the recommended value for XTOL is the square root of the machine precision.

5. Unsuccessful completion.

Unsuccessful termination of HYBRJ can be due to improper input parameters, arithmetic interrupts, an excessive number of function evaluations, or lack of good progress.

Improper input parameters. INFO is set to 0 if N \(\leq 0\), or LDFJAC \(\lt N\), or XTOL \(\lt 0.\text{DO}\), or MAXFEV \(\leq 0\), or FACTOR \(\leq 0.\text{DO}\), or LR \(\lt (N^*(N+1))/2\).

Arithmetic interrupts. If these interrupts occur in the FCN subroutine during an early stage of the computation, they may be caused by an unacceptable choice of X by HYBRJ. In this case, it may be possible to remedy the situation by rerunning HYBRJ with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value for MAXFEV is 100*(N+1). If the number of calls to FCN with IFLAG = 1 reaches MAXFEV, then this indicates that the routine is converging very slowly as measured by the progress of FVEC, and INFO is set to 2. This situation should be unusual because, as indicated below, lack of good progress is usually diagnosed earlier by HYBRJ, causing termination with INFO = 4 or INFO = 5.

Lack of good progress. HYBRJ searches for a zero of the system by minimizing the sum of the squares of the functions. In so
doing, it can become trapped in a region where the minimum does not correspond to a zero of the system and, in this situation, the iteration eventually fails to make good progress. In particular, this will happen if the system does not have a zero. If the system has a zero, rerunning HYBRJ from a different starting point may be helpful.

HYBRJ is a modification of the Powell hybrid method. Two of its main characteristics involve the choice of the correction as a convex combination of the Newton and scaled gradient directions, and the updating of the Jacobian by the rank-1 method of Broyden. The choice of the correction guarantees (under reasonable conditions) global convergence for starting points far from the solution and a fast rate of convergence. The Jacobian is calculated at the starting point, but it is not recalculated until the rank-1 method fails to produce satisfactory progress.

Timing. The time required by HYBRJ to solve a given problem depends on N, the behavior of the functions, the accuracy requested, and the starting point. The number of arithmetic operations needed by HYBRJ is about $11.5N^2$ to process each evaluation of the functions (call to FCN with IFLAG = 1) and $1.3N^3$ to process each evaluation of the Jacobian (call to FCN with IFLAG = 2). Unless FCN can be evaluated quickly, the timing of HYBRJ will be strongly influenced by the time spent in FCN.

Storage. HYBRJ requires $(3N^2 + 17N)/2$ double precision storage locations, in addition to the storage required by the program. There are no internally declared storage arrays.

7. Subprograms required.

USER-supplied FCN

MINPACK-supplied ... DOGLEG, DPMPAR, ENORM, QFORM, QRFAC, RIMPYQ, R1UPDT

FORTRAN-supplied ... DABS, DMAX1, DMIN1, DSQRT, MINO, MOD

8. References.

9. Example.
The problem is to determine the values of $x(1), x(2), \ldots, x(9)$, which solve the system of tridiagonal equations

\[
\begin{align*}
(3-2x(1))x(1) - 2x(2) &= -1 \\
-x(i-1) + (3-2x(i))x(i) &= -2x(i+1) = -1, \quad i=2-8 \\
-x(8) + (3-2x(9))x(9) &= -1
\end{align*}
\]

DRIVER FOR HYBRJ EXAMPLE.
DOUBLE PRECISION VERSION

INTEGER J,N,LDJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV,LR,NWRITE
DOUBLE PRECISION XTOL,FACTOR,FNORM
DOUBLE PRECISION X(9),FVEC(9),FJAC(9,9),DIAG(9),R(45),QTF(9),
* WA1(9),WA2(9),WA3(9),WA4(9)
DOUBLE PRECISION ENORM,DMPAR
EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.

DATA NWRITE /6/

N = 9

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.

DO 10 J = 1, 9
 X(J) = -1.D0
10 CONTINUE

LDJAC = 9
LR = 45

SET XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
THIS IS THE RECOMMENDED SETTING.

XTOL = DSQRT(DMPAR(1))

MAXFEV = 1000
MODE = 2
DO 20 J = 1, 9
 DIAG(J) = 1.D0
20 CONTINUE
FACTOR = 1.D2
NPRINT = 0

CALL HYBRJ(FCN,N,X,FVEC,FJAC,LDJAC,XTOL,MAXFEV,DIAG,
* MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,R,LR,QTF,
* WA1,WA2,WA3,WA4)
FNORM = ENORM(N,FVEC)
WRITE (NWRITE,1000) FNORM,NFEV,NJEV,INFO,(X(J),J=1,N)
STOP
1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
 * 5X,31H NUMBER OF FUNCTION EVALUATIONS,I10 //
 * 5X,31H NUMBER OF JACOBIAN EVALUATIONS,I10 //
 * 5X,15H EXIT PARAMETER,16X,I10 //
 * 5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))

LAST CARD OF DRIVER FOR HYBRJ EXAMPLE.
END
SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER N,LDFJAC,IFLAG
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)

SUBROUTINE FCN FOR HYBRJ EXAMPLE.

INTEGER J,K
DOUBLE PRECISION ONE,TEMP,TEMP1,TEMP2,THREE,TWO,ZERO
DATA ZERO,ONE,TWO,THREE,FOUR /0.DO,1.DO,2.DO,3.DO,4.DO/

IF (IFLAG .NE. 0) GO TO 5

INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.

RETURN
5 CONTINUE
IF (IFLAG .EQ. 2) GO TO 20
DO 10 K = 1, N
 TEMP = (THREE - TWO*X(K))*X(K)
 TEMP1 = ZERO
 IF (K .NE. 1) TEMP1 = X(K-1)
 TEMP2 = ZERO
 IF (K .NE. N) TEMP2 = X(K+1)
 FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
10 CONTINUE
GO TO 50
20 CONTINUE
DO 40 K = 1, N
 DO 30 J = 1, N
 FJAC(K,J) = ZERO
 30 CONTINUE
 FJAC(K,K) = THREE - FOUR*X(K)
 IF (K .NE. 1) FJAC(K,K-1) = -ONE
 IF (K .NE. N) FJAC(K,K+1) = -TWO
40 CONTINUE
50 CONTINUE
RETURN

LAST CARD OF SUBROUTINE FCN.
END

Results obtained with different compilers or machines
may be slightly different.
FINAL L2 NORM OF THE RESIDUALS 0.1192636D-07

NUMBER OF FUNCTION EVALUATIONS 11

NUMBER OF JACOBIAN EVALUATIONS 1

EXIT PARAMETER 1

FINAL APPROXIMATE SOLUTION

-0.5706545D+00 -0.6816283D+00 -0.7017325D+00
-0.7042129D+00 -0.7013690D+00 -0.6918656D+00
-0.6657920D+00 -0.5960342D+00 -0.4164121D+00
Documentation for MINPACK subroutine LMDER1

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMDER1 is to minimize the sum of the squares of M nonlinear functions in N variables by a modification of the Levenberg-Marquardt algorithm. This is done by using the more general least-squares solver LMDER. The user must provide a subroutine which calculates the functions and the Jacobian.

2. Subroutine and type statements.

```
SUBROUTINE LMDER1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,
* INFO,IPVT,WA,LWA)
  INTEGER M,N,LDFJAC,INFO,LWA
  INTEGER IPVT(N)
  DOUBLE PRECISION TOL
  DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA)
  EXTERNAL FCN
```

3. Parameters.

Parameters designated as input parameters must be specified on entry to LMDER1 and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from LMDER1.

FCN is the name of the user-supplied subroutine which calculates the functions and the Jacobian. FCN must be declared in an EXTERNAL statement in the user calling program, and should be written as follows.

```
SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
  INTEGER M,N,LDFJAC,IFLAG
  DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

  ------
  IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
  RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
  IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
  RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
  ------
  RETURN
END
```
The value of IFLAG should not be changed by FCN unless the user wants to terminate execution of LMDER1. In this case set IFLAG to a negative integer.

M is a positive integer input variable set to the number of functions.

N is a positive integer input variable set to the number of variables. N must not exceed M.

X is an array of length N. On input X must contain an initial estimate of the solution vector. On output X contains the final estimate of the solution vector.

FVEC is an output array of length M which contains the functions evaluated at the output X.

FJAC is an output M by N array. The upper N by N submatrix of FJAC contains an upper triangular matrix R with diagonal elements of nonincreasing magnitude such that

$$\begin{align*}
\mathbf{T} & \quad \mathbf{T} \\
\mathbf{P} & \quad \mathbf{R} \\
\mathbf{R} & \quad \mathbf{R},
\end{align*}$$

where \(\mathbf{P} \) is a permutation matrix and \text{JAC} is the final calculated Jacobian. Column \(j \) of \(\mathbf{P} \) is column \text{IPVT}(j) \ (\text{see below}) of the identity matrix. The lower trapezoidal part of FJAC contains information generated during the computation of \(\mathbf{R} \).

LDFJAC is a positive integer input variable not less than M which specifies the leading dimension of the array FJAC.

TOL is a nonnegative input variable. Termination occurs when the algorithm estimates either that the relative error in the sum of squares is at most TOL or that the relative error between X and the solution is at most TOL. Section 4 contains more details about TOL.

INFO is an integer output variable. If the user has terminated execution, INFO is set to the (negative) value of IFLAG. See description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Algorithm estimates that the relative error in the sum of squares is at most TOL.

INFO = 2 Algorithm estimates that the relative error between X and the solution is at most TOL.

INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4 FVEC is orthogonal to the columns of the Jacobian to machine precision.
INFO = 5 Number of calls to FCN with IFLAG = 1 has reached 100*(N+1).

INFO = 6 TOL is too small. No further reduction in the sum of squares is possible.

INFO = 7 TOL is too small. No further improvement in the approximate solution X is possible.

Sections 4 and 5 contain more details about INFO.

IPVT is an integer output array of length N. IPVT defines a permutation matrix P such that JAC*P = Q*R, where JAC is the final calculated Jacobian, Q is orthogonal (not stored), and R is upper triangular with diagonal elements of nonincreasing magnitude. Column j of P is column IPVT(j) of the identity matrix.

WA is a work array of length LWA.

LWA is a positive integer input variable not less than 5*N+M.

4. Successful completion.

The accuracy of LMDER1 is controlled by the convergence parameter TOL. This parameter is used in tests which make three types of comparisons between the approximation X and a solution XSOL. LMDER1 terminates when any of the tests is satisfied. If TOL is less than the machine precision (as defined by the MINPACK function DPMPAR(1)), then LMDER1 only attempts to satisfy the test defined by the machine precision. Further progress is not usually possible. Unless high precision solutions are required, the recommended value for TOL is the square root of the machine precision.

The tests assume that the functions and the Jacobian are coded consistently, and that the functions are reasonably well behaved. If these conditions are not satisfied, then LMDER1 may incorrectly indicate convergence. The coding of the Jacobian can be checked by the MINPACK subroutine CHKDER. If the Jacobian is coded correctly, then the validity of the answer can be checked, for example, by rerunning LMDER1 with a tighter tolerance.

First convergence test. If ENORM(Z) denotes the Euclidean norm of a vector Z, then this test attempts to guarantee that

\[\text{ENORM(FVEC)} \leq (1+\text{TOL}) \times \text{ENORM(FVECS)}, \]

where FVECS denotes the functions evaluated at XSOL. If this condition is satisfied with TOL = 10**(-K), then the final residual norm ENORM(FVEC) has K significant decimal digits and INFO is set to 1 (or to 3 if the second test is also
satisfied).

Second convergence test. If D is a diagonal matrix (implicitly generated by LMDER1) whose entries contain scale factors for the variables, then this test attempts to guarantee that

\[\text{ENORM}(D^T(X - X_{SOL})) \leq \text{TOL} \times \text{ENORM}(D^T X_{SOL}). \]

If this condition is satisfied with \(\text{TOL} = 10^{\ast \ast}(-K) \), then the larger components of \(D^T X \) have \(K \) significant decimal digits and \(\text{INFO} \) is set to 2 (or to 3 if the first test is also satisfied). There is a danger that the smaller components of \(D^T X \) may have large relative errors, but the choice of \(D \) is such that the accuracy of the components of \(X \) is usually related to their sensitivity.

Third convergence test. This test is satisfied when FVEC is orthogonal to the columns of the Jacobian to machine precision. There is no clear relationship between this test and the accuracy of LMDER1, and furthermore, the test is equally well satisfied at other critical points, namely maximizers and saddle points. Therefore, termination caused by this test (\(\text{INFO} = 4 \)) should be examined carefully.

5. Unsuccessful completion.

Unsuccessful termination of LMDER1 can be due to improper input parameters, arithmetic interrupts, or an excessive number of function evaluations.

Improper input parameters. \(\text{INFO} \) is set to 0 if \(N \leq 0 \), \(M \leq N \), or \(\text{LDFJAC} < M \), or \(\text{TOL} < 0.0 \), or \(\text{LWA} < 5N+M \).

Arithmetic interrupts. If these interrupts occur in the FCN subroutine during an early stage of the computation, they may be caused by an unacceptable choice of \(X \) by LMDER1. In this case, it may be possible to remedy the situation by not evaluating the functions here, but instead setting the components of FVEC to numbers that exceed those in the initial FVEC, thereby indirectly reducing the step length. The step length can be more directly controlled by using instead LMDER, which includes in its calling sequence the step-length-governing parameter FACTOR.

Excessive number of function evaluations. If the number of calls to FCN with \(\text{IFLAG} = 1 \) reaches \(100 \times (N+1) \), then this indicates that the routine is converging very slowly as measured by the progress of FVEC, and \(\text{INFO} \) is set to 5. In this case, it may be helpful to restart LMDER1, thereby forcing it to disregard old (and possibly harmful) information.

LMDER1 is a modification of the Levenberg-Marquardt algorithm. Two of its main characteristics involve the proper use of implicitly scaled variables and an optimal choice for the correction. The use of implicitly scaled variables achieves scale invariance of LMDER1 and limits the size of the correction in any direction where the functions are changing rapidly. The optimal choice of the correction guarantees (under reasonable conditions) global convergence from starting points far from the solution and a fast rate of convergence for problems with small residuals.

Timing. The time required by LMDER1 to solve a given problem depends on M and N, the behavior of the functions, the accuracy requested, and the starting point. The number of arithmetic operations needed by LMDER1 is about N*3 to process each evaluation of the functions (call to FCN with IFLAG = 1) and M*(N*2) to process each evaluation of the Jacobian (call to FCN with IFLAG = 2). Unless FCN can be evaluated quickly, the timing of LMDER1 will be strongly influenced by the time spent in FCN.

Storage. LMDER1 requires M*N + 2*M + 6*N double precision storage locations and N integer storage locations, in addition to the storage required by the program. There are no internally declared storage arrays.

7. Subprograms required.

USER-supplied FCN
MINPACK-supplied ... DPMPAR,ENORM,LMDER,LMPAR,QRFAC,QRSOLV
FORTTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MOD

8. References.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3) which provide the best fit (in the least squares sense) of

\[x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), \quad i = 1, 15 \]

to the data
\[y = (0.14, 0.18, 0.22, 0.25, 0.29, 0.32, 0.35, 0.39, \\
 0.37, 0.58, 0.73, 0.96, 1.34, 2.10, 4.39), \]

where \(u(i) = i \), \(v(i) = 16 - i \), and \(w(i) = \min(u(i), v(i)) \). The
i-th component of FVEC is thus defined by

\[y(i) - \frac{x(1) + u(i) + v(i) + w(i) \times x(3))}{x(3)}. \]

DRIVER FOR LMDER1 EXAMPLE.
DOUBLE PRECISION VERSION

INTEGER J, M, N, LDFJAC, INFO, LWA, NWRITE
INTÉGER J, M, N, LDFJAC, INFO, LWA, NWRITE
DOUBLE PRECISION TOL, FNORM
DOUBLE PRECISION X(3), FVEC(15), FJAC(15, 3), WA(30)
DOUBLE PRECISION ENORM, DPMPAR
EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.

DATA NWRITE /6/

M = 15
N = 3

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.

X(1) = 1.0 DO
X(2) = 1.0 DO
X(3) = 1.0 DO

LDFJAC = 15
LWA = 30

SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
THIS IS THE RECOMMENDED SETTING.

TOL = DSQRT(DPMPAR(1))

CALL LMDER1(FCN, M, N, X, FVEC, FJAC, LDFJAC, TOL,
* INFO, IPVT, WA, LWA)
FNORM = ENORM(M, FVEC)
WRITE (NWRITE, 1000) FNORM, INFO, (X(J), J=1, N)
STOP

1000 FORMAT (5X, 31H FINAL L2 NORM OF THE RESIDUALS, D15.7 //
* 5X, 15H EXIT PARAMETER, 16X, I10 //
* 5X, 27H FINAL APPROXIMATE SOLUTION // 5X, 3D15.7)

LAST CARD OF DRIVER FOR LMDER1 EXAMPLE.
END
SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER M,N,LDFJAC,IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

SUBROUTINE FCN FOR LMDER1 EXAMPLE.

INTEGER I
DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
 * Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
 * /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
 * 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1D0,4.39D0/

IF (IFLAG .EQ. 2) GO TO 20
DO 10 I = 1, 15
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
10 CONTINUE
GO TO 40
20 CONTINUE
DO 30 I = 1, 15
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
 FJAC(I,1) = -1.D0
 FJAC(I,2) = TMP1*TMP2/TMP4
 FJAC(I,3) = TMP1*TMP3/TMP4
30 CONTINUE
40 CONTINUE
RETURN

LAST CARD OF SUBROUTINE FCN.

END

Results obtained with different compilers or machines may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01
EXIT PARAMETER 1

FINAL APPROXIMATE SOLUTION
0.8241058D-01 0.1133037D+01 0.2343695D+01
Documentation for MINPACK subroutine LMDER

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMDER is to minimize the sum of the squares of M nonlinear functions in N variables by a modification of the Levenberg-Marquardt algorithm. The user must provide a subroutine which calculates the functions and the Jacobian.

2. Subroutine and type statements.

```plaintext
SUBROUTINE LMDER(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
                     MAXFEV,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,
                     IPVT,QTF,WA1,WA2,WA3,WA4)
  INTEGER M,N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV
  INTEGER IPVT(N)
  DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR
  DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),DIAG(N),QTF(N),
                     WA1(N),WA2(N),WA3(N),WA4(M)
```

3. Parameters.

Parameters designated as input parameters must be specified on entry to LMDER and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from LMDER.

FCN is the name of the user-supplied subroutine which calculates the functions and the Jacobian. FCN must be declared in an EXTERNAL statement in the user calling program, and should be written as follows.

```plaintext
SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
  INTEGER M,N,LDFJAC,IFLAG
  DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)
```

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.

IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.

RETURN

END
The value of IFLAG should not be changed by FCN unless the user wants to terminate execution of LMDER. In this case set IFLAG to a negative integer.

M is a positive integer input variable set to the number of functions.

N is a positive integer input variable set to the number of variables. N must not exceed M.

X is an array of length N. On input X must contain an initial estimate of the solution vector. On output X contains the final estimate of the solution vector.

FVEC is an output array of length M which contains the functions evaluated at the output X.

FJAC is an output M by N array. The upper N by N submatrix of FJAC contains an upper triangular matrix R with diagonal elements of nonincreasing magnitude such that

\[T \quad T \]
\[P \quad I \quad JAC \quad JAC \quad P = R \quad *R, \]

where P is a permutation matrix and JAC is the final calculated Jacobian. Column j of P is column IPVT(j) (see below) of the identity matrix. The lower trapezoidal part of FJAC contains information generated during the computation of R.

LDFJAC is a positive integer input variable not less than M which specifies the leading dimension of the array FJAC.

FTOL is a nonnegative input variable. Termination occurs when both the actual and predicted relative reductions in the sum of squares are at most FTOL. Therefore, FTOL measures the relative error desired in the sum of squares. Section 4 contains more details about FTOL.

XTOL is a nonnegative input variable. Termination occurs when the relative error between two consecutive iterates is at most XTOL. Therefore, XTOL measures the relative error desired in the approximate solution. Section 4 contains more details about XTOL.

GTOL is a nonnegative input variable. Termination occurs when the cosine of the angle between FVEC and any column of the Jacobian is at most GTOL in absolute value. Therefore, GTOL measures the orthogonality desired between the function vector and the columns of the Jacobian. Section 4 contains more details about GTOL.

MAXFEV is a positive integer input variable. Termination occurs when the number of calls to FCN with IFLAG = 1 has reached MAXFEV.
DIAG is an array of length N. If MODE = 1 (see below), DIAG is internally set. If MODE = 2, DIAG must contain positive entries that serve as multiplicative scale factors for the variables.

MODE is an integer input variable. If MODE = 1, the variables will be scaled internally. If MODE = 2, the scaling is specified by the input DIAG. Other values of MODE are equivalent to MODE = 1.

FACTOR is a positive input variable used in determining the initial step bound. This bound is set to the product of FACTOR and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR itself. In most cases FACTOR should lie in the interval (.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled printing of iterates if it is positive. In this case, FCN is called with IFLAG = 0 at the beginning of the first iteration and every NPRINT iterations thereafter and immediately prior to return, with X, FVEC, and FJAC available for printing. FVEC and FJAC should not be altered. If NPRINT is not positive, no special calls of FCN with IFLAG = 0 are made.

INFO is an integer output variable. If the user has terminated execution, INFO is set to the (negative) value of IFLAG. See description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.
INFO = 1 Both actual and predicted relative reductions in the sum of squares are at most FTOL.
INFO = 2 Relative error between two consecutive iterates is at most XTOL.
INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.
INFO = 4 The cosine of the angle between FVEC and any column of the Jacobian is at most GTOL in absolute value.
INFO = 5 Number of calls to FCN with IFLAG = 1 has reached MAXFEV.
INFO = 6 FTOL is too small. No further reduction in the sum of squares is possible.
INFO = 7 XTOL is too small. No further improvement in the approximate solution X is possible.
INFO = 8 GTOL is too small. FVEC is orthogonal to the columns of the Jacobian to machine precision.

Sections 4 and 5 contain more details about INFO.
NFEV is an integer output variable set to the number of calls to FCN with IFLAG = 1.

NJEV is an integer output variable set to the number of calls to FCN with IFLAG = 2.

IPVT is an integer output array of length N. IPVT defines a permutation matrix P such that JAC*P = Q*R, where JAC is the final calculated Jacobian, Q is orthogonal (not stored), and R is upper triangular with diagonal elements of nonincreasing magnitude. Column j of P is column IPVT(j) of the identity matrix.

QTF is an output array of length N which contains the first N elements of the vector (Q transpose)*FVEC.

WA1, WA2, and WA3 are work arrays of length N.

WA4 is a work array of length M.

4. Successful completion.

The accuracy of LMDER is controlled by the convergence parameters FTOL, XTOL, and GTOL. These parameters are used in tests which make three types of comparisons between the approximation X and a solution XSOL. LMDER terminates when any of the tests is satisfied. If any of the convergence parameters is less than the machine precision (as defined by the MINPACK function DPMPAR(1)), then LMDER only attempts to satisfy the test defined by the machine precision. Further progress is not usually possible.

The tests assume that the functions and the Jacobian are coded consistently, and that the functions are reasonably well behaved. If these conditions are not satisfied, then LMDER may incorrectly indicate convergence. The coding of the Jacobian can be checked by the MINPACK subroutine CHKDER. If the Jacobian is coded correctly, then the validity of the answer can be checked, for example, by rerunning LMDER with tighter tolerances.

First convergence test. If ENORM(Z) denotes the Euclidean norm of a vector Z, then this test attempts to guarantee that

$$\text{ENORM(FVEC)} \leq (1+\text{FTOL}) \times \text{ENORM(FVECS)},$$

where FVECS denotes the functions evaluated at XSOL. If this condition is satisfied with FTOL = 10**(-K), then the final residual norm ENORM(FVEC) has K significant decimal digits and INFO is set to 1 (or to 3 if the second test is also satisfied). Unless high precision solutions are required, the recommended value for FTOL is the square root of the machine precision.
Second convergence test. If D is the diagonal matrix whose entries are defined by the array DIAG, then this test attempts to guarantee that

\[\text{ENORM}(D^*(X-XSOL)) \leq X\text{TOL} \times \text{ENORM}(D^*XSOL). \]

If this condition is satisfied with \(X\text{TOL} = 10^{-K} \), then the larger components of \(D^*X \) have \(K \) significant decimal digits and \(\text{INFO} \) is set to 2 (or to 3 if the first test is also satisfied). There is a danger that the smaller components of \(D^*X \) may have large relative errors, but if \(\text{MODE} = 1 \), then the accuracy of the components of \(X \) is usually related to their sensitivity. Unless high precision solutions are required, the recommended value for \(X\text{TOL} \) is the square root of the machine precision.

Third convergence test. This test is satisfied when the cosine of the angle between \(F\text{VEC} \) and any column of the Jacobian at \(X \) is at most \(G\text{TOL} \) in absolute value. There is no clear relationship between this test and the accuracy of \(L\text{MDER} \), and furthermore, the test is equally well satisfied at other critical points, namely maximizers and saddle points. Therefore, termination caused by this test (\(\text{INFO} = 4 \)) should be examined carefully. The recommended value for \(G\text{TOL} \) is zero.

5. Unsuccessful completion.

Unsuccessful termination of \(L\text{MDER} \) can be due to improper input parameters, arithmetic interrupts, or an excessive number of function evaluations.

Improper input parameters. \(\text{INFO} \) is set to 0 if \(N \leq 0 \), or \(M < N \), or \(\text{LDEJAC} < M \), or \(\text{FTOL} < 0.0 \), or \(X\text{TOL} < 0.0 \), or \(\text{GTOL} < 0.0 \), or \(\text{MAXFEV} \leq 0 \), or \(\text{FACTOR} \leq 0.0 \).

Arithmetic interrupts. If these interrupts occur in the \(F\text{CN} \) subroutine during an early stage of the computation, they may be caused by an unacceptable choice of \(X \) by \(L\text{MDER} \). In this case, it may be possible to remedy the situation by rerunning \(L\text{MDER} \) with a smaller value of \(\text{FACTOR} \).

Excessive number of function evaluations. A reasonable value for \(\text{MAXFEV} \) is \(100 \times (N+1) \). If the number of calls to \(F\text{CN} \) with \(I\text{FLAG} = 1 \) reaches \(\text{MAXFEV} \), then this indicates that the routine is converging very slowly as measured by the progress of \(F\text{VEC} \), and \(\text{INFO} \) is set to 5. In this case, it may be helpful to restart \(L\text{MDER} \) with \(\text{MODE} \) set to 1.

\(L\text{MDER} \) is a modification of the Levenberg-Marquardt algorithm.
Two of its main characteristics involve the proper use of implicitly scaled variables (if MODE = 1) and an optimal choice for the correction. The use of implicitly scaled variables achieves scale invariance of LMDER and limits the size of the correction in any direction where the functions are changing rapidly. The optimal choice of the correction guarantees (under reasonable conditions) global convergence from starting points far from the solution and a fast rate of convergence for problems with small residuals.

Timing. The time required by LMDER to solve a given problem depends on M and N, the behavior of the functions, the accuracy requested, and the starting point. The number of arithmetic operations needed by LMDER is about N**3 to process each evaluation of the functions (call to FCN with IFLAG = 1) and M*(N**2) to process each evaluation of the Jacobian (call to FCN with IFLAG = 2). Unless FCN can be evaluated quickly, the timing of LMDER will be strongly influenced by the time spent in FCN.

Storage. LMDER requires M*N + 2*M + 6*N double precision storage locations and N integer storage locations, in addition to the storage required by the program. There are no internally declared storage arrays.

7. Subprograms required.

USER-supplied FCN
MINPACK-supplied ... DFMPAR,ENORM,LMPAR,QRFAC,QRSOLV
FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MOD

8. References.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3) which provide the best fit (in the least squares sense) of

\[x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), \quad i = 1, 15 \]

to the data

\[y = (0.14, 0.18, 0.22, 0.25, 0.29, 0.32, 0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.10, 4.39), \]
where \(u(i) = i \), \(v(i) = 16 - i \), and \(w(i) = \min(u(i), v(i)) \). The
\(i \)-th component of FVEC is thus defined by

\[
y(i) = (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).
\]

DRIVER FOR LMDER EXAMPLE.
DOUBLE PRECISION VERSION

INTEGER J, M, N, LDFJAC, MAXFEV, MODE, NPRINT, INFO, NFEV, NJEV, NWRITE
INTEGER IPVT(3)
DOUBLE PRECISION FTOL, XTOL, GTOL, FACTOR, FNORM
DOUBLE PRECISION X(3), FVEC(15), FJAC(15, 3), DIAG(3), QTF(3),
* WA1(3), WA2(3), WA3(3), WA4(15)
DOUBLE PRECISION ENORM, DPMPAR
EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.

DATA NWRITE /6/

M = 15
N = 3

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.

\[
X(1) = 1.0D0 \\
X(2) = 1.0D0 \\
X(3) = 1.0D0 \\
\]

LDFJAC = 15

SET FTOL AND XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION
AND GTOL TO ZERO. UNLESS HIGH PRECISION SOLUTIONS ARE
REQUIRED, THESE ARE THE RECOMMENDED SETTINGS.

FTOL = DSQRT(DPMPAR(1))
XTOL = DSQRT(DPMPAR(1))
GTOL = 0.0D0

MAXFEV = 400
MODE = 1
FACTOR = 1.0D2
NPRINT = 0

CALL LMDER(FCN, M, N, X, FVEC, FJAC, LDFJAC, FTOL, XTOL, GTOL,
* MAXFEV, DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, NJEV,
* IPVT, QTF, WA1, WA2, WA3, WA4)
FNORM = ENORM(M, FVEC)
WRITE (NWRITE, 1000) FNORM, NFEV, NJEV, INFO, (X(J), J=1, N)
STOP
1000 FORMAT (5X, 31H FINAL L2 NORM OF THE RESIDUALS, D15.7 //
LAST CARD OF DRIVER FOR LMDER EXAMPLE.

END

SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER M,N,LDFJAC,IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

INTEGER I
DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
 Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
 /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1D0,4.39D0/

IF (IFLAG .NE. 0) GO TO 5

INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.

RETURN

5 CONTINUE
IF (IFLAG .EQ. 2) GO TO 20
DO 10 I = 1, 15
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
10 CONTINUE
GO TO 40

20 CONTINUE
DO 30 I = 1, 15
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
 FJAC(I,1) = -1.D0
 FJAC(I,2) = TMP1*TMP2/TMP4
 FJAC(I,3) = TMP1*TMP3/TMP4
30 CONTINUE

RETURN

C
LAST CARD OF SUBROUTINE FCN.

END
Results obtained with different compilers or machines may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01

NUMBER OF FUNCTION EVALUATIONS 6

NUMBER OF JACOBIAN EVALUATIONS 5

EXIT PARAMETER 1

FINAL APPROXIMATE SOLUTION

0.8241058D-01 0.1133037D+01 0.2343695D+01
Documentation for MINPACK subroutine LMSTR1

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMSTR1 is to minimize the sum of the squares of M nonlinear functions in N variables by a modification of the Levenberg-Marquardt algorithm which uses minimal storage. This is done by using the more general least-squares solver LMSTR. The user must provide a subroutine which calculates the functions and the rows of the Jacobian.

2. Subroutine and type statements.

```fortran
SUBROUTINE LMSTR1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,
  * INFO,IPVT,WA,LWA)
  INTEGER M,N,LDFJAC,INFO,LWA
  INTEGER IPVT(N)
  DOUBLE PRECISION TOL
  DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA)
  EXTERNAL FCN
```

3. Parameters.

Parameters designated as input parameters must be specified on entry to LMSTR1 and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from LMSTR1.

FCN is the name of the user-supplied subroutine which calculates the functions and the rows of the Jacobian. FCN must be declared in an EXTERNAL statement in the user calling program, and should be written as follows.

```fortran
SUBROUTINE FCN(M,N,X,FVEC,FJROW,IFLAG)
  INTEGER M,N,IFLAG
  DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

------
IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND RETURN THIS VECTOR IN FVEC.
IF IFLAG = I CALCULATE THE (I-1)-ST ROW OF THE JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW.
------
RETURN
```
The value of IFLAG should not be changed by FCN unless the user wants to terminate execution of LMSTR1. In this case set IFLAG to a negative integer.

M is a positive integer input variable set to the number of functions.

N is a positive integer input variable set to the number of variables. N must not exceed M.

X is an array of length N. On input X must contain an initial estimate of the solution vector. On output X contains the final estimate of the solution vector.

FVEC is an output array of length M which contains the functions evaluated at the output X.

FJAC is an output N by N array. The upper triangle of FJAC contains an upper triangular matrix R such that

\[\mathbf{T} \mathbf{P} \ast (\mathbf{JAC} \ast \mathbf{JAC}) \ast \mathbf{P} = \mathbf{R} \ast \mathbf{R}, \]

where \(\mathbf{P} \) is a permutation matrix and JAC is the final calculated Jacobian. Column j of \(\mathbf{P} \) is column IPVT(j) (see below) of the identity matrix. The lower triangular part of FJAC contains information generated during the computation of \(\mathbf{R} \).

LDFJAC is a positive integer input variable not less than N which specifies the leading dimension of the array FJAC.

TOL is a nonnegative input variable. Termination occurs when the algorithm estimates either that the relative error in the sum of squares is at most TOL or that the relative error between X and the solution is at most TOL. Section 4 contains more details about TOL.

INFO is an integer output variable. If the user has terminated execution, INFO is set to the (negative) value of IFLAG. See description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.
INFO = 1 Algorithm estimates that the relative error in the sum of squares is at most TOL.
INFO = 2 Algorithm estimates that the relative error between X and the solution is at most TOL.
INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.
INFO = 4 FVEC is orthogonal to the columns of the Jacobian to
machine precision.

INFO = 5 Number of calls to FCN with IFLAG = 1 has reached 100*(N+1).

INFO = 6 TOL is too small. No further reduction in the sum of squares is possible.

INFO = 7 TOL is too small. No further improvement in the approximate solution X is possible.

Sections 4 and 5 contain more details about INFO.

IPVT is an integer output array of length N. IPVT defines a permutation matrix P such that JAC*P = Q*R, where JAC is the final calculated Jacobian, Q is orthogonal (not stored), and R is upper triangular. Column j of P is column IPVT(j) of the identity matrix.

WA is a work array of length LWA.

LWA is a positive integer input variable not less than 5*N+M.

4. Successful completion.

The accuracy of LMSTR1 is controlled by the convergence parameter TOL. This parameter is used in tests which make three types of comparisons between the approximation X and a solution XSOL. LMSTR1 terminates when any of the tests is satisfied. If TOL is less than the machine precision (as defined by the MINPACK function DPMPAR(1)), then LMSTR1 only attempts to satisfy the test defined by the machine precision. Further progress is not usually possible. Unless high precision solutions are required, the recommended value for TOL is the square root of the machine precision.

The tests assume that the functions and the Jacobian are coded consistently, and that the functions are reasonably well behaved. If these conditions are not satisfied, then LMSTR1 may incorrectly indicate convergence. The coding of the Jacobian can be checked by the MINPACK subroutine CHKDER. If the Jacobian is coded correctly, then the validity of the answer can be checked, for example, by rerunning LMSTR1 with a tighter tolerance.

First convergence test. If ENORM(Z) denotes the Euclidean norm of a vector Z, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+TOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this condition is satisfied with TOL = 10**(-K), then the final residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also satisfied).

Second convergence test. If D is a diagonal matrix (implicitly generated by LMSTR1) whose entries contain scale factors for the variables, then this test attempts to guarantee that

\[\text{ENORM}(D^*(X-XSOL)) \leq \text{TOL} \cdot \text{ENORM}(D^*XSOL). \]

If this condition is satisfied with \(\text{TOL} = 10^{*-K} \), then the larger components of \(D^*X \) have \(K \) significant decimal digits and INFO is set to 2 (or to 3 if the first test is also satisfied). There is a danger that the smaller components of \(D^*X \) may have large relative errors, but the choice of \(D \) is such that the accuracy of the components of \(X \) is usually related to their sensitivity.

Third convergence test. This test is satisfied when FVEC is orthogonal to the columns of the Jacobian to machine precision. There is no clear relationship between this test and the accuracy of LMSTR1, and furthermore, the test is equally well satisfied at other critical points, namely maximizers and saddle points. Therefore, termination caused by this test (INFO = 4) should be examined carefully.

5. Unsuccessful completion.

Unsuccessful termination of LMSTR1 can be due to improper input parameters, arithmetic interrupts, or an excessive number of function evaluations.

Improper input parameters. INFO is set to 0 if \(N \leq 0 \), or \(M < N \), or LDFJAC \(< N \), or TOL \(> 0.0 \), or LWA \(< 5*N+M \).

Arithmetic interrupts. If these interrupts occur in the FCN subroutine during an early stage of the computation, they may be caused by an unacceptable choice of X by LMSTR1. In this case, it may be possible to remedy the situation by not evaluating the functions here, but instead setting the components of FVEC to numbers that exceed those in the initial FVEC, thereby indirectly reducing the step length. The step length can be more directly controlled by using instead LMSTR, which includes in its calling sequence the step-length governing parameter FACTOR.

Excessive number of function evaluations. If the number of calls to FCN with IFLAG = 1 reaches \(100*(N+1) \), then this indicates that the routine is converging very slowly as measured by the progress of FVEC, and INFO is set to 5. In this case, it may be helpful to restart LMSTR1, thereby forcing it to disregard old (and possibly harmful) information.

LMSTR1 is a modification of the Levenberg-Marquardt algorithm. Two of its main characteristics involve the proper use of implicitly scaled variables and an optimal choice for the correction. The use of implicitly scaled variables achieves scale invariance of LMSTR1 and limits the size of the correction in any direction where the functions are changing rapidly. The optimal choice of the correction guarantees (under reasonable conditions) global convergence from starting points far from the solution and a fast rate of convergence for problems with small residuals.

Timing. The time required by LMSTR1 to solve a given problem depends on M and N, the behavior of the functions, the accuracy requested, and the starting point. The number of arithmetic operations needed by LMSTR1 is about N**3 to process each evaluation of the functions (call to FCN with IFLAG = 1) and 1.5*(N**2) to process each row of the Jacobian (call to FCN with IFLAG .GE. 2). Unless FCN can be evaluated quickly, the timing of LMSTR1 will be strongly influenced by the time spent in FCN.

Storage. LMSTR1 requires N**2 + 2*M + 6*N double precision storage locations and N integer storage locations, in addition to the storage required by the program. There are no internally declared storage arrays.

7. Subprograms required.

USER-supplied FCN

MINPACK-supplied ... DPMPAR, ENORM, LMSTR, LMPAR, QRFAC, QRSOLV, RWUPDT

FORTRAN-supplied ... DABS, DMAX1, DMIN1, DSQRT, MOD

8. References.

9. Example.

The problem is to determine the values of \(x(1) \), \(x(2) \), and \(x(3) \) which provide the best fit (in the least squares sense) of

\[
x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), \quad i = 1, 15
\]
to the data

\[y = (0.14, 0.18, 0.22, 0.25, 0.29, 0.32, 0.35, 0.39, \\
0.37, 0.58, 0.73, 0.96, 1.34, 2.10, 4.39), \]

where \(u(i) = i \), \(v(i) = 16 - i \), and \(w(i) = \min(u(i), v(i)) \). The i-th component of FVEC is thus defined by

\[y(i) = (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))). \]

DRIVER FOR LMSTR1 EXAMPLE.
DOUBLE PRECISION VERSION

INTEGER J, M, N, LDFJAC, INFO, LWA, NWRITE
INTEGER IPVT(3)
DOUBLE PRECISION TOL, FNORM
DOUBLE PRECISION X(3), FVEC(15), FJAC(3, 3), WA(30)
DOUBLE PRECISION ENORM, DPMPAR
EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.

DATA NWRITE /6/

M = 15
N = 3

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.

X(1) = 1.0D0
X(2) = 1.0D0
X(3) = 1.0D0

LDFJAC = 3
LWA = 30

SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
THIS IS THE RECOMMENDED SETTING.

TOL = DSNRT(DPMPAR(1))

CALL LMSTR1(FCN, M, N, X, FVEC, FJAC, LDFJAC, TOL,
* INFO, IPVT, WA, LWA)
FNORM = ENORM(M, FVEC)
WRITE (NWRITE, 1000) FNORM, INFO, (X(J), J=1, N)
STOP

1000 FORMAT (5X, 31H FINAL L2 NORM OF THE RESIDUALS, D15.7 //
* 5X, 15H EXIT PARAMETER, 16X, I10 //
* 5X, 27H FINAL APPROXIMATE SOLUTION // 5X, 3D15.7)
LAST CARD OF DRIVER FOR LMSTR1 EXAMPLE.

END

SUBROUTINE FCN(M,N,X,FVEC,FJROW,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

SUBROUTINE FCN FOR LMSTR1 EXAMPLE.

INTEGER I
DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
* Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
* /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
* 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1D0,4.39D0/

IF (IFLAG .GE. 2) GO TO 20
DO 10 I = 1, 15
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
10 CONTINUE
GO TO 40
20 CONTINUE
I = IFLAG - 1
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
 FJROW(1) = -1.D0
 FJROW(2) = TMP1*TMP2/TMP4
 FJROW(3) = TMP1*TMP3/TMP4
30 CONTINUE
40 CONTINUE
RETURN

LAST CARD OF SUBROUTINE FCN.

END

Results obtained with different compilers or machines may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01
EXIT PARAMETER 1

FINAL APPROXIMATE SOLUTION
 0.8241058D-01 0.1133037D+01 0.2343695D+01
Documentation for MINPACK subroutine LMSTR

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMSTR is to minimize the sum of the squares of M nonlinear functions in N variables by a modification of the Levenberg-Marquardt algorithm which uses minimal storage. The user must provide a subroutine which calculates the functions and the rows of the Jacobian.

2. Subroutine and type statements.

```fortran
SUBROUTINE LMSTR(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
  * MAXFEV,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,
  * IPVT,QTF,WA1,WA2,WA3,WA4)
  INTEGER M,N,LDFJAC,M MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV
  INTEGER IPVT(N)
  DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR
  DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),DIAG(N),QTF(N),
  * WA1(N),WA2(N),WA3(N),WA4(M)
```

3. Parameters.

Parameters designated as input parameters must be specified on entry to LMSTR and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from LMSTR.

FCN is the name of the user-supplied subroutine which calculates the functions and the rows of the Jacobian. FCN must be declared in an EXTERNAL statement in the user calling program, and should be written as follows.

```fortran
SUBROUTINE FCN(M,N,X,FVEC,FJROW,IFLAG)
  INTEGER M,N,IFLAG
  DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

  ------
  IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND RETURN THIS VECTOR IN FVEC.
  IF IFLAG = 1 CALCULATE THE (I-1)-ST ROW OF THE JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW.
  ------
  RETURN
```
The value of IFLAG should not be changed by FCN unless the user wants to terminate execution of LMSTR. In this case set IFLAG to a negative integer.

M is a positive integer input variable set to the number of functions.

N is a positive integer input variable set to the number of variables. N must not exceed M.

X is an array of length N. On input X must contain an initial estimate of the solution vector. On output X contains the final estimate of the solution vector.

FVEC is an output array of length M which contains the functions evaluated at the output X.

FJAC is an output N by N array. The upper triangle of FJAC contains an upper triangular matrix R such that

\[T \quad T \quad T \]
\[P \ast (JAC \ast JAC) \ast P = R \ast R, \]

where P is a permutation matrix and JAC is the final calculated Jacobian. Column j of P is column IPVT(j) (see below) of the identity matrix. The lower triangular part of FJAC contains information generated during the computation of R.

LDFJAC is a positive integer input variable not less than N which specifies the leading dimension of the array FJAC.

FTOL is a nonnegative input variable. Termination occurs when both the actual and predicted relative reductions in the sum of squares are at most FTOL. Therefore, FTOL measures the relative error desired in the sum of squares. Section 4 contains more details about FTOL.

XTOL is a nonnegative input variable. Termination occurs when the relative error between two consecutive iterates is at most XTOL. Therefore, XTOL measures the relative error desired in the approximate solution. Section 4 contains more details about XTOL.

GTOL is a nonnegative input variable. Termination occurs when the cosine of the angle between FVEC and any column of the Jacobian is at most GTOL in absolute value. Therefore, GTOL measures the orthogonality desired between the function vector and the columns of the Jacobian. Section 4 contains more details about GTOL.

MAXFEV is a positive integer input variable. Termination occurs when the number of calls to FCN with IFLAG = 1 has reached
MAXFEV.

DIAG is an array of length N. If MODE = 1 (see below), DIAG is internally set. If MODE = 2, DIAG must contain positive entries that serve as multiplicative scale factors for the variables.

MODE is an integer input variable. If MODE = 1, the variables will be scaled internally. If MODE = 2, the scaling is specified by the input DIAG. Other values of MODE are equivalent to MODE = 1.

FACTOR is a positive input variable used in determining the initial step bound. This bound is set to the product of FACTOR and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR itself. In most cases FACTOR should lie in the interval (.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled printing of iterates if it is positive. In this case, FCN is called with IFLAG = 0 at the beginning of the first iteration and every NPRINT iterations thereafter and immediately prior to return, with X and FVEC available for printing. If NPRINT is not positive, no special calls of FCN with IFLAG = 0 are made.

INFO is an integer output variable. If the user has terminated execution, INFO is set to the (negative) value of IFLAG. See description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.
INFO = 1 Both actual and predicted relative reductions in the sum of squares are at most FTOL.
INFO = 2 Relative error between two consecutive iterates is at most XTOL.
INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.
INFO = 4 The cosine of the angle between FVEC and any column of the Jacobian is at most GTOL in absolute value.
INFO = 5 Number of calls to FCN with IFLAG = 1 has reached MAXFEV.
INFO = 6 FTOL is too small. No further reduction in the sum of squares is possible.
INFO = 7 XTOL is too small. No further improvement in the approximate solution X is possible.
INFO = 8 GTOL is too small. FVEC is orthogonal to the columns of the Jacobian to machine precision.
Sections 4 and 5 contain more details about INFO.

NFEV is an integer output variable set to the number of calls to
FCN with IFLAG = 1.

NJEV is an integer output variable set to the number of calls to
FCN with IFLAG = 2.

IPVT is an integer output array of length N. IPVT defines a
permutation matrix P such that JAC*P = Q*R, where JAC is the
final calculated Jacobian, Q is orthogonal (not stored), and R
is upper triangular. Column j of P is column IPVT(j) of the identity matrix.

QTF is an output array of length N which contains the first N
elements of the vector (Q transpose)*FVEC.

WA1, WA2, and WA3 are work arrays of length N.

WA4 is a work array of length M.

4. Successful completion.

The accuracy of LMSTR is controlled by the convergence parameters FTOL, XTOL, and GTOL. These parameters are used in tests which make three types of comparisons between the approximation X and a solution XSOL. LMSTR terminates when any of the tests is satisfied. If any of the convergence parameters is less than
the machine precision (as defined by the MINPACK function
DPMPAR(1)), then LMSTR only attempts to satisfy the test defined
by the machine precision. Further progress is not usually pos-
sible.

The tests assume that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then LMSTR may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning LMSTR with tighter toler-
ances.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

\[\text{ENORM(FVEC)} \leq (1+FTOL)\times\text{ENORM(FVECS)}, \]

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with FTOL = 10**(−K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also satis-
fied). Unless high precision solutions are required, the
recommended value for FTOL is the square root of the machine
precision.

Second convergence test. If D is the diagonal matrix whose entries are defined by the array DIAG, then this test attempts to guarantee that

$$\text{ENORM}(D^*(X-XSOL)) \leq \text{XTOL} \times \text{ENORM}(D^*XSOL).$$

If this condition is satisfied with $\text{XTOL} = 10^{*-K}$, then the larger components of D^*X have K significant decimal digits and INFO is set to 2 (or to 3 if the first test is also satisfied). There is a danger that the smaller components of D^*X may have large relative errors, but if $\text{MODE} = 1$, then the accuracy of the components of X is usually related to their sensitivity. Unless high precision solutions are required, the recommended value for XTOL is the square root of the machine precision.

Third convergence test. This test is satisfied when the cosine of the angle between FVEC and any column of the Jacobian at X is at most GTOL in absolute value. There is no clear relationship between this test and the accuracy of LMSTR, and furthermore, the test is equally well satisfied at other critical points, namely maximizers and saddle points. Therefore, termination caused by this test ($\text{INFO} = 4$) should be examined carefully. The recommended value for GTOL is zero.

5. Unsuccessful completion.

Unsuccessful termination of LMSTR can be due to improper input parameters, arithmetic interrupts, or an excessive number of function evaluations.

Improper input parameters. INFO is set to 0 if $N \leq 0$, or $M < N$, or $\text{LDFJAC} < N$, or $\text{FTOL} < 0.00$, or $\text{XTOL} < 0.00$, or $\text{GTOL} < 0.00$, or $\text{MAXFEV} \leq 0$, or $\text{FACTOR} \leq 0.00$.

Arithmetic interrupts. If these interrupts occur in the FCN subroutine during an early stage of the computation, they may be caused by an unacceptable choice of X by LMSTR. In this case, it may be possible to remedy the situation by rerunning LMSTR with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value for MAXFEV is $100*(N+1)$. If the number of calls to FCN with $\text{IFLAG} = 1$ reaches MAXFEV, then this indicates that the routine is converging very slowly as measured by the progress of FVEC, and INFO is set to 5. In this case, it may be helpful to restart LMSTR with MODE set to 1.

LMSTR is a modification of the Levenberg-Marquardt algorithm. Two of its main characteristics involve the proper use of implicitly scaled variables (if $\text{MODE} = 1$) and an optimal choice for the correction. The use of implicitly scaled variables achieves scale invariance of LMSTR and limits the size of the correction in any direction where the functions are changing rapidly. The optimal choice of the correction guarantees (under reasonable conditions) global convergence from starting points far from the solution and a fast rate of convergence for problems with small residuals.

Timing. The time required by LMSTR to solve a given problem depends on M and N, the behavior of the functions, the accuracy requested, and the starting point. The number of arithmetic operations needed by LMSTR is about $N**3$ to process each evaluation of the functions (call to FCN with $\text{IFLAG} = 1$) and $1.5*(N**2)$ to process each row of the Jacobian (call to FCN with $\text{IFLAG} \geq 2$). Unless FCN can be evaluated quickly, the timing of LMSTR will be strongly influenced by the time spent in FCN.

Storage. LMSTR requires $N**2 + 2*M + 6*N$ double precision storage locations and N integer storage locations, in addition to the storage required by the program. There are no internally declared storage arrays.

7. Subprograms required.

USER-supplied FCN

MINPACK-supplied ... DMPAR,ENORM,LMPAR,QRFAC,QRSOLV,RWUPDT

FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MOD

8. References.

9. Example.

The problem is to determine the values of $x(1)$, $x(2)$, and $x(3)$ which provide the best fit (in the least squares sense) of

$$x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), \ i = 1, 15$$

to the data

$$y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,$$

$$0.37,0.58,0.73,0.96,1.34,2.10,4.39),$$
where \(u(i) = i, \ v(i) = 16 - i, \) and \(w(i) = \min(u(i),v(i)) \). The
i-th component of FVEC is thus defined by

\[
y(i) = (x(1) + u(i)/(v(i))x(2) + w(i)x(3)).
\]

DRIVER FOR LMSTR EXAMPLE.
DOUBLE PRECISION VERSION

INTEGER J,M,N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV,NWRITE
INTEGER IPVT(3)
DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR,FNORM
DOUBLE PRECISION X(3),FVEC(15),FJAC(3,3),DIAG(3),QTF(3),
* \quad WA1(3),WA2(3),WA3(3),WA4(15)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.

DATA NWRITE /6/

M = 15
N = 3

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.

X(1) = 1.DO
X(2) = 1.DO
X(3) = 1.DO

LDFJAC = 3

SET FTOL AND XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION
AND GTOL TO ZERO. UNLESS HIGH PRECISION SOLUTIONS ARE
REQUIRED, THESE ARE THE RECOMMENDED SETTINGS.

FTOL = DSQRT(DPMPAR(1))
XTOL = DSQRT(DPMPAR(1))
GTOL = 0.DO

MAXFEV = 400
MODE = 1
FACTOR = 1.D2
NPRINT = 0

CALL LMSTR(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
* \quad MAXFEV,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,
* \quad IPVT,QTF,WA1,WA2,WA3,WA4)
FNORM = ENORM(M,FVEC)
WRITE (NWRITE,1000) FNORM,NFEV,NJEV,INFO,(X(J),J=1,N)
STOP
1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
LAST CARD OF DRIVER FOR LMSTR EXAMPLE.

END

SUBROUTINE FCN(M,N,X,FVEC,FJROW,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

SUBROUTINE FCN FOR LMSTR EXAMPLE.

INTEGER I
DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
 * Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
 * /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
 * 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1D0,4.39D0/

IF (IFLAG .NE. 0) GO TO 5

INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.

RETURN

5 CONTINUE
IF (IFLAG .GE. 2) GO TO 20
DO 10 I = 1, 15
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
10 CONTINUE
GO TO 40

20 CONTINUE
I = IFLAG - 1
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
 FJROW(1) = -1.DO
 FJROW(2) = TMP1*TMP2/TMP4
 FJROW(3) = TMP1*TMP3/TMP4
30 CONTINUE
40 CONTINUE
RETURN

LAST CARD OF SUBROUTINE FCN.

END
Results obtained with different compilers or machines may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01
NUMBER OF FUNCTION EVALUATIONS 6
NUMBER OF JACOBIAN EVALUATIONS 5
EXIT PARAMETER 1
FINAL APPROXIMATE SOLUTION
 0.8241058D-01 0.1133037D+01 0.2343695D+01
Documentation for MINPACK subroutine LMDIF1

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMDIF1 is to minimize the sum of the squares of M nonlinear functions in N variables by a modification of the Levenberg-Marquardt algorithm. This is done by using the more general least-squares solver LMDIF. The user must provide a subroutine which calculates the functions. The Jacobian is then calculated by a forward-difference approximation.

2. Subroutine and type statements.

SUBROUTINE LMDIF1(FCN,M,N,X,FVEC,TOL,INFO,IWA,WA,LWA)
INTEGER M,N,INFO,IWA
INTEGER IWA(N)
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(M),WA(LWA)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on entry to LMDIF1 and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from LMDIF1.

FCN is the name of the user-supplied subroutine which calculates the functions. FCN must be declared in an EXTERNAL statement in the user calling program, and should be written as follows.

SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M)

CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

RETURN
END

The value of IFLAG should not be changed by FCN unless the user wants to terminate execution of LMDIF1. In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of functions.

N is a positive integer input variable set to the number of variables. N must not exceed M.

X is an array of length N. On input X must contain an initial estimate of the solution vector. On output X contains the final estimate of the solution vector.

FVEC is an output array of length M which contains the functions evaluated at the output X.

TOL is a nonnegative input variable. Termination occurs when the algorithm estimates either that the relative error in the sum of squares is at most TOL or that the relative error between X and the solution is at most TOL. Section 4 contains more details about TOL.

INFO is an integer output variable. If the user has terminated execution, INFO is set to the (negative) value of IFLAG. See description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Algorithm estimates that the relative error in the sum of squares is at most TOL.

INFO = 2 Algorithm estimates that the relative error between X and the solution is at most TOL.

INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4 FVEC is orthogonal to the columns of the Jacobian to machine precision.

INFO = 5 Number of calls to FCN has reached or exceeded $200*(N+1)$.

INFO = 6 TOL is too small. No further reduction in the sum of squares is possible.

INFO = 7 TOL is too small. No further improvement in the approximate solution X is possible.

Sections 4 and 5 contain more details about INFO.

IWA is an integer work array of length N.

WA is a work array of length LWA.

LWA is a positive integer input variable not less than
\[M \times N + 5 \times N + M. \]

4. Successful completion.

The accuracy of LMDIF1 is controlled by the convergence parameter TOL. This parameter is used in tests which make three types of comparisons between the approximation X and a solution XSOL. LMDIF1 terminates when any of the tests is satisfied. If TOL is less than the machine precision (as defined by the MINPACK function DPMPAR(1)), then LMDIF1 only attempts to satisfy the test defined by the machine precision. Further progress is not usually possible. Unless high precision solutions are required, the recommended value for TOL is the square root of the machine precision.

The tests assume that the functions are reasonably well behaved. If this condition is not satisfied, then LMDIF1 may incorrectly indicate convergence. The validity of the answer can be checked, for example, by rerunning LMDIF1 with a tighter tolerance.

First convergence test. If \(ENORM(Z) \) denotes the Euclidean norm of a vector Z, then this test attempts to guarantee that

\[
ENORM(FVEC) \leq (1 + TOL) \times ENORM(FVECS),
\]

where FVECS denotes the functions evaluated at XSOL. If this condition is satisfied with \(TOL = 10^{-22} \), then the final residual norm \(ENORM(FVEC) \) has K significant decimal digits and INFO is set to 1 (or to 3 if the second test is also satisfied).

Second convergence test. If D is a diagonal matrix (implicitly generated by LMDIF1) whose entries contain scale factors for the variables, then this test attempts to guarantee that

\[
ENORM(D \times (X - XSOL)) \leq TOL \times ENORM(D \times XSOL).
\]

If this condition is satisfied with \(TOL = 10^{-22} \), then the larger components of \(D \times X \) have K significant decimal digits and INFO is set to 2 (or to 3 if the first test is also satisfied). There is a danger that the smaller components of \(D \times X \) may have large relative errors, but the choice of D is such that the accuracy of the components of X is usually related to their sensitivity.

Third convergence test. This test is satisfied when FVEC is orthogonal to the columns of the Jacobian to machine precision. There is no clear relationship between this test and the accuracy of LMDIF1, and furthermore, the test is equally well satisfied at other critical points, namely maximizers and saddle points. Also, errors in the functions (see below) may result in the test being satisfied at a point not close to the
minimum. Therefore, termination caused by this test (INFO = 4) should be examined carefully.

5. Unsuccessful completion.

Unsuccessful termination of LMDIF1 can be due to improper input parameters, arithmetic interrupts, an excessive number of function evaluations, or errors in the functions.

Improper input parameters. INFO is set to 0 if N .LE. 0, or M .LT. N, or TOL .LT. 0.DO, or LW A .LT. M*N+5*N+M.

Arithmetic interrupts. If these interrupts occur in the FCN subroutine during an early stage of the computation, they may be caused by an unacceptable choice of X by LMDIF1. In this case, it may be possible to remedy the situation by not evaluating the functions here, but instead setting the components of FVEC to numbers that exceed those in the initial FVEC, thereby indirectly reducing the step length. The step length can be more directly controlled by using instead LMDIF, which includes in its calling sequence the step-length-governing parameter FACTOR.

Excessive number of function evaluations. If the number of calls to FCN reaches 200*(N+1), then this indicates that the routine is converging very slowly as measured by the progress of FVEC, and INFO is set to 5. In this case, it may be helpful to restart LMDIF1, thereby forcing it to disregard old (and possibly harmful) information.

Errors in the functions. The choice of step length in the forward-difference approximation to the Jacobian assumes that the relative errors in the functions are of the order of the machine precision. If this is not the case, LMDIF1 may fail (usually with INFO = 4). The user should then use LMDIF instead, or one of the programs which require the analytic Jacobian (LMDER1 and LMDER).

LMDIF1 is a modification of the Levenberg-Marquardt algorithm. Two of its main characteristics involve the proper use of implicitly scaled variables and an optimal choice for the correction. The use of implicitly scaled variables achieves scale invariance of LMDIF1 and limits the size of the correction in any direction where the functions are changing rapidly. The optimal choice of the correction guarantees (under reasonable conditions) global convergence from starting points far from the solution and a fast rate of convergence for problems with small residuals.

Timing. The time required by LMDIF1 to solve a given problem
depends on M and N, the behavior of the functions, the accu-

racy requested, and the starting point. The number of arith-

cmetic operations needed by LMDIF1 is about N**3 to process
each evaluation of the functions (one call to FCN) and
M*(N**2) to process each approximation to the Jacobian (N
calls to FCN). Unless FCN can be evaluated quickly, the tim-
ing of LMDIF1 will be strongly influenced by the time spent in
FCN.

Storage. LMDIF1 requires M*N + 2*M + 6*N double precision sto-

rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

7. Subprograms required.

 USER-supplied FCN

 MINPACK-supplied ... DPMPAR,ENORM,FDJAC2,LMDIF,LMPAR,
 QRFAC,QRSLV

 FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MOD

8. References.

 Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation

9. Example.

 The problem is to determine the values of x(1), x(2), and x(3)
 which provide the best fit (in the least squares sense) of

 \[x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), \quad i = 1, 15 \]

 to the data

 \[y = (0.14, 0.18, 0.22, 0.25, 0.29, 0.32, 0.35, 0.39, \]
 \[0.37, 0.58, 0.73, 0.96, 1.34, 2.10, 4.39), \]

 where u(i) = i, v(i) = 16 - i, and w(i) = \(\min(u(i)\),v(i))\). The
 i-th component of FVEC is thus defined by

 \[y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))). \]

C
C DRIVER FOR LMDIF1 EXAMPLE.
C
C DOUBLE PRECISION VERSION

INTEGER J,M,N,INFO,LWA,NWRITE
INTEGER IWA(3)
DOUBLE PRECISION TOL,ENORM
DOUBLE PRECISION X(3),FVEC(15),W(75)
DOUBLE PRECISION ENORM,DPMMPAR
EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.

DATA NWRITE /6/

M = 15
N = 3

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.

X(1) = 1.D0
X(2) = 1.D0
X(3) = 1.D0

LWA = 75

SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
THIS IS THE RECOMMENDED SETTING.

TOL = DSQRT(DPMPAR(1))

CALL LMDIF1(FCN,M,N,X,FVEC,TOL,INFO,IWA,W,LWA)
FNORM = ENORM(M,FVEC)
WRITE (NWRITE,1000) FNORM,INFO,(X(J),J=1,N)
STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,15H EXIT PARAMETER,16X,110 //
* 5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)

LAST CARD OF DRIVER FOR LMDIF1 EXAMPLE.

END

SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M)

SUBROUTINE FCN FOR LMDIF1 EXAMPLE.

INTEGER I
DOUBLE PRECISION TMP1,TMP2,TMP3
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
* Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
* /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
* 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1D0,4.39D0/
DO 10 I = 1, 15
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I .GT. 8) TMP3 = TMP2
 FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
10 CONTINUE
RETURN

LAST CARD OF SUBROUTINE FCN.

END

Results obtained with different compilers or machines may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01
EXIT PARAMETER 1
FINAL APPROXIMATE SOLUTION
 0.8241057D-01 0.1133037D+01 0.2343695D+01
Documentation for MINPACK subroutine LMDIF

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMDIF is to minimize the sum of the squares of M nonlinear functions in N variables by a modification of the Levenberg-Marquardt algorithm. The user must provide a subroutine which calculates the functions. The Jacobian is then calculated by a forward-difference approximation.

2. Subroutine and type statements.

```
SUBROUTINE LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN,
*                  DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,FJAC,LDFJAC,
*                  IPVT,QTF,WA1,WA2,WA3,WA4)
   INTEGER M,N,MAXFEV,MODE,NPRINT,INFO,NFEV,LDFJAC
   INTEGER IPVT(N)
   DOUBLE PRECISION FTOL,XTOL,GTOL,EPSFCN,FACTOR
   DOUBLE PRECISION X(N),FVEC(M),DIAG(N),FJAC(LDFJAC,N),QTF(N),
*                  WA1(N),WA2(N),WA3(N),WA4(M)
   EXTERNAL FCN
```

3. Parameters.

Parameters designated as input parameters must be specified on entry to LMDIF and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from LMDIF.

FCN is the name of the user-supplied subroutine which calculates the functions. FCN must be declared in an EXTERNAL statement in the user calling program, and should be written as follows.

```
SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
   INTEGER M,N,IFLAG
   DOUBLE PRECISION X(N),FVEC(M)
```

```
       ---------
       CALCULATE THE FUNCTIONS AT X AND
       RETURN THIS VECTOR IN FVEC.
       ---------
       RETURN
       END
```
The value of IFLAG should not be changed by FCN unless the user wants to terminate execution of LMDIF. In this case set IFLAG to a negative integer.

M is a positive integer input variable set to the number of functions.

N is a positive integer input variable set to the number of variables. N must not exceed M.

X is an array of length N. On input X must contain an initial estimate of the solution vector. On output X contains the final estimate of the solution vector.

FVEC is an output array of length M which contains the functions evaluated at the output X.

FTOL is a nonnegative input variable. Termination occurs when both the actual and predicted relative reductions in the sum of squares are at most FTOL. Therefore, FTOL measures the relative error desired in the sum of squares. Section 4 contains more details about FTOL.

XTOL is a nonnegative input variable. Termination occurs when the relative error between two consecutive iterates is at most XTOL. Therefore, XTOL measures the relative error desired in the approximate solution. Section 4 contains more details about XTOL.

GTOL is a nonnegative input variable. Termination occurs when the cosine of the angle between FVEC and any column of the Jacobian is at most GTOL in absolute value. Therefore, GTOL measures the orthogonality desired between the function vector and the columns of the Jacobian. Section 4 contains more details about GTOL.

MAXFEV is a positive integer input variable. Termination occurs when the number of calls to FCN is at least MAXFEV by the end of an iteration.

EPSFCN is an input variable used in determining a suitable step for the forward-difference approximation. This approximation assumes that the relative errors in the functions are of the order of EPSFCN. If EPSFCN is less than the machine precision, it is assumed that the relative errors in the functions are of the order of the machine precision.

DIAG is an array of length N. If MODE = 1 (see below), DIAG is internally set. If MODE = 2, DIAG must contain positive entries that serve as multiplicative scale factors for the variables.

MODE is an integer input variable. If MODE = 1, the variables will be scaled internally. If MODE = 2, the scaling is
specified by the input DIAG. Other values of MODE are equivalent to MODE = 1.

FACTOR is a positive input variable used in determining the initial step bound. This bound is set to the product of FACTOR and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR itself. In most cases FACTOR should lie in the interval (.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled printing of iterates if it is positive. In this case, FCN is called with IFLAG = 0 at the beginning of the first iteration and every NPRINT iterations thereafter and immediately prior to return, with X and FVEC available for printing. If NPRINT is not positive, no special calls of FCN with IFLAG = 0 are made.

INFO is an integer output variable. If the user has terminated execution, INFO is set to the (negative) value of IFLAG. See description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.
INFO = 1 Both actual and predicted relative reductions in the sum of squares are at most FTOL.
INFO = 2 Relative error between two consecutive iterates is at most XTOL.
INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.
INFO = 4 The cosine of the angle between FVEC and any column of the Jacobian is at most GTOL in absolute value.
INFO = 5 Number of calls to FCN has reached or exceeded MAXFEV.
INFO = 6 FTOL is too small. No further reduction in the sum of squares is possible.
INFO = 7 XTOL is too small. No further improvement in the approximate solution X is possible.
INFO = 8 GTOL is too small. FVEC is orthogonal to the columns of the Jacobian to machine precision.

Sections 4 and 5 contain more details about INFO.

NFEV is an integer output variable set to the number of calls to FCN.

FJAC is an output M by N array. The upper N by N submatrix of FJAC contains an upper triangular matrix R with diagonal elements of nonincreasing magnitude such that
\[P \cdot (JAC \cdot JAC) \cdot P = R \cdot R, \]

where \(P \) is a permutation matrix and \(JAC \) is the final calculated Jacobian. Column \(j \) of \(P \) is column \(IPVT(j) \) (see below) of the identity matrix. The lower trapezoidal part of \(FJAC \) contains information generated during the computation of \(R \).

\(LDFJAC \) is a positive integer input variable not less than \(M \) which specifies the leading dimension of the array \(FJAC \).

\(IPVT \) is an integer output array of length \(N \). \(IPVT \) defines a permutation matrix \(P \) such that \(JAC \cdot P = Q \cdot R \), where \(JAC \) is the final calculated Jacobian, \(Q \) is orthogonal (not stored), and \(R \) is upper triangular with diagonal elements of nonincreasing magnitude. Column \(j \) of \(P \) is column \(IPVT(j) \) of the identity matrix.

\(QT \) is an output array of length \(N \) which contains the first \(N \) elements of the vector \((Q \text{ transpose}) \cdot FVEC \).

\(WA1, WA2, \) and \(WA3 \) are work arrays of length \(N \).

\(WA4 \) is a work array of length \(M \).

4. Successful completion.

The accuracy of \(LMDIF \) is controlled by the convergence parameters \(FTOL, XTOL, \) and \(GTOL \). These parameters are used in tests which make three types of comparisons between the approximation \(X \) and a solution \(XSOL \). \(LMDIF \) terminates when any of the tests is satisfied. If any of the convergence parameters is less than the machine precision (as defined by the \(\text{MINPACK function DPMPAR}(1) \)), then \(LMDIF \) only attempts to satisfy the test defined by the machine precision. Further progress is not usually possible.

The tests assume that the functions are reasonably well behaved. If this condition is not satisfied, then \(LMDIF \) may incorrectly indicate convergence. The validity of the answer can be checked, for example, by rerunning \(LMDIF \) with tighter tolerances.

First convergence test. If \(ENORM(Z) \) denotes the Euclidean norm of a vector \(Z \), then this test attempts to guarantee that

\[ENORM(FVEC) \leq (1+FTOL) \cdot ENORM(FVECS), \]

where \(FVECS \) denotes the functions evaluated at \(XSOL \). If this condition is satisfied with \(FTOL = 10^{**(-K)} \), then the final residual norm \(ENORM(FVEC) \) has \(K \) significant decimal digits and \(INFO \) is set to 1 (or to 3 if the second test is also satisfied). Unless high precision solutions are required, the
recommended value for FTOL is the square root of the machine precision.

Second convergence test. If D is the diagonal matrix whose entries are defined by the array DIAG, then this test attempts to guarantee that

\[\text{ENORM}(D^*(X-\text{XSOL})) \leq \text{XTOL} \times \text{ENORM}(D^*\text{XSOL}). \]

If this condition is satisfied with XTOL = 10**(-K), then the larger components of D*X have K significant decimal digits and INFO is set to 2 (or to 3 if the first test is also satisfied). There is a danger that the smaller components of D*X may have large relative errors, but if MODE = 1, then the accuracy of the components of X is usually related to their sensitivity. Unless high precision solutions are required, the recommended value for XTOL is the square root of the machine precision.

Third convergence test. This test is satisfied when the cosine of the angle between FVEC and any column of the Jacobian at X is at most GTOL in absolute value. There is no clear relationship between this test and the accuracy of LMDIF, and furthermore, the test is equally well satisfied at other critical points, namely maximizers and saddle points. Therefore, termination caused by this test (INFO = 4) should be examined carefully. The recommended value for GTOL is zero.

5. Unsuccessful completion.

Unsuccessful termination of LMDIF can be due to improper input parameters, arithmetic interrupts, or an excessive number of function evaluations.

Improper input parameters. INFO is set to 0 if N .LE. 0, or M .LT. N, or LDFJAC .LT. M, or FTOL .LT. 0.DO, or XTOL .LT. 0.DO, or GTOL .LT. 0.DO, or MAXFEV .LE. 0, or FACTOR .LE. 0.DO.

Arithmetic interrupts. If these interrupts occur in the FCN subroutine during an early stage of the computation, they may be caused by an unacceptable choice of X by LMDIF. In this case, it may be possible to remedy the situation by rerunning LMDIF with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value for MAXFEV is 200*(N+1). If the number of calls to FCN reaches MAXFEV, then this indicates that the routine is converging very slowly as measured by the progress of FVEC, and INFO is set to 5. In this case, it may be helpful to restart LMDIF with MODE set to 1.

LMDIF is a modification of the Levenberg-Marquardt algorithm. Two of its main characteristics involve the proper use of implicitly scaled variables (if MODE = 1) and an optimal choice for the correction. The use of implicitly scaled variables achieves scale invariance of LMDIF and limits the size of the correction in any direction where the functions are changing rapidly. The optimal choice of the correction guarantees (under reasonable conditions) global convergence from starting points far from the solution and a fast rate of convergence for problems with small residuals.

Timing. The time required by LMDIF to solve a given problem depends on M and N, the behavior of the functions, the accuracy requested, and the starting point. The number of arithmetic operations needed by LMDIF is about N**3 to process each evaluation of the functions (one call to FCN) and M*(N**2) to process each approximation to the Jacobian (N calls to FCN). Unless FCN can be evaluated quickly, the timing of LMDIF will be strongly influenced by the time spent in FCN.

Storage. LMDIF requires M*N + 2*M + 6*N double precision storage locations and N integer storage locations, in addition to the storage required by the program. There are no internally declared storage arrays.

7. Subprograms required.

USER-supplied FCN

MINPACK-supplied ... DPMPAR,ENORM,FDJAC2,LMPAR,QRFAC,QRSOLV

FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MOD

8. References.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3) which provide the best fit (in the least squares sense) of

\[x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), \quad i = 1, 15 \]

to the data
\[y = (0.14, 0.18, 0.22, 0.25, 0.29, 0.32, 0.35, 0.39, \\
0.37, 0.58, 0.73, 0.96, 1.34, 2.10, 4.39), \]

where \(u(i) = i \), \(v(i) = 16 - i \), and \(w(i) = \min(u(i), v(i)) \). The
i-th component of FVEC is thus defined by
\[y(i) = (x(1) + u(i))/(v(i)*x(2) + w(i)*x(3))). \]

DRIVER FOR LMDIF EXAMPLE.

DOUBLE PRECISION VERSION

INTEGER J,M,N,MAXFEV,MODE,NPRINT,INFO,NFEV,LDFJAC,NWRITE
INTEGER IPVT(3)
DOUBLE PRECISION FTOL,XTOL,CTOL,EPSCN,FACTOR,FNORM
DOUBLE PRECISION X(3),FVEC(15),DIAG(3),FJAC(15,3),QTF(3),
* WA1(3),WA2(3),WA3(3),WA4(15)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.

DATA NWRITE /6/

M = 15
N = 3

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.

\[
\begin{align*}
X(1) &= 1.0D0 \\
X(2) &= 1.0D0 \\
X(3) &= 1.0D0
\end{align*}
\]

LDFJAC = 15

SET FTOL AND XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION
AND CTOL TO ZERO. UNLESS HIGH PRECISION SOLUTIONS ARE
REQUIRED, THESE ARE THE RECOMMENDED SETTINGS.

\[
\begin{align*}
FTOL &= \text{DSQRT(DPMPAR(1))} \\
XTOL &= \text{DSQRT(DPMPAR(1))} \\
CTOL &= 0.0D0
\end{align*}
\]

MAXFEV = 800
EPSCN = 0.0D0
MODE = 1
FACTOR = 1.0D2
NPRINT = 0

CALL LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,CTOL,MAXFEV,EPSCN,
*
DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,FJAC,LDFJAC,
*
IPVT,QTF,WA1,WA2,WA3,WA4)
FNORM = ENORM(M,FVEC)
WRITE (NWRITE,1000) FNORM,NFEV,INFO,(X(J),J=1,N)
STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,31H NUMBER OF FUNCTION EVALUATIONS,I10 //
* 5X,15H EXIT PARAMETER,16X,I10 //
* 5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)

LAST CARD OF DRIVER FOR LMDIF EXAMPLE.

END
SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M)

SUBROUTINE FCN FOR LMDIF EXAMPLE.

INTEGER I
DOUBLE PRECISION TMP1,TMP2,TMP3
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),
* Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
* /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
* 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1D0,4.39D0/

IF (IFLAG .NE. 0) GO TO 5

INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.

RETURN

5 CONTINUE
DO 10 I = 1, 15
 TMP1 = I
 TMP2 = 16 - I
 TMP3 = TMP1
 IF (I.GT. 8) TMP3 = TMP2
 FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
10 CONTINUE

RETURN

LAST CARD OF SUBROUTINE FCN.

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01
NUMBER OF FUNCTION EVALUATIONS 21
EXIT PARAMETER 1
FINAL APPROXIMATE SOLUTION
0.8241057D-01 0.1133037D+01 0.2343695D+01
Documentation for MINPACK subroutine CHKDER

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of CHKDER is to check the gradients of M nonlinear functions in N variables, evaluated at a point X, for consistency with the functions themselves. The user must call CHKDER twice, first with MODE = 1 and then with MODE = 2.

2. Subroutine and type statements.

```plaintext
SUBROUTINE CHKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)
INTEGER M,N,LDFJAC,MODE
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),XP(N),FVECP(M),
               ERR(M)
```

3. Parameters.

Parameters designated as input parameters must be specified on entry to CHKDER and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from CHKDER.

M is a positive integer input variable set to the number of functions.

N is a positive integer input variable set to the number of variables.

X is an input array of length N.

FVEC is an array of length M. On input when MODE = 2, FVEC must contain the functions evaluated at X.

FJAC is an M by N array. On input when MODE = 2, the rows of FJAC must contain the gradients of the respective functions evaluated at X.

LDFJAC is a positive integer input variable not less than M which specifies the leading dimension of the array FJAC.

XP is an array of length N. On output when MODE = 1, XP is set to a neighboring point of X.
FVECP is an array of length M. On input when MODE = 2, FVECP must contain the functions evaluated at XP.

MODE is an integer input variable set to 1 on the first call and 2 on the second. Other values of MODE are equivalent to MODE = 1.

ERR is an array of length M. On output when MODE = 2, ERR contains measures of correctness of the respective gradients. If there is no severe loss of significance, then if ERR(I) is 1.0 the I-th gradient is correct, while if ERR(I) is 0.0 the I-th gradient is incorrect. For values of ERR between 0.0 and 1.0, the categorization is less certain. In general, a value of ERR(I) greater than 0.5 indicates that the I-th gradient is probably correct, while a value of ERR(I) less than 0.5 indicates that the I-th gradient is probably incorrect.

4. Successful completion.

CHKDER usually guarantees that if ERR(I) is 1.0, then the I-th gradient at X is consistent with the I-th function. This suggests that the input X be such that consistency of the gradient at X implies consistency of the gradient at all points of interest. If all the components of X are distinct and the fractional part of each one has two nonzero digits, then X is likely to be a satisfactory choice.

If ERR(I) is not 1.0 but is greater than 0.5, then the I-th gradient is probably consistent with the I-th function (the more so the larger ERR(I) is), but the conditions for ERR(I) to be 1.0 have not been completely satisfied. In this case, it is recommended that CHKDER be rerun with other input values of X. If ERR(I) is always greater than 0.5, then the I-th gradient is consistent with the I-th function.

5. Unsuccessful completion.

CHKDER does not perform reliably if cancellation or rounding errors cause a severe loss of significance in the evaluation of a function. Therefore, none of the components of X should be unusually small (in particular, zero) or any other value which may cause loss of significance. The relative differences between corresponding elements of FVECP and FVEC should be at least two orders of magnitude greater than the machine precision (as defined by the MINPACK function DMPAR(I)). If there is a severe loss of significance in the evaluation of the I-th function, then ERR(I) may be 0.0 and yet the I-th gradient could be correct.

If ERR(I) is not 0.0 but is less than 0.5, then the I-th gradient is probably not consistent with the I-th function (the more so the smaller ERR(I) is), but the conditions for ERR(I) to
be 0.0 have not been completely satisfied. In this case, it is recommended that CHKDER be rerun with other input values of X. If ERR(I) is always less than 0.5 and if there is no severe loss of significance, then the I-th gradient is not consistent with the I-th function.

CHKDER checks the I-th gradient for consistency with the I-th function by computing a forward-difference approximation along a suitably chosen direction and comparing this approximation with the user-supplied gradient along the same direction. The principal characteristic of CHKDER is its invariance to changes in scale of the variables or functions.

Timing. The time required by CHKDER depends only on M and N. The number of arithmetic operations needed by CHKDER is about N when MODE = 1 and M*N when MODE = 2.

Storage. CHKDER requires M*N + 3*M + 2*N double precision storage locations, in addition to the storage required by the program. There are no internally declared storage arrays.

7. Subprograms required.

MINPACK-supplied ... DPMPAR

FORTRAN-supplied ... DABS,DLOG10,DSQRT

8. References.

None.

9. Example.

This example checks the Jacobian matrix for the problem that determines the values of \(x(1), x(2), \) and \(x(3) \) which provide the best fit (in the least squares sense) of

\[
x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), \quad i = 1, 15
\]

to the data

\[
y = (0.14, 0.18, 0.22, 0.25, 0.29, 0.32, 0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.10, 4.39),
\]

where \(u(i) = i, \) \(v(i) = 16 - i, \) and \(w(i) = \min(u(i), v(i)) \). The \(i \)-th component of FVEC is thus defined by

\[
y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)))).
\]

DRIVER FOR CHKDER EXAMPLE.
DOUBLE PRECISION VERSION

INTEGER I,M,N,LDFJAC,MODE,NWRITE
DOUBLE PRECISION X(3),FVEC(15),FJAC(15,3),XP(3),FVECP(15),
*
ERR(15)

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.

DATA NWRITE /6/

M = 15
N = 3

THE FOLLOWING VALUES SHOULD BE SUITABLE FOR
CHECKING THE JACOBIAN MATRIX.

X(1) = 9.2D-1
X(2) = 1.3D-1
X(3) = 5.4D-1

LDFJAC = 15

MODE = 1
CALL CHKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)
MODE = 2
CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,1)
CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,2)
CALL FCN(M,N,XP,FVECP,FJAC,LDFJAC,1)
CALL CHKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)

DO 10 I = 1, M
 FVECP(I) = FVECP(I) - FVEC(I)
10 CONTINUE
 WRITE (NWRITE,1000) (FVEC(I),I=1,M)
 WRITE (NWRITE,2000) (FVECP(I),I=1,M)
 WRITE (NWRITE,3000) (ERR(I),I=1,M)
 STOP
1000 FORMAT (/5X,5H FVEC // (5X,3D15.7))
2000 FORMAT (/5X,13H FVECP - FVEC // (5X,3D15.7))
3000 FORMAT (/5X,4H ERR // (5X,3D15.7))

LAST CARD OF DRIVER FOR CHKDER EXAMPLE.

END
SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER M,N,LDFJAC,IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

SUBROUTINE FCN FOR CHKDER EXAMPLE.
INTEGER I
DOUBLE PRECISION TMP1, TMP2, TMP3, TMP4
DOUBLE PRECISION Y(15)
DATA Y(1), Y(2), Y(3), Y(4), Y(5), Y(6), Y(7), Y(8),
* Y(9), Y(10), Y(11), Y(12), Y(13), Y(14), Y(15)
* /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
* 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1D0,4.39D0/

C IF (IFLAG .EQ. 2) GO TO 20
DO 10 I = 1, 15
TMP1 = I
TMP2 = 16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))
10 CONTINUE
GO TO 40
20 CONTINUE
DO 30 I = 1, 15
TMP1 = I
TMP2 = 16 - I

C ERROR INTRODUCED INTO NEXT STATEMENT FOR ILLUSTRATION.
C CORRECTED STATEMENT SHOULD READ TMP3 = TMP1 .

C TMP3 = TMP2
IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
FJAC(I,1) = -1.0D0
FJAC(I,2) = TMP1*TMP2/TMP4
FJAC(I,3) = TMP1*TMP3/TMP4
30 CONTINUE
40 CONTINUE
RETURN

C LAST CARD OF SUBROUTINE FCN.

END

Results obtained with different compilers or machines
may be different. In particular, the differences
FVECP - FVEC are machine dependent.

FVEC
-0.1181606D+01 -0.1429655D+01 -0.1606344D+01
-0.1745269D+01 -0.1840654D+01 -0.1921586D+01
-0.1984141D+01 -0.2022537D+01 -0.2468977D+01
-0.2827562D+01 -0.3473582D+01 -0.4437612D+01
-0.6047662D+01 -0.9267761D+01 -0.1891806D+02

FVECP - FVEC
-0.7724666D-08 -0.3432405D-08 -0.2034843D-09
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2313685D-08</td>
<td>0.4331078D-08</td>
<td>0.5984096D-08</td>
<td></td>
</tr>
<tr>
<td>0.7363281D-08</td>
<td>0.8531470D-08</td>
<td>0.1488591D-07</td>
<td></td>
</tr>
<tr>
<td>0.2335850D-07</td>
<td>0.3522012D-07</td>
<td>0.5301255D-07</td>
<td></td>
</tr>
<tr>
<td>0.8266666D-07</td>
<td>0.1419747D-06</td>
<td>0.3198990D-06</td>
<td></td>
</tr>
</tbody>
</table>

ERR

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1141397D+00</td>
<td>0.9943516D-01</td>
<td>0.9674474D-01</td>
<td></td>
</tr>
<tr>
<td>0.9980447D-01</td>
<td>0.1073116D+00</td>
<td>0.1220445D+00</td>
<td></td>
</tr>
<tr>
<td>0.1526814D+00</td>
<td>0.1000000D+01</td>
<td>0.1000000D+01</td>
<td></td>
</tr>
<tr>
<td>0.1000000D+01</td>
<td>0.1000000D+01</td>
<td>0.1000000D+01</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 5
Program Listings

This chapter contains the double precision version of the MINPACK-1 program listings; both single and double precision versions of the subprograms are available with the MINPACK-1 package. The listings appear in the following (alphanumeric) order:

chkder, dogleg, enorm, fdjac1, fdjac2, hybrd, hybrd1, hybrj, hybrj1, lnder, lnder1, lmdif, lmdif1, lmpar, lmstr, lmstr1, qform, qrfac, qrsolv, rwupdt, r1mpyq, r1updt.

Functions spmpar (single precision) and dpmpar (double precision), which provide the machine-dependent constants, appear at the end.
SUBROUTINE CHKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVEC,M,FVEC,M,E)
INTEGER M,N,LDFJAC,MODE
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),XP(N),FVEC(M),
* ERR(M)

SUBROUTINE CHKDER

THIS SUBROUTINE CHECKS THE GRADIENTS OF M NONLINEAR FUNCTIONS
IN N VARIABLES, EVALUATED AT A POINT X, FOR CONSISTENCY WITH
THE FUNCTIONS THEMSELVES. THE USER MUST CALL CHKDER TWICE,
FIRST WITH MODE = 1 AND THEN WITH MODE = 2.

MODE = 1. ON INPUT, X MUST CONTAIN THE POINT OF EVALUATION.
ON OUTPUT, XP IS SET TO A NEIGHBORING POINT.

MODE = 2. ON INPUT, FVEC MUST CONTAIN THE FUNCTIONS AND THE
ROWS OF FJAC MUST CONTAIN THE GRADIENTS
OF THE RESPECTIVE FUNCTIONS EACH EVALUATED
AT X, AND FVEC MUST CONTAIN THE FUNCTIONS
EVALUATED AT XP.
ON OUTPUT, ERR CONTAINS MEASURES OF CORRECTNESS OF
THE RESPECTIVE GRADIENTS.

THE SUBROUTINE DOES NOT PERFORM RELIABLY IF CANCELLATION OR
ROUNDING ERRORS CAUSE A SEVERE LOSS OF SIGNIFICANCE IN THE
EVALUATION OF A FUNCTION. THEREFORE, NONE OF THE COMPONENTS
OF X SHOULD BE UNUSUALLY SMALL (IN PARTICULAR, ZERO) OR ANY
OTHER VALUE WHICH MAY CAUSE LOSS OF SIGNIFICANCE.

THE SUBROUTINE STATEMENT IS

SUBROUTINE CHKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVEC,M,E)

WHERE

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES.

X IS AN INPUT ARRAY OF LENGTH N.

FVEC IS AN ARRAY OF LENGTH M. ON INPUT WHEN MODE = 2,
FVEC MUST CONTAIN THE FUNCTIONS EVALUATED AT X.

FJAC IS AN M BY N ARRAY. ON INPUT WHEN MODE = 2,
The ROWS OF FJAC MUST CONTAIN THE GRADIENTS OF
THE RESPECTIVE FUNCTIONS EVALUATED AT X.

LDFJAC IS A POSITIVE INTEGER INPUT PARAMETER NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.
XP IS AN ARRAY OF LENGTH N. ON OUTPUT WHEN MODE = 1, XP IS SET TO A NEIGHBORING POINT OF X.

FVECP IS AN ARRAY OF LENGTH M. ON INPUT WHEN MODE = 2, FVECP MUST CONTAIN THE FUNCTIONS EVALUATED AT XP.

MODE IS AN INTEGER INPUT VARIABLE SET TO 1 ON THE FIRST CALL AND 2 ON THE SECOND. OTHER VALUES OF MODE ARE EQUIVALENT TO MODE = 1.

ERR IS AN ARRAY OF LENGTH M. ON OUTPUT WHEN MODE = 2, ERR CONTAINS MEASURES OF CORRECTNESS OF THE RESPECTIVE GRADIENTS. IF THERE IS NO SEVERE LOSS OF SIGNIFICANCE, THEN IF ERR(I) IS 1.0 THE I-TH GRADIENT IS CORRECT, WHILE IF ERR(I) IS 0.0 THE I-TH GRADIENT IS INCORRECT. FOR VALUES OF ERR BETWEEN 0.0 AND 1.0, THE CATEGORIZATION IS LESS CERTAIN. IN GENERAL, A VALUE OF ERR(I) GREATER THAN 0.5 INDICATES THAT THE I-TH GRADIENT IS PROBABLY CORRECT, WHILE A VALUE OF ERR(I) LESS THAN 0.5 INDICATES THAT THE I-TH GRADIENT IS PROBABLY INCORRECT.

SUBPROGRAMS CALLED

MINPACK SUPPLIED ... DPMPAR
FORTRAN SUPPLIED ... DABS,DLOG10,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARROW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER I,J
DOUBLE PRECISION EPS,EPSF,EPSLOG,EPSMCH,FACTOR,ONE,TEMP,ZERO
DOUBLE PRECISION DPMPAR
DATA FACTOR,ONE,ZERO /1.0D2,1.0D0,0.0D0/

EPSMCH IS THE MACHINE PRECISION.
EPSMCH = DPMPAR(1)
EPS = DSQRT(EPSMCH)

IF (MODE .EQ. 2) GO TO 20

MODE = 1.

DO 10 J = 1, N
 TEMP = EPS*DABS(X(J))
 IF (TEMP .EQ. ZERO) TEMP = EPS
 XP(J) = X(J) + TEMP
10 CONTINUE

GO TO 70
20 CONTINUE
C MODE = 2.
C
EPSF = FACTOR*EPSMCH
EPSLOG = DLOG10(EPS)
DO 30 I = 1, M
 ERR(I) = ZERO
30 CONTINUE
DO 50 J = 1, N
 TEMP = DABS(X(J))
 IF (TEMP .EQ. ZERO) TEMP = ONE
 DO 40 I = 1, M
 ERR(I) = ERR(I) + TEMP*FJAC(I,J)
40 CONTINUE
50 CONTINUE
DO 60 I = 1, M
 TEMP = ONE
 IF (FVEC(I) .NE. ZERO .AND. FVECP(I) .NE. ZERO
 .AND. DABS(FVECP(I)-FVEC(I)) .GE. EPSF*DABS(FVEC(I)))
 TEMP = EPS*DABS((FVECP(I)-FVEC(I))/EPS-ERR(I))
 ERR(I) = ONE
 IF (TEMP .GT. EPSMCH .AND. TEMP .LT. EPS)
 ERR(I) = (DLOG10(TEMP) - EPSLOG)/EPSLOG
 IF (TEMP .GE. EPS) ERR(I) = ZERO
60 CONTINUE
70 CONTINUE
C RETURN
C
C LAST CARD OF SUBROUTINE CHKDER.
C
END
SUBROUTINE DOGLEG(N,R,LR,DIAG,QTB,DELTA,X,W1,W2)
INTEGER N,LR
DOUBLE PRECISION DELTA
DOUBLE PRECISION R(LR),DIAG(N),QTB(N),X(N),W1(N),W2(N)

SUBROUTINE DOGLEG

GIVEN AN M BY N MATRIX A, AN N BY N NONSINGULAR DIAGONAL
MATRIX D, AN M-VECTOR B, AND A POSITIVE NUMBER DELTA, THE
PROBLEM IS TO DETERMINE THE CONVEX COMBINATION X OF THE
GAUSS-NEWTON AND SCALED GRADIENT DIRECTIONS THAT MINIMIZES
(A*X - B) IN THE LEAST SQUARES SENSE, SUBJECT TO THE
RESTRICTION THAT THE EUCLIDEAN NORM OF D*X BE AT MOST DELTA.

THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM
IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE
QR FACTORIZATION OF A, THAT IS, IF A = Q*R, WHERE Q HAS
ORTHOGONAL COLUMNS AND R IS AN UPPER TRIANGULAR MATRIX,
THEN DOGLEG EXPECTS THE FULL UPPER TRIANGLE OF R AND
THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B.

THE SUBROUTINE STATEMENT IS

SUBROUTINE DOGLEG(N,R,LR,DIAG,QTB,DELTA,X,W1,W2)

WHERE

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.
R IS AN INPUT ARRAY OF LENGTH LR WHICH MUST CONTAIN THE UPPER
TRIANGULAR MATRIX R STORED BY ROWS.
LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN
(N*N*(N+1))/2.
DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE
DIAGONAL ELEMENTS OF THE MATRIX D.
QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST
N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B.
DELTA IS A POSITIVE INPUT VARIABLE WHICH SPECIFIES AN UPPER
BOUND ON THE EUCLIDEAN NORM OF D*X.
X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE DESIRED
CONVEX COMBINATION OF THE GAUSS-NEWTON DIRECTION AND THE
SCALED GRADIENT DIRECTION.
W1 AND W2 ARE WORK ARRAYS OF LENGTH N.

SUBPROGRAMS CALLED

MINPACK-SUPPLIED ... DPMPAR,ENORM
FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARROW, KENNETH E. HILLSTROM, JORGE J. MORE

*INTEGER I,J,JJ,JP1,K,L
DOUBLE PRECISION ALPHA,BNORM,EPSMCH,QNORM,ONE,QNORM,SGNORM,SUM,
 TEMP,ZERO
DOUBLE PRECISION DPMPAR,ENNORM
DATA ONE,ZERO /1.0D0,0.0D0/

EPSMCH IS THE MACHINE PRECISION.
EPSMCH = DPMPAR(1)

FIRST, CALCULATE THE GAUSS-NEWTON DIRECTION.

JJ = (N*(N + 1))/2 + 1
DO 50 K = 1, N
 J = N - K + 1
 JP1 = J + 1
 JJ = JJ - K
 L = JJ + 1
 SUM = ZERO
 IF (N .LT. JP1) GO TO 20
 DO 10 I = JP1, N
 SUM = SUM + R(L)*X(I)
 L = L + 1
 10 CONTINUE

20 CONTINUE
 TEMP = R(JJ)
 IF (TEMP .NE. ZERO) GO TO 40
 L = J
 DO 30 I = 1, J
 TEMP = DMAX1(TEMP,DABS(R(L)))
 L = L + N - I
 30 CONTINUE
 TEMP = EPSMCH*TEMP
 IF (TEMP .EQ. ZERO) TEMP = EPSMCH

40 CONTINUE
 X(J) = (QTB(J) - SUM)/TEMP
 CONTINUE

TEST WHETHER THE GAUSS-NEWTON DIRECTION IS ACCEPTABLE.

DO 60 J = 1, N
 WA1(J) = ZERO
 WA2(J) = DIAG(J)*X(J)
60 CONTINUE
 QNORM = ENNORM(N,WA2)
 IF (QNORM .LE. DELTA) GO TO 140
THE GAUSS-NEWTON DIRECTION IS NOT ACCEPTABLE.

NEXT, CALCULATE THE SCALED GRADIENT DIRECTION.

L = 1
DO 80 J = 1, N
 TEMP = QT(B(J)
 DO 70 I = J, N
 WA1(I) = WA1(I) + R(L)*TEMP
 L = L + 1
 70 CONTINUE
 WA1(J) = WA1(J)/DIAG(J)
80 CONTINUE

CALCULATE THE NORM OF THE SCALED GRADIENT AND TEST FOR
THE SPECIAL CASE IN WHICH THE SCALED GRADIENT IS ZERO.

GNORM = ENORM(N,W(A1)
SGNORM = ZERO
ALPHA = DELTA/QNORM
IF (GNORM .EQ. ZERO) GO TO 120

CALCULATE THE POINT ALONG THE SCALED GRADIENT
AT WHICH THE QUADRATIC IS MINIMIZED.

DO 90 J = 1, N
 WA1(J) = (WA1(J)/GNORM)/DIAG(J)
90 CONTINUE

L = 1
DO 110 J = 1, N
 SUM = ZERO
 DO 100 I = J, N
 SUM = SUM + R(L)*WA1(I)
 L = L + 1
 100 CONTINUE
 WA2(J) = SUM
110 CONTINUE

TEMP = ENORM(N,W(A2)
SGNORM = (GNORM/TEMP)/TEMP

TEST WHETHER THE SCALED GRADIENT DIRECTION IS ACCEPTABLE.

ALPHA = ZERO
IF (SGNORM .GE. DELTA) GO TO 120

THE SCALED GRADIENT DIRECTION IS NOT ACCEPTABLE.
FINALLY, CALCULATE THE POINT ALONG THE DOGLEG
AT WHICH THE QUADRATIC IS MINIMIZED.

BNORM = ENORM(N,QT(B)
TEMP = (BNORM/GNORM)*BNORM/QNORM)*(SGNORM/DELTA)
TEMP = TEMP - (DELTA/QNORM)*(SGNORM/DELTA)**2
 + DSQRT((TEMP-(DELTA/QNORM)**2)*(ONE-(SGNORM/DELTA)**2))
ALPHA = ((DELTA/QNORM)*(ONE - (SGNORM/DELTA)**2))/TEMP

DOGL1090
DOGL1100
DOGL1110
DOGL1120
DOGL1130
DOGL1140
DOGL1150
DOGL1160
DOGL1170
DOGL1180
DOGL1190
DOGL1200
DOGL1210
DOGL1220
DOGL1230
DOGL1240
DOGL1250
DOGL1260
DOGL1270
DOGL1280
DOGL1290
DOGL1300
DOGL1310
DOGL1320
DOGL1330
DOGL1340
DOGL1350
DOGL1360
DOGL1370
DOGL1380
DOGL1390
DOGL1400
DOGL1410
DOGL1420
DOGL1430
DOGL1440
DOGL1450
DOGL1460
DOGL1470
DOGL1480
DOGL1490
DOGL1500
DOGL1510
DOGL1520
DOGL1530
DOGL1540
DOGL1550
DOGL1560
DOGL1570
DOGL1580
DOGL1590
DOGL1600
DOGL1610
DOGL1620
120 CONTINUE
C FORM APPROPRIATE CONVEX COMBINATION OF THE GAUSS-NEWTON
C DIRECTION AND THE SCALED GRADIENT DIRECTION.
C TEMP = (ONE - ALPHA)*DMIN1(SGNORM,DELTA)
DO 130 J = 1, N
 X(J) = TEMP*WA1(J) + ALPHA*X(J)
130 CONTINUE
140 CONTINUE
 RETURN
C LAST CARD OF SUBROUTINE DOLEG.
C END
DOUBLE PRECISION FUNCTION ENORM(N,X)
INTEGER N
DOUBLE PRECISION X(N)

FUNCTION ENORM
GIVEN AN N-VECTOR X, THIS FUNCTION CALCULATES THE
EUCLIDEAN NORM OF X.

THE EUCLIDEAN NORM IS COMPUTED BY ACCUMULATING THE SUM OF
SQUARES IN THREE DIFFERENT SUMS. THE SUMS OF SQUARES FOR THE
SMALL AND LARGE COMPONENTS ARE SCALED SO THAT NO OVERFLOWS
OCCUR. NON-DESTRUCTIVE UNDERFLOWS ARE PERMITTED. UNDERFLOWS
AND OVERFLOWS DO NOT OCCUR IN THE COMPUTATION OF THE UNSCALED
SUM OF SQUARES FOR THE INTERMEDIATE COMPONENTS.

THE DEFINITIONS OF SMALL, INTERMEDIATE AND LARGE COMPONENTS
DEPEND ON TWO CONSTANTS, RDWARF AND RGIANT. THE MAIN
RESTRICTIONS ON THESE CONSTANTS ARE THAT RDWARF**2 NOT
UNDERFLOW AND RGIANT**2 NOT OVERFLOW. THE CONSTANTS
GIVEN HERE ARE SUITABLE FOR EVERY KNOWN COMPUTER.

THE FUNCTION STATEMENT IS

DOUBLE PRECISION FUNCTION ENORM(N,X)

WHERE

N IS A POSITIVE INTEGER INPUT VARIABLE.

X IS AN INPUT ARRAY OF LENGTH N.

SUBPROGRAMS CALLED

FORTRAN-SUPPLIED ... DABS,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER I
DOUBLE PRECISION AGIANT,FLOATN,ONE,RDWARF,RGIANT,S1,S2,S3,XABS,
X1MAX,X3MAX,ZERO
DATA ONE,ZERO,RDWARF,RGIANT /1.0D0,0.0D0,3.834D-20,1.304D19/
S1 = ZERO
S2 = ZERO
S3 = ZERO
X1MAX = ZERO
X3MAX = ZERO
FLOATN = N
AGIANT = RGIANT/FLOATN
DO 90 I = 1, N
 XABS = DABS(X(I))
 IF (XABS .GT. RDWARF .AND. XABS .LT. AGIANT) GO TO 70
IF (XABS .LE. RDWARF) GO TO 30
C
C SUM FOR LARGE COMPONENTS.
C
IF (XABS .LE. X1MAX) GO TO 10
 S1 = ONE + S1*(X1MAX/XABS)**2
 X1MAX = XABS
 GO TO 20
10 CONTINUE
 S1 = S1 + (XABS/X1MAX)**2
20 CONTINUE
 GO TO 60
30 CONTINUE
C
C SUM FOR SMALL COMPONENTS.
C
IF (XABS .LE. X3MAX) GO TO 40
 S3 = ONE + S3*(X3MAX/XABS)**2
 X3MAX = XABS
 GO TO 50
40 CONTINUE
 IF (XABS .NE. ZERO) S3 = S3 + (XABS/X3MAX)**2
50 CONTINUE
 GO TO 80
60 CONTINUE
 GO TO 80
70 CONTINUE
C
C SUM FOR INTERMEDIATE COMPONENTS.
C
 S2 = S2 + XABS**2
80 CONTINUE
C
C CALCULATION OF NORM.
C
IF (S1 .EQ. ZERO) GO TO 100
 ENORM = X1MAX*DSQRT(S1+(S2/X1MAX)/X1MAX)
 GO TO 130
100 CONTINUE
 IF (S2 .EQ. ZERO) GO TO 110
 IF (S2 .GE. X3MAX)
 * ENORM = DSQRT(S2*(ONE+(X3MAX/S2)*(X3MAX*S3)))
 IF (S2 .LT. X3MAX)
 * ENORM = DSQRT(X3MAX*((S2/X3MAX)+(X3MAX*S3)))
 GO TO 120
110 CONTINUE
 ENORM = X3MAX*DSQRT(S3)
120 CONTINUE
C
LAST CARD OF FUNCTION ENORM.
C
END
SUBROUTINE FDJAC1(FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN,
 * WA1,WA2)
INTEGER N,LDFJAC,IFLAG,ML,MU
DOUBLE PRECISION EPSFCN
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),WA1(N),WA2(N)

SUBROUTINE FDJAC1

THIS SUBROUTINE COMPUTES A FORWARD-DIFFERENCE APPROXIMATION
TO THE N BY N JACOBIAN MATRIX ASSOCIATED WITH A SPECIFIED
PROBLEM OF N FUNCTIONS IN N VARIABLES. IF THE JACOBIAN HAS
A BANDED FORM, THEN FUNCTION EVALUATIONS ARE SAVED BY ONLY
APPROXIMATING THE NONZERO TERMS.

THE SUBROUTINE STATEMENT IS

SUBROUTINE FDJAC1(FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN,
 * WA1,WA2)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
IN AN EXTERNAL STATEMENT IN THE USER CALLING
PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(N,X,FVEC,IFLAG)
INTEGER N,IFLAG
DOUBLE PRECISION X(N),FVEC(N)

CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

RETURN
END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF FDJAC1.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS AND VARIABLES.

X IS AN INPUT ARRAY OF LENGTH N.

FVEC IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE
FUNCTIONS EVALUATED AT X.

FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE
APPROXIMATION TO THE JACOBIAN MATRIX EVALUATED AT X.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.
IFLAG IS AN INTEGER VARIABLE WHICH CAN BE USED TO TERMINATE THE EXECUTION OF FDJAC1. SEE DESCRIPTION OF FCN.

ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET ML TO AT LEAST N - 1.

EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE PRECISION.

MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE NUMBER OF SUPERDIAGONALS WITHIN THE BAND OF THE JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET MU TO AT LEAST N - 1.

WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N. IF ML + MU + 1 IS AT LEAST N, THEN THE JACOBIAN IS CONSIDERED DENSE, AND WA2 IS NOT REFERENCED.

SUBPROGRAMS CALLED
MINPACK-SUPPLIED ... DPMPAR
FORTRAN-SUPPLIED ... DABS,DMAX1,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARROW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER I,J,K,MSUM
DOUBLE PRECISION EPS,EPSMCH,H,TEMP,ZERO
DOUBLE PRECISION DPMPAR
DATA ZERO /0.0D0/

EPSMCH IS THE MACHINE PRECISION.

EPSMCH = DPMPAR(1)
EPS = DSQRT(DMAX1(EPSFCN,EPSMCH))
MSUM = ML + MU + 1
IF (MSUM .LT. N) GO TO 40

COMPUTATION OF DENSE APPROXIMATE JACOBIAN.

DO 20 J = 1, N
 TEMP = X(J)
 H = EPS*DABS(TEMP)

20 CONTINUE
IF (H .EQ. ZERO) H = EPS
X(J) = TEMP + H
CALL FCN(N,X,WA1,IFLAG)
IF (IFLAG .LT. 0) GO TO 30
X(J) = TEMP
DO 10 I = 1, N
 FJAC(I,J) = (WA1(I) - FVEC(I))/H
10 CONTINUE
20 CONTINUE
30 CONTINUE
GO TO 110
40 CONTINUE
C
C COMPUTATION OF BANDED APPROXIMATE JACOBIAN.
C
DO 90 K = 1, MSUM
 DO 60 J = K, N, MSUM
 WA2(J) = X(J)
 H = EPS*DABS(WA2(J))
 IF (H .EQ. ZERO) H = EPS
 X(J) = WA2(J) + H
 60 CONTINUE
CALL FCN(N,X,WA1,IFLAG)
IF (IFLAG .LT. 0) GO TO 100
DO 80 J = K, N, MSUM
 X(J) = WA2(J)
 H = EPS*DABS(WA2(J))
 IF (H .EQ. ZERO) H = EPS
 DO 70 I = 1, N
 FJAC(I,J) = ZERO
 IF (I .GE. J - MU .AND. I .LE. J + ML) FJAC(I,J) = (WA1(I) - FVEC(I))/H
70 CONTINUE
80 CONTINUE
90 CONTINUE
100 CONTINUE
110 CONTINUE
RETURN
C
C LAST CARD OF SUBROUTINE FDJAC1.
C
END
SUBROUTINE FDJAC2(FCN,M,N,X,FVEC,FJAC,LDFJAC,IFLAG,EPSFCN,WA)
INTEGER M,N,LDFJAC,IFLAG
DOUBLE PRECISION EPSFCN
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(M)

SUBROUTINE FDJAC2

THIS SUBROUTINE COMPUTES A FORWARD-DIFFERENCE APPROXIMATION
TO THE M BY N JACOBIAN MATRIX ASSOCIATED WITH A SPECIFIED
PROBLEM OF M FUNCTIONS IN N VARIABLES.

THE SUBROUTINE STATEMENT IS

SUBROUTINE FDJAC2(FCN,M,N,X,FVEC,FJAC,LDFJAC,IFLAG,EPSFCN,WA)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
IN AN EXTERNAL STATEMENT IN THE USER CALLING
PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M)

CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

RETURN
END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF FDJAC2.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

X IS AN INPUT ARRAY OF LENGTH N.

FVEC IS AN INPUT ARRAY OF LENGTH M WHICH MUST CONTAIN THE
FUNCTIONS EVALUATED AT X.

FJAC IS AN OUTPUT M BY N ARRAY WHICH CONTAINS THE
APPROXIMATION TO THE JACOBIAN MATRIX EVALUATED AT X.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.
IFLAG IS AN INTEGER VARIABLE WHICH CAN BE USED TO TERMINATE
THE EXECUTION OF FDJAC2. SEE DESCRIPTION OF FCN.

EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE
STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS
APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE
FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS
THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE
ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE
PRECISION.

WA IS A WORK ARRAY OF LENGTH M.

SUBPROGRAMS CALLED

USER-SUPPLIED FCN

MINPACK-SUPPLIED ... DPMPAR

FORTRAN-SUPPLIED ... DABS, DMAX1, DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARROW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER I,J
DOUBLE PRECISION EPS, EPSMCH, H, TEMP, ZERO
DOUBLE PRECISION DPMPAR
DATA ZERO /0.0D0/

EPSMCH IS THE MACHINE PRECISION.

EPSMCH = DPMPAR(1)

EPS = DSQRT(DMAX1(EPSFCN, EPSMCH))
DO 20 J = 1, N
 TEMP = X(J)
 H = EPS*DABS(TEMP)
 IF (H .EQ. ZERO) H = EPS
 X(J) = TEMP + H
 CALL FCN(M, N, X, WA, IFLAG)
 IF (IFLAG .LT. 0) GO TO 30
 X(J) = TEMP
 DO 10 I = 1, M
 FJAC(I, J) = (WA(I) - FVEC(I))/H
 10 CONTINUE
 20 CONTINUE
 30 CONTINUE
RETURN

LAST CARD OF SUBROUTINE FDJAC2.
INTEGER N,MAXFEV,ML,MU,MODE,NPRINT,INFO,NFEV,LDFJAC,LR HYBDO020
DOUBLE PRECISION XTOL,EPSFCN,FACTOR HYBDO030
DOUBLE PRECISION X(N),FVEC(N),DIAG(N),FJAC(LDFJAC,N),R(LR), * QTF(N),W1(N),W2(N),W3(N),W4(N) HYBDO040

EXTERNAL FCN
C *************
C SUBROUTINE HYBRD
C SUBROUTINE HYBRD IS TO FIND A ZERO OF A SYSTEM OF
C N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION
C OF THE POWELL HYBRID METHOD. THE USER MUST PROVIDE A
C SUBROUTINE WHICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS
C THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION.
C THE SUBROUTINE STATEMENT IS
C SUBROUTINE HYBRD(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,
C DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,FJAC,
C LDFJAC,R,LR,QTF,W1,W2,W3,W4)
C WHERE
C FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
C CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
C IN AN EXTERNAL STATEMENT IN THE USER CALLING
C PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
C SUBROUTINE FCN(N,X,FVEC,IFLAG)
C INTEGER N,IFLAG
C DOUBLE PRECISION X(N),FVEC(N)
C ----------
C CALCULATE THE FUNCTIONS AT X AND
C RETURN THIS VECTOR IN FVEC.
C ----------
C RETURN
C END
C THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
C THE USER WANTS TO TERMINATE EXECUTION OF HYBRD.
C IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF FUNCTIONS AND VARIABLES.
C X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
C AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
C CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.
C FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
C THE FUNCTIONS EVALUATED AT THE OUTPUT X.
XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES IS AT MOST XTOL.

MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION OCCURS WHEN THE NUMBER OF CALLS TO FCN IS AT LEAST MAXFEV BY THE END OF AN ITERATION.

ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET ML TO AT LEAST N - 1.

MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE NUMBER OF SUPERDIAGONALS WITHIN THE BAND OF THE JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET MU TO AT LEAST N - 1.

EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE PRECISION.

DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.

MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE VARIABLES WILL BE SCALING INTERNALLY. IF MODE = 2, THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER VALUES OF MODE ARE EQUIVALENT TO MODE = 1.

FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE.

NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS OF FCN WITH IFLAG = 0 ARE MADE.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
INFO IS SET AS FOLLOWS.

INFO = 0 IMPROPER INPUT PARAMETERS.
INFO = 1 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES IS AT MOST XTOL.
INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED MAXFEV.
INFO = 3 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN THE APPROXIMATE SOLUTION X IS POSSIBLE.
INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS, AS MEASURED BY THE IMPROVEMENT FROM THE LAST FIVE JACOBIAN EVALUATIONS.
INFO = 5 ITERATION IS NOT MAKING GOOD PROGRESS, AS MEASURED BY THE IMPROVEMENT FROM THE LAST TEN ITERATIONS.

NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF CALLS TO FCN.

FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE ORTHOGONAL MATRIX Q PRODUCED BY THE QR FACTORIZATION OF THE FINAL APPROXIMATE JACOBIAN.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

R IS AN OUTPUT ARRAY OF LENGTH LR WHICH CONTAINS THE UPPER TRIANGULAR MATRIX PRODUCED BY THE QR FACTORIZATION OF THE FINAL APPROXIMATE JACOBIAN, STORED ROWWISE.

LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN (N*(N+1))/2.

QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE VECTOR (Q TRANSPOSE)*FVEC.

WA1, WA2, WA3, AND WA4 ARE WORK ARRAYS OF LENGTH N.

SUBPROGRAMS CALLED

USER-SUPPLIED FCN
MINPACK-SUPPLIED ... DOGLEG,DPMPAR,ENORM,FDJAC1,
QFORM,QRFAC,R1MPYQ,R1UPDT
FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,MIN0,MOD
ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARROW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER I, IFLAG, ITER, J, JM1, L, MSUM, NCFAIL, NCSUC, NSLOW1, NSLOW2
INTEGER IWA(1)
LOGICAL JEVAL, SING
DOUBLE PRECISION ACTRED, DELTA, EPSMCH, FNORM, FNORM1, ONE, PNORM,
* PRERED, P1, P5, P001, P0001, RATIO, SUM, TEMP, XNORM,
* ZERO
DOUBLE PRECISION DPMPAR, ENORM
DATA ONE, P1, P5, P001, P0001, ZERO
* /1.0D0, 1.0D-1, 5.0D-1, 1.0D-3, 1.0D-4, 0.0D0/

EPSMCH IS THE MACHINE PRECISION.
EPSMCH = DPMPAR(1)
INFO = 0
IFLAG = 0
NFEV = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.
IF (N .LE. 0 .OR. XTOL .LT. ZERO .OR. MAXFEV .LE. 0
* .OR. ML .LT. 0 .OR. MU .LT. 0 .OR. FACTOR .LE. ZERO
* .OR. LDFJAC .LT. N .OR. LR .LT. (N*(N + 1))/2) GO TO 300
IF (MODE .NE. 2) GO TO 20
DO 10 J = 1, N
 IF (DIAG(J) .LE. ZERO) GO TO 300
 10 CONTINUE
20 CONTINUE

EVALUATE THE FUNCTION AT THE STARTING POINT
AND CALCULATE ITS NORM.
IFLAG = 1
CALL FCN(N, X, FVEC, IFLAG)
NFEV = 1
IF (IFLAG .LT. 0) GO TO 300
FNORM = ENORM(N, FVEC)

DETERMINE THE NUMBER OF CALLS TO FCN NEEDED TO COMPUTE
THE JACOBIAN MATRIX.
MSUM = MINO(ML+MU+1,N)

INITIALIZE ITERATION COUNTER AND MONITORS.
ITER = 1
NCSUC = 0
NCFAIL = 0
NSLOW1 = 0
NSLOW2 = 0

BEGINNING OF THE OUTER LOOP.
C
30 CONTINUE
 JEVAL = .TRUE.
C
C CALCULATE THE JACOBIAN MATRIX.
C
C IFLAG = 2
C CALL FDJAC1(FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN,WA1,
C * WA2)
 NFEV = NFEV + MSUM
 IF (IFLAG .LT. 0) GO TO 300
C
C COMPUTE THE QR FACTORIZATION OF THE JACOBIAN.
C
C CALL QRFA(N,N,FJAC,LDFJAC,.FALSE.,IWA,1,WAI,WA2,WA3)
C
C ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING
C TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.
C
C IF (ITER .NE. 1) GO TO 70
C IF (MODE .EQ. 2) GO TO 50
C DO 40 J = 1, N
C DIAG(J) = WA2(J)
C IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE
C 40 CONTINUE
C 50 CONTINUE
C
C ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X
C AND INITIALIZE THE STEP BOUND DELTA.
C
C DO 60 J = 1, N
C WA3(J) = DIAG(J)*X(J)
C 60 CONTINUE
C XNORM = ENORM(N,WAI3)
C DELTA = FACTOR*XNORM
C IF (DELTA .EQ. ZERO) DELTA = FACTOR
C 70 CONTINUE
C
C FORM (Q TRANSPOSE)*FVEC AND STORE IN QTF.
C
C DO 80 I = 1, N
C QTF(I) = FVEC(I)
C 80 CONTINUE
C DO 120 J = 1, N
C IF (FJAC(J,J) .EQ. ZERO) GO TO 110
C SUM = ZERO
C DO 90 I = J, N
C SUM = SUM + FJAC(I,J)*QTF(I)
C 90 CONTINUE
C TEMP = -SUM/FJAC(J,J)
C DO 100 I = J, N
C QTF(I) = QTF(I) + FJAC(I,J)*TEMP
C 100 CONTINUE
C 110 CONTINUE
120 CONTINUE
C
C COPY THE TRIANGULAR FACTOR OF THE QR FACTORIZATION INTO R.
C
C
SING = .FALSE.
DO 150 J = 1, N
 L = J
 JM1 = J - 1
 IF (JM1 .LT. 1) GO TO 140
 DO 130 I = 1, JM1
 R(L) = FJAC(I,J)
 L = L + N - I
 130 CONTINUE
 140 CONTINUE
 R(L) = WA1(J)
 IF (WA1(J) .EQ. ZERO) SING = .TRUE.
 150 CONTINUE
C
C ACCUMULATE THE ORTHOGONAL FACTOR IN FJAC.
C
C CALL QFORM(N,N,FJAC,LDFJAC,WA1)
C
C RESCALE IF NECESSARY.
C
IF (MODE .EQ. 2) GO TO 170
DO 160 J = 1, N
 DIAG(J) = DMAX1(DIAG(J),WA2(J))
 160 CONTINUE
 170 CONTINUE
C
C BEGINNING OF THE INNER LOOP.
C
 180 CONTINUE
C
C IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES.
C
IF (NPRINT .LE. 0) GO TO 190
IFLAG = 0
IF (MOD(ITER-1,NPRINT) .EQ. 0) CALL FCN(N,X,FVEC,IFLAG)
IF (IFLAG .LT. 0) GO TO 300
 190 CONTINUE
C
C DETERMINE THE DIRECTION P.
C
CALL DOGLEG(N,R,LR,DIAG,QTF,DELTA,WA1,WA2,WA3)
C
C STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P.
C
DO 200 J = 1, N
 WA1(J) = -WA1(J)
 WA2(J) = X(J) + WA1(J)
 WA3(J) = DIAG(J)*WA1(J)
 200 CONTINUE
PNORM = ENORM(N,WA3)
ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND.

IF (ITER .EQ. 1) DELTA = DMIN1(Delta,PNORM)

EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM.

IFLAG = 1
CALL FCN(N,W2,W4,IFLAG)
NFEV = NFEV + 1
IF (IFLAG .LT. 0) GO TO 300
FNORM1 = ENORM(N,W4)

COMPUTE THE SCALED ACTUAL REDUCTION.

ACTRED = -ONE
IF (FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)**2

COMPUTE THE SCALED PREDICTED REDUCTION.

L = 1
DO 220 I = 1, N
 SUM = ZERO
 DO 210 J = I, N
 SUM = SUM + R(L)*WA1(J)
 L = L + 1
210 CONTINUE
220 CONTINUE
 WA3(I) = OTEF(I) + SUM
 TEMP = ENORM(N,W3)
 PRERED = ZERO
 IF (TEMP .LT. FNORM) PRERED = ONE - (TEMP/FNORM)**2

COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED REDUCTION.

RATIO = ZERO
IF (PRERED .GT. ZERO) RATIO = ACTRED/PRERED

UPDATE THE STEP BOUND.

IF (RATIO .GE. P1) GO TO 230
 NGSUC = 0
 NCFAIL = NCFAIL + 1
 DELTA = P5*DELTA
 GO TO 240
230 CONTINUE
 NCFAIL = 0
 NGSUC = NGSUC + 1
 IF (RATIO .GE. P5 .OR. NGSUC .GE. 1)
 * DELTA = DMAX1(DELTA,PNORM/P5)
 IF (DABS(RATIO-ONE) .LE. P1) DELTA = PNORM/P5
240 CONTINUE
TEST FOR SUCCESSFUL ITERATION.

IF (RATIO .LT. P0001) GO TO 260

SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.

DO 250 J = 1, N
 X(J) = WA2(J)
 WA2(J) = DIAG(J)*X(J)
 FVEC(J) = WA4(J)

 CONTINUE
 XNORM = ENORM(N,W2)
 FNORM = FNORM1
 ITER = ITER + 1

 CONTINUE

DETERMINE THE PROGRESS OF THE ITERATION.

NSLOW1 = NSLOW1 + 1
IF (ACTRED .GE. P001) NSLOW1 = 0
IF (JEVAL) NSLOW2 = NSLOW2 + 1
IF (ACTRED .GE. P1) NSLOW2 = 0

TEST FOR CONVERGENCE.

IF (DELTA .LE. XTOL*XNORM .OR. FNORM .EQ. ZERO) INFO = 1
IF (INFO .NE. 0) GO TO 300

TESTS FOR TERMINATION AND STRINGENT TOLERANCES.

IF (NFEV .GE. MAXFEV) INFO = 2
IF (P1*DMAX1(P1*DELTA,PNORM) .LE. EPSMCH*XNORM) INFO = 3
IF (NSLOW2 .EQ. 5) INFO = 4
IF (NSLOW1 .EQ. 10) INFO = 5
IF (INFO .NE. 0) GO TO 300

CRITERION FOR RECALCULATING JACOBIAN APPROXIMATION
BY FORWARD DIFFERENCES.

IF (NCFAIL .EQ. 2) GO TO 290

CALCULATE THE RANK ONE MODIFICATION TO THE JACOBIAN
AND UPDATE QTF IF NECESSARY.

DO 280 J = 1, N
 SUM = ZERO
 DO 270 I = 1, N
 SUM = SUM + FJAC(I,J)*WA4(I)
 CONTINUE
 WA2(J) = (SUM - WA3(J))/PNORM
 WA1(J) = DIAG(J)*(DIAG(J)*WA1(J))/PNORM
 IF (RATIO .GE. P0001) QTF(J) = SUM

280 CONTINUE
COMPUTE THE QR FACTORIZATION OF THE UPDATED JACOBIAN.

CALL R1UPDT(N,N,R,LR,W1,W2,W3,SING)
CALL R1MPYQ(N,N,FJAC,LDFJAC,W2,W3)
CALL R1MPYQ(1,N,QTF,1,W2,W3)

END OF THE INNER loop.

JEVAL = .FALSE.
GO TO 180

290 CONTINUE

END OF THE OUTER LOOP.

GO TO 30

300 CONTINUE

TERMINATION, EITHER NORMAL OR USER IMPOSED.

IF (IFLAG .LT. 0) INFO = IFLAG
IFLAG = 0
IF (NPRINT .GT. 0) CALL FCN(N,X,FVEC,IFLAG)
RETURN

LAST CARD OF SUBROUTINE HYBRD.

END
SUBROUTINE HYBRD1(FCN,N,X,FVEC,TOL,INFO,WA,LWA)
INTEGER N,INFO,LWA
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(N),WA(LWA)
EXTERNAL FCN

SUBROUTINE HYBRD1

THE PURPOSE OF HYBRD1 IS TO FIND A ZERO OF A SYSTEM OF
N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION
OF THE POWELL HYBRID METHOD. THIS IS DONE BY USING THE
MORE GENERAL NONLINEAR EQUATION SOLVER HYBRD. THE USER
MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS.
THE JACOBIAN IS THEN CALCULATED BY A FORWARD-DIFFERENCE
APPROXIMATION.

THE SUBROUTINE STATEMENT IS

SUBROUTINE HYBRD1(FCN,N,X,FVEC,TOL,INFO,WA,LWA)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
IN AN EXTERNAL STATEMENT IN THE USER CALLING
PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(N,X,FVEC,IFLAG)
INTEGER N,IFLAG
DOUBLE PRECISION X(N),FVEC(N)

CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

RETURN
END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF HYBRD1.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS AND VARIABLES.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS
WHEN THE ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
BETWEEN X AND THE SOLUTION IS AT MOST TOL.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
INFO IS SET AS FOLLOWS.

INFO = 0 IMPROPER INPUT PARAMETERS.

INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
BETWEEN X AND THE SOLUTION IS AT MOST TOL.

INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED
200*(N+1).

INFO = 3 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS.

WA IS A WORK ARRAY OF LENGTH LWA.

LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN
(N*(3*N+13))/2.

SUBPROGRAMS CALLED

USER-SUPPLIED FCN

MINPACK-SUPPLIED ... HYBRD

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARROW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER INDEX,J,LR,MAXFEV,ML,MU,NFEV,NPRINT
DOUBLE PRECISION EPSFCN,FACTOR,ONE,XTOL,ZERO
DATA ZERO /1.0D2,1.0D0,0.0D0/
INFO = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. TOL .LT. ZERO .OR. LWA .LT. (N*(3*N + 13))/2)
 GO TO 20

CALL HYBRD.

MAXFEV = 200*(N + 1)
XTOL = TOL
ML = N - 1
MU = N - 1
EPSFCN = ZERO
MODE = 2
DO 10 J = 1, N
WA(J) = ONE
10 CONTINUE
NPRINT = 0
LR = (N*(N + 1))/2
INDEX = 6*N + LR
CALL HYBRD(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,WA(1),MODE,
* FACTOR,NPRINT,INFO,NFEV,WA(INDEX+1),N,WA(6*N+1),LR,
* WA(N+1),WA(2*N+1),WA(3*N+1),WA(4*N+1),WA(5*N+1))
IF (INFO .EQ. 5) INFO = 4
20 CONTINUE
RETURN
C LAST CARD OF SUBROUTINE HYBRD1.
C END
SUBROUTINE HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,MODE,
 * FACTOR,NPRINT,INFO,NFEV,NJEV,R,LR,QTF,WA1,WA2,
 * WA3,WA4) HYBJ0010
SUBROUTINE HYBRJ
C THE PURPOSE OF HYBRJ IS TO FIND A ZERO OF A SYSTEM OF
C N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION
C OF THE POWELL HYBRID METHOD. THE USER MUST PROVIDE A
C SUBROUTINE WHICH CALCULATES THE FUNCTIONS AND THE JACOBIAN.
C THE SUBROUTINE STATEMENT IS
C
SUBROUTINE HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,
 * MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,R,LR,QTF,
 * WA1,WA2,WA3,WA4)

WHERE
C FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
C CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST
C BE DECLARED IN AN EXTERNAL STATEMENT IN THE USER
C CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
C
SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
C INTEGER N,LDFJAC,IFLAG
C DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)

C IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
C RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
C IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
C RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.

C RETURN
C END
C
THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF HYBRJ.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.
C
N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF FUNCTIONS AND VARIABLES.
C
X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
C AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
C CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.
C
FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
C THE FUNCTIONS EVALUATED AT THE OUTPUT X.
C FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE
C ORTHOGONAL MATRIX Q PRODUCED BY THE QR FACTORIZATION
C OF THE FINAL APPROXIMATE JACOBIAN.
C
C LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
C WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.
C
C XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
C OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE
C ITERATES IS AT MOST XTOL.
C
C MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION
C OCCURS WHEN THE NUMBER OF CALLS TO FCN WITH IFLAG = 1
C HAS REACHED MAXFEV.
C
C DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE
C BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG
C MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS
C MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.
C
C MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE
C VARIABLES WILL BE SCALLED INTERNALLY. IF MODE = 2,
C THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER
C VALUES OF MODE ARE EQUIVALENT TO MODE = 1.
C
C FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE
C INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF
C FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE
C TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE
C INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE.
C
C NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED
C PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE,
C FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST
C ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND
C IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE
C FOR PRINTING. FVEC AND FJAC SHOULD NOT BE ALTERED.
C IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS OF FCN
C WITH IFLAG = 0 ARE MADE.
C
C INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
C TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
C VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
C INFO IS SET AS FOLLOWS.
C
C INFO = 0 IMPROPER INPUT PARAMETERS.
C
C INFO = 1 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES
C IS AT MOST XTOL.
C
C INFO = 2 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS
C REACHED MAXFEV.
INFO = 3 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS, AS
MEASURED BY THE IMPROVEMENT FROM THE LAST
FIVE JACOBIAN EVALUATIONS.

INFO = 5 ITERATION IS NOT MAKING GOOD PROGRESS, AS
MEASURED BY THE IMPROVEMENT FROM THE LAST
TEN ITERATIONS.

NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
CALLS TO FCN WITH IFLAG = 1.

NJEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
CALLS TO FCN WITH IFLAG = 2.

R IS AN OUTPUT ARRAY OF LENGTH LR WHICH CONTAINS THE
UPPER TRIANGULAR MATRIX PRODUCED BY THE QR FACTORIZATION
OF THE FINAL APPROXIMATE JACOBIAN, STORED ROWWISE.

LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN
(N*(N+1))/2.

QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE VECTOR (Q TRANSPOSE)*FVEC.

WA1, WA2, WA3, AND WA4 ARE WORK ARRAYS OF LENGTH N.

SUBPROGRAMS CALLED

USER-SUPPLIED FCN

MINPACK-SUPPLIED ... DOGLEG,DPMPAR,ENORM,
QFORM,QRFAC,R1MPYQ,R1UPDT

FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,MOD

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARROW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER I,IFLAG,ITER,J,JM1,L,NCFAIL,NCSUC,NSLOW1,NSLOW2
INTEGER IWA(1)
LOGICAL JERL,NFAIL
DOUBLE PRECISION ACTRED,DELTA,EPSMCH,FNORM,FNORM1,ONE,P0001,P0001,RATIO,SUM,TEMP,XNORM,
* PREREQ,P1,P5,P001,P0001,HALF,HUMP,MAX INT
* ZERO
DOUBLE PRECISION DPMPAR,ENORM
DATA ONE,P1,P5,P001,P0001,ZERO
* /1.0D0,1.0D-1,5.0D-1,1.0D-3,1.0D-4,0.0D0/

EPSMCH IS THE MACHINE PRECISION.

HYBJ1090
HYBJ1100
HYBJ1110
HYBJ1120
HYBJ1130
HYBJ1140
HYBJ1150
HYBJ1160
HYBJ1170
HYBJ1180
HYBJ1190
HYBJ1200
HYBJ1210
HYBJ1220
HYBJ1230
HYBJ1240
HYBJ1250
HYBJ1260
HYBJ1270
HYBJ1280
HYBJ1290
HYBJ1300
HYBJ1310
HYBJ1320
HYBJ1330
HYBJ1340
HYBJ1350
HYBJ1360
HYBJ1370
HYBJ1380
HYBJ1390
HYBJ1400
HYBJ1410
HYBJ1420
HYBJ1430
HYBJ1440
HYBJ1450
HYBJ1460
HYBJ1470
HYBJ1480
HYBJ1490
HYBJ1500
HYBJ1510
HYBJ1520
HYBJ1530
HYBJ1540
HYBJ1550
HYBJ1550
HYBJ1560
HYBJ1570
HYBJ1580
HYBJ1590
HYBJ1600
HYBJ1610
HYBJ1620
EPSMCH = DPMPAR(1)
C
INFO = 0
IFLAG = 0
NFEV = 0
NJEV = 0
C
CHECK THE INPUT PARAMETERS FOR ERRORS.
C
IF (N .LE. 0 .OR. LDFJAC .LT. N .OR. XTOL .LT. ZERO
* .OR. MAXFEV .LE. 0 .OR. FACTOR .LE. ZERO
* .OR. LR .LT. (N*(N + 1))/2) GO TO 300
IF (MODE .NE. 2) GO TO 20
DO 10 J = 1, N
 IF (DIAG(J) .LE. ZERO) GO TO 300
10 CONTINUE
20 CONTINUE
C
EVALUATE THE FUNCTION AT THE STARTING POINT
C
AND CALCULATE ITS NORM.
C
IFLAG = 1
CALL FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
NFEV = 1
IF (IFLAG .LT. 0) GO TO 300
FNORM = ENORM(N,FVEC)
C
INITIALIZE ITERATION COUNTER AND MONITORS.
C
ITER = 1
NCSUC = 0
NCFAIL = 0
NSLOW1 = 0
NSLOW2 = 0
C
BEGINNING OF THE OUTER LOOP.
C
30 CONTINUE
 JEVAL = .TRUE.
C
CALCULATE THE JACOBIAN MATRIX.
C
IFLAG = 2
CALL FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
NJEV = NJEV + 1
IF (IFLAG .LT. 0) GO TO 300
C
COMPUTE THE QR FACTORIZATION OF THE JACOBIAN.
C
CALL QRFAC(N,N,FJAC,LDFJAC,.FALSE.,IWA,1,WAA,WA2,WA3)
C
ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING
C
to the norms of the columns of the initial Jacobian.
C

IF (ITER .NE. 1) GO TO 70
IF (MODE .EQ. 2) GO TO 50
DO 40 J = 1, N
 DIAG(J) = WA2(J)
 IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE
40 CONTINUE
50 CONTINUE
C
C ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X
C AND INITIALIZE THE STEP BOUND DELTA.
C
C DO 60 J = 1, N
 WA3(J) = DIAG(J)*X(J)
60 CONTINUE
 XNORM = ENORM(N,WA3)
 DELTA = FACTOR*XNORM
 IF (DELTA .EQ. ZERO) DELTA = FACTOR
70 CONTINUE
C
C FORM (Q TRANSPOSE)*FVEC AND STORE IN QTF.
C
C DO 80 I = 1, N
 QTF(I) = FVEC(I)
80 CONTINUE
C
C DO 120 J = 1, N
 IF (FJAC(J,J) .EQ. ZERO) GO TO 110
 SUM = ZERO
 DO 90 I = J, N
 SUM = SUM + FJAC(I,J)*QTF(I)
90 CONTINUE
 TEMP = -SUM/FJAC(J,J)
 DO 100 I = J, N
 QTF(I) = QTF(I) + FJAC(I,J)*TEMP
100 CONTINUE
110 CONTINUE
120 CONTINUE
C
C COPY THE TRIANGULAR FACTOR OF THE QR FACTORIZATION INTO R.
C
C SING = .FALSE.
C DO 150 J = 1, N
 L = J
 JM1 = J - 1
 IF (JM1 .LT. 1) GO TO 140
 DO 130 I = 1, JM1
 R(L) = FJAC(I,J)
 L = L + N - I
130 CONTINUE
140 CONTINUE
 R(L) = WA1(J)
 IF (WA1(J) .EQ. ZERO) SING = .TRUE.
150 CONTINUE
C
C ACCUMULATE THE ORTHOGONAL FACTOR IN FJAC.
CALL QFORM(N,N,FJAC,LDFJAC,WA1)

RESCALE IF NECESSARY.

IF (MODE .EQ. 2) GO TO 170
DO 160 J = 1, N
 DIAG(J) = DMAX1(DIAG(J),WA2(J))
160 CONTINUE
170 CONTINUE

BEGINNING OF THE INNER LOOP.

CONTINUE

IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES.

IF (NPRINT .LE. 0) GO TO 190
IFLAG = 0
IF (MOD(ITER-1,NPRINT) .EQ. 0)
 CALL FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
190 CONTINUE

DETERMINE THE DIRECTION P.

CALL DOGLEG(N,R,LR,DIAG,QTF,DELTA,WA1,WA2,WA3)

STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P.

DO 200 J = 1, N
 WA1(J) = -WA1(J)
 WA2(J) = X(J) + WA1(J)
 WA3(J) = DIAG(J)*WA1(J)
200 CONTINUE

PNORM = ENORM(N,WA3)

ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND.

IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM)

EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM.

IFLAG = 1
CALL FCN(N,WA2,WA4,FJAC,LDFJAC,IFLAG)
NFEV = NFEV + 1
IF (IFLAG .LT. 0) GO TO 300
FNORM1 = ENORM(N,WA4)

COMPUTE THE SCALED ACTUAL REDUCTION.

ACTRED = -ONE
IF (FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)**2
COMPUTE THE SCALED PREDICTED REDUCTION.

L = 1
DO 220 I = 1, N
 SUM = ZERO
 DO 210 J = 1, N
 SUM = SUM + R(L)**WA1(J)
 L = L + 1
 CONTINUE
 WA3(I) = QTF(I) + SUM
 CONTINUE
210 TEMP = ENORM(N,WA3)
PRERED = ZERO
IF (TEMP .LT. FNORM) PRERED = ONE - (TEMP/FNORM)**2

COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED REDUCTION.

RATIO = ZERO
IF (PRERED .GT. ZERO) RATIO = ACTRED/PRERED

UPDATE THE STEP BOUND.

IF (RATIO .GE. P1) GO TO 230
 NCSUC = 0
 NCFAIL = NCFAIL + 1
 DELTA = P5*DELTA
 GO TO 240
230 CONTINUE
 NCFAIL = 0
 NCSUC = NCSUC + 1
 IF (RATIO .GE. P5 .OR. NCSUC .GT. 1)
 * DELTA = DMAX1(DELTA,PNORM/P5)
 IF (DABS(RATIO-ONE) .LE. P1) DELTA = PNORM/P5
240 CONTINUE

TEST FOR SUCCESSFUL ITERATION.

IF (RATIO .LT. P0001) GO TO 260

SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.

DO 250 J = 1, N
 X(J) = WA2(J)
 WA2(J) = DIAG(J)**X(J)
 FVEC(J) = WA4(J)
 CONTINUE
250 XNORM = ENORM(N,WA2)
FNORM = FNORM1
ITER = ITER + 1
CONTINUE

Determine the progress of the iteration.
NSLOW1 = NSLOW1 + 1
IF (ACTRED .GE. P001) NSLOW1 = 0
IF (JEVAL) NSLOW2 = NSLOW2 + 1
IF (ACTRED .GE. P1) NSLOW2 = 0

C TEST FOR CONVERGENCE.
C
IF (DELTA .LE. XTOL*XNORM .OR. FNORM .EQ. ZERO) INFO = 1
IF (INFO .NE. 0) GO TO 300
C
C TESTS FOR TERMINATION AND STRINGENT TOLERANCES.
C
IF (NFEV .GE. MAXFEV) INFO = 2
IF (P1*DMAX1(P1*DELTA,PNORM) .LE. EPSMCH*XNORM) INFO = 3
IF (NSLOW2 .EQ. 5) INFO = 4
IF (NSLOW1 .EQ. 10) INFO = 5
IF (INFO .NE. 0) GO TO 300

C CRITERION FOR RECALCULATING JACOBIAN.
C
IF (NCFAIL .EQ. 2) GO TO 290
C
C CALCULATE THE RANK ONE MODIFICATION TO THE JACOBIAN
C AND UPDATE QTF IF NECESSARY.
C
DO 280 J = 1, N
 SUM = ZERO
 DO 270 I = 1, N
 SUM = SUM + FJAC(I,J)*WA4(I)
 CONTINUE
270 WA2(J) = (SUM - WA3(J))/PNORM
 WA1(J) = DIAG(J)*((DIAG(J)*WA1(J))/PNORM)
 IF (RATIO .GE. P0001) QTF(J) = SUM
 CONTINUE
280 CONTINUE

C COMPUTE THE QR FACTORIZATION OF THE UPDATED JACOBIAN.
C
CALL R1UPDT(N,N,R,LR,WA1,WA2,WA3,SING)
CALL R1MPYQ(N,N,FJAC,LDFJAC,WA2,WA3)
CALL R1MPYQ(1,N,QTF,1,WA2,WA3)

C END OF THE INNER LOOP.
C
JEVAL = .FALSE.
GO TO 180

290 CONTINUE
C
C END OF THE OUTER LOOP.
C
GO TO 30

300 CONTINUE
C
C TERMINATION, EITHER NORMAL OR USER IMPOSED.
C
IF (IFLAG .LT. 0) INFO = IFLAG
IFLAG = 0
IF (NPRINT .GT. 0) CALL FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
RETURN
C
C LAST CARD OF SUBROUTINE HYBRJ.
C
END
SUBROUTINE HYBRJ1(FCN,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,WA,LWA)
 INTEGER N,LDFJAC,INFO,LWA
 DOUBLE PRECISION TOL
 DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL FCN

C
C SUBROUTINE HYBRJ1
C
C THE PURPOSE OF HYBRJ1 IS TO FIND A ZERO OF A SYSTEM OF
C N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION
C OF THE POWELL HYBRID METHOD. THIS IS DONE BY USING THE
C MORE GENERAL NONLINEAR EQUATION SOLVER HYBRJ. THE USER
C MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS
C AND THE JACOBIAN.
C
C THE SUBROUTINE STATEMENT IS
C
C SUBROUTINE HYBRJ1(FCN,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,WA,LWA)
C
C WHERE
C
FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST
BE DECLARED IN AN EXTERNAL STATEMENT IN THE USER
CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
 INTEGER N,LDFJAC,IFLAG
 DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)

 IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
 RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
 IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
 RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.

RETURN
END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF HYBRJ1.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS AND VARIABLES.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE
ORTHOGONAL MATRIX Q PRODUCED BY THE QR FACTORIZATION
OF THE FINAL APPROXIMATE JACOBIAN.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS
WHEN THE ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
BETWEEN X AND THE SOLUTION IS AT MOST TOL.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
INFO IS SET AS FOLLOWS.

INFO = 0 IMPROPER INPUT PARAMETERS.
INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
 BETWEEN X AND THE SOLUTION IS AT MOST TOL.
INFO = 2 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS
 REACHED 100*(N+1).
INFO = 3 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
 THE APPROXIMATE SOLUTION X IS POSSIBLE.
INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS.

WA IS A WORK ARRAY OF LENGTH LWA.

LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN
(\(N^*(N+13)/2\)).

SUBPROGRAMS CALLED
USER-SUPPLIED FCN
MINPACK-SUPPLIED ... HYBRJ
ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARROW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER J,LR,MAXFEV,MODE,NFEV,NJEV,NPRINT
DOUBLE PRECISION FACTOR,ONE,XTOL,ZERO
DATA FACTOR,ONE,ZERO /1.0D2,1.0D0,0.0D0/
INFO = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. LDFJAC .LT. N .OR. TOL .LT. ZERO
* .OR. LWA .LT. (N*(N + 13))/2) GO TO 20

CALL HYBRJ.
C
MAXFEV = 100*(N + 1)
XTOL = TOL
MODE = 2
DO 10 J = 1, N
 WA(J) = ONE
10 CONTINUE
NPRINT = 0
LR = (N*(N + 1))/2
CALL HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,WA(1),MODE,
 * FACTOR,NPRINT,NFEV,NJEV,WA(6*N+1),LR,WA(N+1),
 * WA(2*N+1),WA(3*N+1),WA(4*N+1),WA(5*N+1))
IF (INFO .EQ. 5) INFO = 4
20 CONTINUE
RETURN
C
LAST CARD OF SUBROUTINE HYBRJ1.
C
END
SUBROUTINE LMDER(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
* MAXFEV,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,
* IPVT,QTF,WA1,WA2,WA3,WA4)
INTEGER M,N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV
INTEGER IPVT(N)
DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),DIAG(N),QTF(N),
* WA1(N),WA2(N),WA3(N),WA4(M)

SUBROUTINE LMDER
THE PURPOSE OF LMDER IS TO MINIMIZE THE SUM OF THE SQUARES OF
M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF
THE LEVENBERG-MARQUARDT ALGORITHM. THE USER MUST PROVIDE A
SUBROUTINE WHICH CALCULATES THE FUNCTIONS AND THE JACOBIAN.

THE SUBROUTINE STATEMENT IS

SUBROUTINE LMDER(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
* MAXFEV,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,IPVT,QTF,WA1,WA2,WA3,WA4)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST
BE DECLARED IN AN EXTERNAL STATEMENT IN THE USER
CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER M,N,LDFJAC,IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.

RETURN
END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF LMDER.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

FJAC IS AN OUTPUT M BY N ARRAY. THE UPPER N BY N SUBMATRIX
OF FJAC CONTAINS AN UPPER TRIANGULAR MATRIX R WITH
DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE SUCH THAT

\[\mathbf{P} \mathbf{(JAC)}^T \mathbf{P} = \mathbf{R} \mathbf{R}^T \]

WHERE \(\mathbf{P} \) IS A PERMUTATION MATRIX AND JAC IS THE FINAL
CALCULATED JACOBIAN. COLUMN J OF \(\mathbf{P} \) IS COLUMN IPVT(J)
(SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRAPEZOIDAL
PART OF FJAC CONTAINS INFORMATION GENERATED DURING
THE COMPUTATION OF \(\mathbf{R} \).

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

FTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN BOTH THE ACTUAL AND PREDICTED RELATIVE
REDUCTIONS IN THE SUM OF SQUARES ARE AT MOST FTOL.
THEREFORE, FTOL MEASURES THE RELATIVE ERROR DESIRED
IN THE SUM OF SQUARES.

XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE
ITERATES IS AT MOST XTOL. THEREFORE, XTOL MEASURES THE
RELATIVE ERROR DESIRED IN THE APPROXIMATE SOLUTION.

GTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE COSINE OF THE ANGLE BETWEEN FVEC AND
ANY COLUMN OF THE JACOBIAN IS AT MOST GTOL IN ABSOLUTE
VALUE. THEREFORE, GTOL MEASURES THE ORTHOGONALITY
DESIRED BETWEEN THE FUNCTION VECTOR AND THE COLUMNS
OF THE JACOBIAN.

MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION
OCCURS WHEN THE NUMBER OF CALLS TO FCN WITH IFLAG = 1
HAS REACHED MAXFEV.

DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE
BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG
MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS
MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.

MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE
VARIABLES WILL BE SCALING INTERNALLY. IF MODE = 2,
THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER
VALUES OF MODE ARE EQUIVALENT TO MODE = 1.

FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE
INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF
FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE
TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE
INTERVAL (.1,100.).100. IS A GENERALLY RECOMMENDED VALUE.

NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED
PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE,
FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST
ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND
IMMEDIATELY PRIOR TO RETURN, WITH X, FVEC, AND FJAC
AVAILABLE FOR PRINTING. FVEC AND FJAC SHOULD NOT BE
ALTED. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS
OF FCN WITH IFLAG = 0 ARE MADE.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
INFO IS SET AS FOLLOWS.

INFO = 0 IMPROPER INPUT PARAMETERS.

INFO = 1 BOTH ACTUAL AND PREDICTED RELATIVE REDUCTIONS
IN THE SUM OF SQUARES ARE AT MOST FTOL.

INFO = 2 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES
IS AT MOST XTOL.

INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD.

INFO = 4 THE COSINE OF THE ANGLE BETWEEN FVEC AND ANY
COLUMN OF THE JACOBIAN IS AT MOST GTOL IN
ABSOLUTE VALUE.

INFO = 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS
REACHED MAXFEV.

INFO = 6 FTOL IS TOO SMALL. NO FURTHER REDUCTION IN
THE SUM OF SQUARES IS POSSIBLE.

INFO = 7 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

INFO = 8 GTOL IS TOO SMALL. FVEC IS ORTHOGONAL TO THE
COLUMNS OF THE JACOBIAN TO MACHINE PRECISION.

NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
CALLS TO FCN WITH IFLAG = 1.

NJEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
CALLS TO FCN WITH IFLAG = 2.

IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT
DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R,
WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS
ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR
WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE.
COLUMN J OF P IS COLUMN IPV(T) OF THE IDENTITY MATRIX.
QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*FVEC.
WA1, WA2, AND WA3 ARE WORK ARRAYS OF LENGTH N.
WA4 IS A WORK ARRAY OF LENGTH M.
SUBPROGRAMS CALLED
USER-SUPPLIED FCN
MINPACK-SUPPLIED ... DPMPAR,ENORM,LMPAR,QRFAC
FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,DSQRT,MOD
ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARROW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER I,IFLAG,ITER,J,L
DOUBLE PRECISION ACTRED,DELTADIR,DIRDER,EPSMCH,FNORM,FNORM1,GNORM,
* ONE,PAR,PNORM,PRERED,P1,P5,P25,P75,P0001,RATIO,
* SUM,TEMP,TEMP1,TEMP2,XNORM,ZERO
DOUBLE PRECISION DPMPAR,ENORM
DATA ONE,P1,P5,P25,P75,P0001,ZERO
* /1.0D0,1.0D-1,5.0D-1,2.5D-1,7.5D-1,1.0D-4,0.0D0/
EPSMCH = DPMPAR(1)
EPSMCH = THE MACHINE PRECISION.
INFO = 0
IFLAG = 0
NFEV = 0
NJEV = 0
CHECK THE INPUT PARAMETERS FOR ERRORS.
IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. M
* .OR. FTOL .LT. ZERO .OR. XTOL .LT. ZERO .OR. GTOL .LT. ZERO
* .OR. MAXFEV .LE. 0 .OR. FACTOR .LE. ZERO) GO TO 300
IF (MODE .NE. 2) GO TO 20
DO 10 J = 1, N
 IF (DIAG(J) .LE. ZERO) GO TO 300
10 CONTINUE
20 CONTINUE
EVALUATE THE FUNCTION AT THE STARTING POINT
AND CALCULATE ITS NORM.
IFLAG = 1
CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
NFEV = 1
IF (IFLAG .LT. 0) GO TO 300
FNORM = ENORM(M,FVEC)

C INITIALIZE LEVENBERG-MARQUARDT PARAMETER AND ITERATION COUNTER.
PAR = ZERO
ITER = 1

C BEGINNING OF THE OUTER LOOP.

30 CONTINUE

C CALCULATE THE JACOBIAN MATRIX.
IFLAG = 2
CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
NJEV = NJEV + 1
IF (IFLAG .LT. 0) GO TO 300

C IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES.
IF (NPRINT .LE. 0) GO TO 40
IFLAG = 0
IF (MOD(ITER-1,NPRINT) .EQ. 0)
* CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
IF (IFLAG .LT. 0) GO TO 300

40 CONTINUE

C COMPUTE THE QR FACTORIZATION OF THE JACOBIAN.
CALL QRFAC(M,N,FJAC,LDFJAC,.TRUE.,IPVT,N,WA1,WA2,WA3)

C ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.
IF (ITER .NE. 1) GO TO 80
IF (MODE .EQ. 2) GO TO 60
DO 50 J = 1, N
 DIAG(J) = WA2(J)
 IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE
50 CONTINUE

60 CONTINUE

C ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X AND INITIALIZE THE STEP BOUND DELTA.
DO 70 J = 1, N
 WA3(J) = DIAG(J)*X(J)
70 CONTINUE
XNORM = ENORM(N,WA3)
DELTA = FACTOR*XNORM
IF (DELTA .EQ. ZERO) DELTA = FACTOR
80 CONTINUE

C
FORM (Q TRANSPOSE)*FVEC AND STORE THE FIRST N COMPONENTS IN QTF.
C
DO 90 I = 1, M
 WA4(I) = FVEC(I)
90 CONTINUE

DO 130 J = 1, N
 IF (FJAC(J,J) .EQ. ZERO) GO TO 120
 SUM = ZERO
 DO 100 I = J, M
 SUM = SUM + FJAC(I,J)*WA4(I)
 CONTINUE
 TEMP = -SUM/FJAC(J,J)
 DO 110 I = J, M
 WA4(I) = WA4(I) + FJAC(I,J)*TEMP
 CONTINUE
110 CONTINUE
120 FJAC(J,J) = WA1(J)
130 QTF(J) = WA4(J)

C
COMPUTE THE NORM OF THE SCALED GRADIENT.
C
GNORM = ZERO
IF (FNORM .EQ. ZERO) GO TO 170
DO 160 J = 1, N
 L = IPVT(J)
 IF (WA2(L) .EQ. ZERO) GO TO 150
 SUM = ZERO
 DO 140 I = 1, J
 SUM = SUM + FJAC(I,J)*(QTF(I)/FNORM)
 CONTINUE
 GNORM = DMAX1(GNORM,DABS(SUM/WA2(L)))
140 CONTINUE
150 CONTINUE
160 CONTINUE
170 CONTINUE

C
TEST FOR CONVERGENCE OF THE GRADIENT NORM.
C
IF (GNORM .LE. GTOL) INFO = 4
IF (INFO .NE. 0) GO TO 300
C
RESCALE IF NECESSARY.
C
IF (MODE .EQ. 2) GO TO 190
DO 180 J = 1, N
 DIAG(J) = DMAX1(DIAG(J),WA2(J))
180 CONTINUE
190 CONTINUE

C
BEGINNING OF THE INNER LOOP.
C 200 CONTINUE

C DETERMINE THE LEVENBERG-MARQUARDT PARAMETER.

C CALL LMPAR(N,FJAC,LDFJAC,IPVT,DIAG,QTF,DELTA,PAR,WAT,WAB,
WAC,WAD)

*

C STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P.

C DO 210 J = 1, N
WA1(J) = -WAT(J)
WA2(J) = X(J) + WA1(J)
WA3(J) = DIAG(J)*WA1(J)

210 CONTINUE
PNORM = ENORM(N,WAC)

C ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND.

C IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM)

C EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM.

C IFLAG = 1
CALL FCN(M,N,WAT,WAB,FJAC,LDFJAC,IFLAG)
NFEV = NFEV + 1
IF (IFLAG .LT. 0) GO TO 300
FNORM1 = ENORM(M,WAC)

C COMPUTE THE SCALED ACTUAL REDUCTION.

C ACTRED = -ONE
IF (P1*FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)**2

C COMPUTE THE SCALED PREDICTED REDUCTION AND THE SCALED DIRECTIONAL DERIVATIVE.

C DO 230 J = 1, N
WAC(J) = ZERO
L = IPVT(J)
TEMP = WA1(L)
DO 220 I = 1, J
WAC(I) = WAC(I) + FJAC(I,J)*TEMP
220 CONTINUE

230 CONTINUE
TEMP1 = ENORM(N,WAT)/FNORM
TEMP2 = (DSQRT(PAR)*PNORM)/FNORM
PRERED = TEMP1**2 + TEMP2**2/P5
DIRERED = -(TEMP1**2 + TEMP2**2)

C COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED REDUCTION.

C RATIO = ZERO

C
IF (PRERED .NE. ZERO) RATIO = ACTRED/PRERED

C UPDATE THE STEP BOUND.
C
IF (RATIO .GT. P25) GO TO 240
 IF (ACTRED .GE. ZERO) TEMP = P5
 IF (ACTRED .LT. ZERO)
 TEMP = P5*DIRDER/(DIRDER + P5*ACTRED)
 IF (P1*FNORM1 .GE. FNORM .OR. TEMP .LT. P1) TEMP = P1
 DELTA = TEMP*DMIN1(Delta,PNORM/P1)
 PAR = PAR/TEMP
 GO TO 260
 CONTINUE
 IF (PAR .NE. ZERO .AND. RATIO .LT. P75) GO TO 250
 DELTA = FNORM/P5
 pAR = P5*PAR
 CONTINUE
250 CONTINUE
260 CONTINUE

C TEST FOR SUCCESSFUL ITERATION.
C
IF (RATIO .LT. P0001) GO TO 290
C SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.
C
DO 270 J = 1, N
 X(J) = WA2(J)
 WA2(J) = DIAG(J)*X(J)
270 CONTINUE
DO 280 I = 1, M
 FVEC(I) = WA4(I)
280 CONTINUE
XNORM = ENORM(N,Wa2)
FNORM = FNORM1
ITER = ITER + 1
290 CONTINUE

C TESTS FOR CONVERGENCE.
C
IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL
* .AND. P5*RATIO .LE. ONE) INFO = 1
IF (DELTA .LE. XTOL*XNORM) INFO = 2
IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL
* .AND. P5*RATIO .LE. ONE .AND. INFO .EQ. 2) INFO = 3
IF (INFO .NE. 0) GO TO 300
C TESTS FOR TERMINATION AND STRINGENT TOLERANCES.
C
IF (NFEV .GE. MAXFEV) INFO = 5
IF (DABS(ACTRED) .LE. EPSMCH .AND. PRERED .LE. EPSMCH
* .AND. P5*RATIO .LE. ONE) INFO = 6
IF (DELTA .LE. EPSMCH*XNORM) INFO = 7
IF (GNORM .LE. EPSMCH) INFO = 8
IF (INFO .NE. 0) GO TO 300
C END OF THE INNER LOOP. REPEAT IF ITERATION UNSUCCESSFUL.
C IF (RATIO .LT. P0001) GO TO 200
C END OF THE OUTER LOOP.
C GO TO 30
300 CONTINUE
C TERMINATION, EITHER NORMAL OR USER IMPOSED.
C IF (IFLAG .LT. 0) INFO = IFLAG
IFLAG = 0
IF (NPRINT .GT. 0) CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
RETURN
C LAST CARD OF SUBROUTINE LMDER.
C END
SUBROUTINE LMDER1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,IPVT,WA,LWA)
*
INTEGER M,N,LDFJAC,INFO,LWA
INTEGER IPVT(N)
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL FCN

SUBROUTINE LMDER1

THE PURPOSE OF LMDER1 IS TO MINIMIZE THE SUM OF THE SQUARES OF M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE LEVENBERG-MARQUARDT ALGORITHM. THIS IS DONE BY USING THE MORE GENERAL LEAST-SQUARES SOLVER LMDER. THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS AND THE JACOBIAN.

THE SUBROUTINE STATEMENT IS

SUBROUTINE LMDER1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,IPVT,WA,LWA)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER M,N,LDFJAC,IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.

RETURN
END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS THE USER WANTS TO TERMINATE EXECUTION OF LMDER1. IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF VARIABLES. N MUST NOT EXCEED M.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.
FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

FJAC IS AN OUTPUT M BY N ARRAY. THE UPPER N BY N SUBMATRIX
OF FJAC CONTAINS AN UPPER TRIANGULAR MATRIX R WITH
DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE SUCH THAT

\[T \quad T \quad T \]
\[P *(JAC * JAC)^{-1} P = R \times R, \]

WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL
CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPvT(j)
SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRAPEZOIDAL
PART OF FJAC CONTAINS INFORMATION GENERATED DURING
THE COMPUTATION OF R.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS
WHEN THE ALGORITHM ESTIMATES EITHER THAT THE RELATIVE
ERROR IN THE SUM OF SQUARES IS AT MOST TOL OR THAT
THE RELATIVE ERROR BETWEEN X AND THE SOLUTION IS AT
MOST TOL.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
INFO IS SET AS FOLLOWS.

INFO = 0 IMPROPER INPUT PARAMETERS.

INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
IN THE SUM OF SQUARES IS AT MOST TOL.

INFO = 2 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
BETWEEN X AND THE SOLUTION IS AT MOST TOL.

INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD.

INFO = 4 FVEC IS ORTHOGONAL TO THE COLUMNS OF THE
JACOBIAN TO MACHINE PRECISION.

INFO = 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS
REACHED 100*(N+1).

INFO = 6 TOL IS TOO SMALL. NO FURTHER REDUCTION IN
THE SUM OF SQUARES IS POSSIBLE.

INFO = 7 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT
DEFINE A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R,
WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS
ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR
WITH DiAGONAL ELEMENTS OF NONINCREASING MAGNITUDE.
COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

WA IS A WORK ARRAY OF LENGTH LWA.

LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN 5*N+M.

SUBPROGRAMS CALLED

USER-SUPPLIED FCN

MINPACK-SUPPLIED ... LMDER

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARROW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER MAXFEV,MODE,NFEV,NJEV,NPRINT
DOUBLE PRECISION FACTOR,FTOL,GTOL,XTOL,ZERO
DATA FACTOR,ZERO /1.0D2,0.0D0/
INFO = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. M .OR. TOL .LT. ZERO
 .OR. LWA .LT. 5*N + M) GO TO 10

CALL LMDER.

MAXFEV = 100*(N + 1)
FTOL = TOL
XTOL = TOL
GTOL = ZERO
MODE = 1
NPRINT = 0
CALL LMDER(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,MAXFEV,
 * WA(1),MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,IPVT,WA(N+1),
 * WA(2*N+1),WA(3*N+1),WA(4*N+1),WA(5*N+1))
IF (INFO .EQ. 8) INFO = 4
CONTINUE
RETURN

LAST CARD OF SUBROUTINE LMDER1.

END
SUBROUTINE LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV, EPSFCN,
 * DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,FJAC,LDFJAC,
 * IPVT,QTF,WA1,WA2,WA3,WA4)
 LMDFO010
 LMDFO0020
 LMDFO0030
 LMDFO0040
 LMDFO0050
 LMDFO0060
 LMDFO0070
 LMDFO0080
 LMDFO0090
 LMDFO1000
 LMDFO1100
 LMDFO1200
 LMDFO1300
 LMDFO1400
 LMDFO1500
 LMDFO1600
 LMDFO1700
 LMDFO1800
 LMDFO1900
 LMDFO2000
 LMDFO2100
 LMDFO2200
 LMDFO2300
 LMDFO2400
 LMDFO2500
 LMDFO2600
 LMDFO2700
 LMDFO2800
 LMDFO2900
 LMDFO3000
 LMDFO3100
 LMDFO3200
 LMDFO3300
 LMDFO3400
 LMDFO3500
 LMDFO3600
 LMDFO3700
 LMDFO3800
 LMDFO3900
 LMDFO4000
 LMDFO4100
 LMDFO4200
 LMDFO4300
 LMDFO4400
 LMDFO4500
 LMDFO4600
 LMDFO4700
 LMDFO4800
 LMDFO4900
 LMDFO5000
 LMDFO5100
 LMDFO5200
 LMDFO5300
 LMDFO5400

EXTERNAL FCN

SUBROUTINE LMDIF

THE PURPOSE OF LMDIF IS TO MINIMIZE THE SUM OF THE SQUARES OF
M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF
THE LEVENBERG-MARQUARDT ALGORITHM. THE USER MUST PROVIDE A
SUBROUTINE WHICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS
THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION.

THE SUBROUTINE STATEMENT IS

SUBROUTINE LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV, EPSFCN,
 DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,FJAC,
 LDFJAC,IPVT,QTF,WA1,WA2,WA3,WA4)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
 CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
 IN AN EXTERNAL STATEMENT IN THE USER CALLING
 PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
 INTEGER M,N,IFLAG
 DOUBLE PRECISION X(N),FVEC(M)

 CALCULATE THE FUNCTIONS AT X AND
 RETURN THIS VECTOR IN FVEC.

 RETURN
 END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF LMDIF.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

FTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN BOTH THE ACTUAL AND PREDICTED RELATIVE
REDUCTIONS IN THE SUM OF SQUARES ARE AT MOST FTOL.
THEORETICALLY, FTOL MEASURES THE RELATIVE ERROR DESIRED
IN THE SUM OF SQUARES.

XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE
ITERATES IS AT MOST XTOL. THEREFORE, XTOL MEASURES THE
RELATIVE ERROR DESIRED IN THE APPROXIMATE SOLUTION.

GTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE COSINE OF THE ANGLE BETWEEN FVEC AND
ANY COLUMN OF THE JACOBIAN IS AT MOST GTOL IN ABSOLUTE
VALUE. THEREFORE, GTOL MEASURES THE ORTHOGONALITY
DESIGNED BETWEEN THE FUNCTION VECTOR AND THE COLUMNS
OF THE JACOBIAN.

MAXFEV IS APOSITIVE INTEGER INPUT VARIABLE. TERMINATION
OCCURS WHEN THE NUMBER OF CALLS TO FCN IS AT LEAST
MAXFEV BY THE END OF AN ITERATION.

EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE
STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS
APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE
FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS
THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE
ERROS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE
PRECISION.

DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE
BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG
MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS
MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.

MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE
VARIABLES WILL BE SCARED INTERNALLY. IF MODE = 2,
THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER
VALUES OF MODE ARE EQUIVALENT TO MODE = 1.

FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE
INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF
FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE
TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE
INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE.

NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED
PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE,
FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST
ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND
IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE
FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS
OF FCN WITH IFLAG = 0 ARE MADE.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
INFO IS SET AS FOLLOWS.

INFO = 0 IMPROPER INPUT PARAMETERS.

INFO = 1 BOTH ACTUAL AND PREDICTED RELATIVE REDUCTIONS
IN THE SUM OF SQUARES ARE AT MOST FTOL.

INFO = 2 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES
IS AT MOST XTOL.

INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD.

INFO = 4 THE COSINE OF THE ANGLE BETWEEN FVEC AND ANY
COLUMN OF THE JACOBIAN IS AT MOST GTOL IN
ABSOLUTE VALUE.

INFO = 5 NUMBER OF CALLS TO FCN HAS REACHED OR
EXCEEDED MAXFEV.

INFO = 6 FTOL IS TOO SMALL. NO FURTHER REDUCTION IN
THE SUM OF SQUARES IS POSSIBLE.

INFO = 7 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

INFO = 8 GTOL IS TOO SMALL. FVEC IS ORTHOGONAL TO THE
COLUMNS OF THE JACOBIAN TO MACHINE PRECISION.

NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
CALLS TO FCN.

FJAC IS AN OUTPUT M BY N ARRAY. THE UPPER N BY N SUBMATRIX
OF FJAC CONTAINS AN UPPER TRIANGULAR MATRIX R WITH
DIAGONAL ELEMENTS OF NONINCRESING MAGNITUDE SUCH THAT

\[T \quad T \\
P * (JAC * JAC) \quad P = R * R, \]

WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL
CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J)
(SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRAPEZOIDAL
PART OF FJAC CONTAINS INFORMATION GENERATED DURING
THE COMPUTATION OF R.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.
IPVT is an integer output array of length N. IPVT defines a permutation matrix P such that JAC*P = Q*R, where JAC is the final calculated Jacobian, Q is orthogonal (not stored), and R is upper triangular with diagonal elements of nonincreasing magnitude. Column J of P is column IPVT(J) of the identity matrix.

QTF is an output array of length N which contains the first N elements of the vector (Q transpose)*FVEC.

WA1, WA2, and WA3 are work arrays of length N.

WA4 is a work array of length M.

Subprograms called

User-supplied FCN

MINPACK-supplied ... DPMPAR, ENORM, FDFJAC2, LMPAR, QRFAC

FORTRAN-supplied ... DABS, DMAX1, DMIN1, DSQRT, MOD

Argonne National Laboratory. MINPACK project. March 1980.

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

INTEGRAL I, IFLAG, ITER, J, L
DOUBLE PRECISION ACTRED, DELTA, DIRDER, EPSMCH, FNORM, FNORM1, GNORM,
* ONE, PAR, PNORM, PRERED, P1, P5, P25, P75, P0001, RATIO,
* SUM, TEMP, TEMP1, TEMP2, XNORM, ZERO
DOUBLE PRECISION DPMPAR, ENORM
DATA ONE, P1, P5, P25, P75, P0001, ZERO
* /1.0D0, 1.0D-1, 1.5D0, 1.25D-1, 1.75I-1, 1.0D-4...0D0/

EPSMCH is the machine precision.

EPSMCH = DPMPAR(1)

INFO = 0
IFLAG = 0
NFEV = 0

Check the input parameters for errors.

IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. M
* .OR. FTOL .LT. ZERO .OR. XTOL .LT. ZERO .OR. GTOL .LT. ZERO
* .OR. MAXFEV .LE. 0 .OR. FACTOR .LE. ZERO) GO TO 300
IF (MODE .NE. 2) GO TO 20
DO 10 J = 1, N
 IF (DIAG(J) .LE. ZERO) GO TO 300
10 CONTINUE
20 CONTINUE
EVALUATE THE FUNCTION AT THE STARTING POINT AND CALCULATE ITS NORM.

IFLAG = 1
CALL FCN(M,N,X,FVEC,IFLAG)
NFEV = 1
IF (IFLAG .LT. 0) GO TO 300
FNORM = ENORM(M,FVEC)

INITIALIZE LEVENBERG-MARQUARDT PARAMETER AND ITERATION COUNTER.
PAR = ZERO
ITER = 1

BEGINNING OF THE OUTER LOOP.

30 CONTINUE

CALCULATE THE JACOBIAN MATRIX.

IFLAG = 2
CALL FDJAC2(FCN,M,N,X,FVEC,FJAC,LDFJAC,IFLAG,EPSFCN,WA4)
NFEV = NFEV + N
IF (IFLAG .LT. 0) GO TO 300

IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES.

IF (NPRINT .LE. 0) GO TO 40
IFLAG = 0
IF (MOD(ITER-1,NPRINT) .EQ. 0) CALL FCN(M,N,X,FVEC,IFLAG)
IF (IFLAG .LT. 0) GO TO 300
CONTINUE

COMPUTE THE QR FACTORIZATION OF THE JACOBIAN.

CALL QRFAC(M,N,FJAC,LDFJAC,.TRUE.,IPVT,N,WA1,WA2,WA3)

ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.

IF (ITER .NE. 1) GO TO 80
IF (MODE .EQ. 2) GO TO 60
DO 50 J = 1, N
 DIAG(J) = WA2(J)
 IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE
CONTINUE

50 CONTINUE

ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X AND INITIALIZE THE STEP BOUND DELTA.

DO 70 J = 1, N
 WA3(J) = DIAG(J)*X(J)
CONTINUE
XNORM = ENORM(N,WA3)
DELTA = FACTOR*XNORM
IF (DELTA .EQ. ZERO) DELTA = FACTOR
80 CONTINUE
C
C FORM (Q TRANSPOSE)*FVEC AND STORE THE FIRST N COMPONENTS IN
C QTF.
C
C DO 90 I = 1, M
WA4(I) = FVEC(I)
90 CONTINUE
DO 130 J = 1, N
IF (FJAC(J,J) .EQ. ZERO) GO TO 120
SUM = ZERO
DO 100 I = J, M
SUM = SUM + FJAC(I,J)*WA4(I)
100 CONTINUE
TEMP = -SUM/FJAC(J,J)
DO 110 I = J, M
WA4(I) = WA4(I) + FJAC(I,J)*TEMP
110 CONTINUE
FJAC(J,J) = WA1(J)
QTF(J) = WA4(J)
130 CONTINUE
C
C COMPUTE THE NORM OF THE SCALED GRADIENT.
C
GNORM = ZERO
IF (FNORM .EQ. ZERO) GO TO 170
DO 160 J = 1, N
L = IPVT(J)
IF (WA2(L) .EQ. ZERO) GO TO 150
SUM = ZERO
DO 140 I = 1, J
SUM = SUM + FJAC(I,J)*(QTF(I)/FNORM)
140 CONTINUE
GNORM = MAX1(GNORM,DABS(SUM/WA2(L)))
150 CONTINUE
160 CONTINUE
170 CONTINUE
C
C TEST FOR CONVERGENCE OF THE GRADIENT NORM.
C
IF (GNORM .LE. GTOL) INFO = 4
IF (INFO .NE. 0) GO TO 300
C
C RESCALE IF NECESSARY.
C
IF (MODE .EQ. 2) GO TO 190
DO 180 J = 1, N
DIAG(J) = MAX1(DIAG(J),WA2(J))
180 CONTINUE
190 CONTINUE
BEGINNING OF THE INNER LOOP.

200 CONTINUE

DETERMINE THE LEVENBERG-MARQUARDT PARAMETER.

CALL LMPAR(N,FJAC,LDFJAC,IPVT,DIAG,QTF,DELTA,PAR,WA1,WA2,WA3,WA4)

STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P.

DO 210 J = 1, N
 WA1(J) = -WA1(J)
 WA2(J) = X(J) + WA1(J)
 WA3(J) = DIAG(J)*WA1(J)
CONTINUE

PNORM = ENORM(N,WA3)

ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND.

IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM)

EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM.

IFLAG = 1
CALL FCN(M,N,WA2,WA4,IFLAG)
NFEV = NFEV + 1
IF (IFLAG .LT. 0) GO TO 300
FNORM1 = ENORM(M,WA4)

COMPUTE THE SCALED ACTUAL REDUCTION.

ACTRED = -ONE
IF (P1*FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)**2

COMPUTE THE SCALED PREDICTED REDUCTION AND THE SCALED DIRECTIONAL DERIVATIVE.

DO 230 J = 1, N
 WA3(J) = ZERO
 L = IPVT(J)
 TEMP = WA1(L)
 DO 220 I = 1, J
 WA3(I) = WA3(I) + FJAC(I,J)*TEMP
 CONTINUE
CONTINUE

TEMP1 = ENORM(N,WA3)/FNORM
TEMP2 = (DSQRT(PAR)*PNORM)/FNORM
PRERED = TEMP1**2 + TEMP2**2/P5
DISRER = -(TEMP1**2 + TEMP2**2)

COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED REDUCTION.
RATIO = ZERO
IF (PRERED .NE. ZERO) RATIO = ACTRED/PRERED

UPDATE THE STEP BOUND.

IF (RATIO .GT. P25) GO TO 240
 IF (ACTRED .GE. ZERO) TEMP = P5
 IF (ACTRED .LT. ZERO)
 TEMP = P5*DIRDER/(DIRDER + P5*ACTRED)
 END IF
 IF (P1*FNORM1 .GE. FNORM .OR. TEMP .LT. P1) TEMP = P1
 DELTA = TEMP*DMIN1(DELTA,PNORM/P1)
 PAR = PAR/TEMP
 GO TO 260
240 CONTINUE
IF (PAR .NE. ZERO .AND. RATIO .LT. P75) GO TO 250
 DELTA = PNORM/P5
 PAR = P5*PAR
250 CONTINUE
260 CONTINUE

TEST FOR SUCCESSFUL ITERATION.

IF (RATIO .LT. P0001) GO TO 290

SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.

DO 270 J = 1, N
 X(J) = WA2(J)
 WA2(J) = DIAG(J)*X(J)
270 CONTINUE
DO 280 I = 1, M
 FVEC(I) = WA4(I)
280 CONTINUE
XNORM = ENORM(N,W2)
FNORM = FNORM1
ITER = ITER + 1
290 CONTINUE

TESTS FOR CONVERGENCE.

IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL
 .AND. P5*RATIO .LE. ONE) INFO = 1
 IF (DELTA .LE. XTOL*XNORM) INFO = 2
 IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL
 .AND. P5*RATIO .LE. ONE .AND. INFO .EQ. 2) INFO = 3
 IF (INFO .NE. 0) GO TO 300
C

TESTS FOR TERMINATION AND STRINGENT TOLERANCES.

IF (NFEV .GE. MAXFEV) INFO = 5
IF (DABS(ACTRED) .LE. EPSMCH .AND. PRERED .LE. EPSMCH
 .AND. P5*RATIO .LE. ONE) INFO = 6
IF (DELTA .LE. EPSMCH*XNORM) INFO = 7
IF (GNORM .LE. EPSMCH) INFO = 8
IF (INFO .NE. 0) GO TO 300

C END OF THE INNER LOOP. REPEAT IF ITERATION UNSUCCESSFUL.
C IF (RATIO .LT. P0001) GO TO 200
C END OF THE OUTER LOOP.
C GO TO 30
300 CONTINUE
C TERMINATION, EITHER NORMAL OR USER IMPOSED.
C IF (IFLAG .LT. 0) INFO = IFLAG
IFLAG = 0
IF (NPRINT .GT. 0) CALL FCN(M,N,X,FVEC,IFLAG)
RETURN
C LAST CARD OF SUBROUTINE LMDIF.
C END
SUBROUTINE LMDIF1(FCN,M,N,X,FVEC,TOL,INFO,IWA,WA,LWA)
INTEGER M,N,INFO,IWA
INTEGER IWA(N)
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(M),WA(LWA)
EXTERNAL FCN

SUBROUTINE LMDIF1

THE PURPOSE OF LMDIF1 IS TO MINIMIZE THE SUM OF THE SQUARES OF
M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE
LEVENBERG-MARQUARDT ALGORITHM. THIS IS DONE BY USING THE MORE
GENERAL LEAST-SQUARES SOLVER LMDIF. THE USER MUST PROVIDE A
SUBROUTINE WHICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS
THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION.

THE SUBROUTINE STATEMENT IS

SUBROUTINE LMDIF1(FCN,M,N,X,FVEC,TOL,INFO,IWA,WA,LWA)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
IN AN EXTERNAL STATEMENT IN THE USER CALLING
PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M)

CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

RETURN
END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF LMDIF1.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.
TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS
WHEN THE ALGORITHM ESTIMATES EITHER THAT THE RELATIVE
ERROR IN THE SUM OF SQUARES IS AT MOST TOL OR THAT
THE RELATIVE ERROR BETWEEN X AND THE SOLUTION IS AT
MOST TOL.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
INFO IS SET AS follows.

INFO = 0 IMPROPER INPUT PARAMETERS.

INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
IN THE SUM OF SQUARES IS AT MOST TOL.

INFO = 2 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
BETWEEN X AND THE SOLUTION IS AT MOST TOL.

INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD.

INFO = 4 FVEC IS ORTHOGONAL TO THE COLUMNS OF THE
JACOBIAN TO MACHINE PRECISION.

INFO = 5 NUMBER OF CALLS TO FCN HAS REACHED OR
EXCEEDED 200*N*(N+1).

INFO = 6 TOL IS TOO SMALL. NO FURTHER REDUCTION IN
THE SUM OF SQUARES IS POSSIBLE.

INFO = 7 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

IWA IS AN INTEGER WORK ARRAY OF LENGTH N.

WA IS A WORK ARRAY OF LENGTH LWA.

LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN
M*N+5*N+M.

SUBPROGRAMS CALLED

USER-SUPPLIED FCN

MINPACK-SUPPLIED ... LMDIF

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER MAXFEV,MODE,MP5N,NFEV,NPRINT
DOUBLE PRECISION EPSFCN,FACTOR,FTOL,GTOL,XTOL,ZERO
DATA FACTOR,ZERO /1.0D2,0.0D0/
INFO = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. M .LT. N .OR. TOL .LT. ZERO
* .OR. IWA .LT. M*N + 5*N + M) GO TO 10

CALL LMDIF.

MAXFEV = 200*(N + 1)
FTOL = TOL
XTOL = TOL
GTOL = ZERO
EPSFCN = ZERO
MODE = 1
NPRINT = 0
MP5N = M + 5*N
CALL LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN,WA(1),
* MODE,FACTOR,NPRINT,INFO,NFEV,WA(MP5N+1),M,IWA,
* WA(N+1),WA(2*N+1),WA(3*N+1),WA(4*N+1),WA(5*N+1))
IF (INFO .EQ. 8) INFO = 4
10 CONTINUE
RETURN

LAST CARD OF SUBROUTINE LMDIF1.

END
SUBROUTINE LMPAR(N,R,LDR,IPVT,DIAG,QTB,DELTA,PAR,X,SDIAG,WA1,
 * WA2)
* INTEGER N,LDR
* INTEGER IPVT(N)
* DOUBLE PRECISION DELTA,PAR
* DOUBLE PRECISION R(LDR,N),DIAG(N),QTB(N),X(N),SDIAG(N),WA1(N),
 * WA2(N)

SUBROUTINE LMPAR

GIVEN AN M BY N MATRIX A, AN N BY N NONSINGULAR DIAGONAL
MATRIX D, AN M-VECTOR B, AND A POSITIVE NUMBER DELTA,
THE PROBLEM IS TO DETERMINE A VALUE FOR THE PARAMETER
PAR SUCH THAT IF X SOLVES THE SYSTEM

A* X = B , SQRT(PAR)*D*X = 0 ,

IN THE LEAST SQUARES SENSE, AND DXNORM IS THE EUCLIDEAN
NORM OF D*X, THEN EITHER PAR IS ZERO AND

(DXNORM-DELTA) .LE. 0.1*DELTA ,

OR PAR IS POSITIVE AND

ABS(DXNORM-DELTA) .LE. 0.1*DELTA .

THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM
IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE
QR FACTORIZATION, WITH COLUMN PIVOTING, OF A. THAT IS, IF
A*P = Q*R, WHERE P IS A PERMUTATION MATRIX, Q HAS ORTHOGONAL
COLUMNS, AND R IS AN UPPER TRIANGULAR MATRIX WITH DIAGONAL
ELEMENTS OF NONINCREASING MAGNITUDE, THEN LMPAR EXPECTS
THE FULL UPPER TRIANGLE OF R, THE PERMUTATION MATRIX P,
AND THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. ON OUTPUT
LMPAR ALSO PROVIDES AN UPPER TRIANGULAR MATRIX S SUCH THAT

T

P *(A *A + PAR*D*D)*P = S *S .

S IS EMPLOYED WITHIN LMPAR AND MAY BE OF SEPARATE INTEREST.

ONLY A FEW ITERATIONS ARE GENERALLY NEEDED FOR CONVERGENCE
OF THE ALGORITHM. IF, HOWEVER, THE LIMIT OF 10 ITERATIONS
IS REACHED, THEN THE OUTPUT PAR WILL CONTAIN THE BEST
VALUE OBTAINED SO FAR.

THE SUBROUTINE STATEMENT IS

SUBROUTINE LMPAR(N,R,LDR,IPVT,DIAG,QTB,DELTA,PAR,X,SDIAG,
 * WA1,WA2)

WHERE
N is a positive integer input variable set to the order of R.

R is an N by N array. On input the full upper triangle must contain the full upper triangle of the matrix R. On output the full upper triangle is unaltered, and the strict lower triangle contains the strict upper triangle (transposed) of the upper triangular matrix S.

LDR is a positive integer input variable not less than N which specifies the leading dimension of the array R.

IPVT is an integer input array of length N which defines the permutation matrix P such that A^P = Q^R. COLUMN J of P is column IPVT(J) of the identity matrix.

DIAG is an input array of length N which must contain the diagonal elements of the matrix D.

QT B is an input array of length N which must contain the first N elements of the vector (Q transpose)^B.

DELTA is a positive input variable which specifies an upper bound on the Euclidean norm of D^X.

PAR is a nonnegative variable. On input PAR contains an initial estimate of the Levenberg-Marquardt parameter. On output PAR contains the final estimate.

X is an output array of length N which contains the least squares solution of the system A^X = B, SQRT(PAR)^*D^X = 0, for the output PAR.

SDIAG is an output array of length N which contains the diagonal elements of the upper triangular matrix S.

WA1 and WA2 are work arrays of length N.

Subprograms called

MINPACK-supplied ... DPMPAR, ENORM, QRSOLV

FORTRAN-supplied ... DABS, DMAX1,DMIN1, DSQRT

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

INTEGER I, ITER, J, JM1, JP1, K, L, NSING

DOUBLE PRECISION DNXNORM, DWARM, FP, GNORM, PARC, PARL, PARU, P1, P001, *

SUM, TEMP, ZERO

DOUBLE PRECISION DPMPAR, ENORM

DATA P1, P001, ZERO /1.0D-1, 1.0D-3, 0.0D0/

DWARF is the smallest positive magnitude.
DWARF = DPMPAR(2)

COMPUTE AND STORE IN X THE GAUSS-NEWTON DIRECTION. IF THE
JACOBIAN IS RANK-DEFICIENT, OBTAIN A LEAST SQUARES SOLUTION.

NSING = N
DO 10 J = 1, N
 WA1(J) = QTB(J)
 IF (R(J,J) .EQ. ZERO .AND. NSING .EQ. N) NSING = J - 1
 IF (NSING .LT. N) WA1(J) = ZERO
 CONTINUE
10 IF (NSING .LT. 1) GO TO 50
DO 40 K = 1, NSING
 J = NSING - K + 1
 WA1(J) = WA1(J)/R(J,J)
 TEMP = WA1(J)
 JM1 = J - 1
 IF (JM1 .LT. 1) GO TO 30
DO 20 I = 1, JM1
 WA1(I) = WA1(I) - R(I,J)*TEMP
20 CONTINUE
30 CONTINUE
40 CONTINUE
50 CONTINUE
DO 60 J = 1, N
 L = IPVT(J)
 X(L) = WA1(J)
60 CONTINUE

INITIALIZE THE ITERATION COUNTER.
EVALUATE THE FUNCTION AT THE ORIGIN, AND TEST
FOR ACCEPTANCE OF THE GAUSS-NEWTON DIRECTION.

ITER = 0
DO 70 J = 1, N
 WA2(J) = DIAG(J)*X(J)
70 CONTINUE
DXNORM = ENORM(N,WA2)
FP = DXNORM - DELTA
IF (FP .LE. PI*DELTA) GO TO 220

IF THE JACOBIAN IS NOT RANK DEFICIENT, THE NEWTON
STEP PROVIDES A LOWER BOUND, PARL, FOR THE ZERO OF
THE FUNCTION. OTHERWISE SET THIS BOUND TO ZERO.

PARL = ZERO
IF (NSING .LT. N) GO TO 120
DO 80 J = 1, N
 L = IPVT(J)
 WA1(J) = DIAG(L)*(WA2(L)/DXNORM)
80 CONTINUE
DO 110 J = 1, N
 SUM = ZERO
JM1 = J - 1
IF (JM1 .LT. 1) GO TO 100
DO 90 I = 1, JM1
 SUM = SUM + R(I,J)*WA1(I)
90 CONTINUE
100 CONTINUE
 WA1(J) = (WA1(J) - SUM)/R(J,J)
110 CONTINUE
 TEMP = ENORM(N,W1A)
 PARL = ((FP/DELTA)/TEMP)/TEMP
120 CONTINUE
C
C CALCULATE AN UPPER BOUND, PARU, FOR THE ZERO OF THE FUNCTION.
C
DO 140 J = 1, N
 SUM = ZERO
 DO 130 I = 1, J
 SUM = SUM + R(I,J)*QTB(I)
130 CONTINUE
 L = IPVT(J)
 WA1(J) = SUM/DIAG(L)
140 CONTINUE
 GNORM = ENORM(N,W1A)
 PARU = GNORM/DELTA
 IF (PARU .EQ. ZERO) PARU = DWARF/DMIN1(DELTA,P1)
C
C IF THE INPUT PAR LIES OUTSIDE OF THE INTERVAL (PARL,PARU),
C SET PAR TO THE CLOSER ENDPOINT.
C
 PAR = DMAX1(PAR,PARL)
 PAR =DMIN1(PAR,PARU)
 IF (PAR .EQ. ZERO) PAR = GNORM/DXNORM
C
C BEGINNING OF AN ITERATION.
C
150 CONTINUE
 ITER = ITER + 1
C
C EVALUATE THE FUNCTION AT THE CURRENT VALUE OF PAR.
C
 IF (PAR .EQ. ZERO) PAR = DMAX1(DWARF,P001*PARU)
 TEMP = DSQRT(PAR)
 DO 160 J = 1, N
 WA1(J) = TEMP*DIAG(J)
160 CONTINUE
 CALL QRSOLV(N,R,LDR,IPVT,WA1,QTB,X,SDIAG,W2)
 DO 170 J = 1, N
 WA2(J) = DIAG(J)*X(J)
170 CONTINUE
 DXNORM = ENORM(N,W2)
 TEMP = FP
 FP = DXNORM - DELTA
C
C IF THE FUNCTION IS SMALL ENOUGH, ACCEPT THE CURRENT VALUE
OF PAR. ALSO TEST FOR THE EXCEPTIONAL CASES WHERE PARL
IS ZERO OR THE NUMBER OF ITERATIONS HAS REACHED 10.

IF (DABS(FP) .LE. P1*DELTA
* OR. PARL .EQ. ZERO .AND. FP .LE. TEMP
* .AND. TEMP .LT. ZERO .OR. ITER .EQ. 10) GO TO 220

COMPUTE THE NEWTON CORRECTION.

DO 180 J = 1, N
 L = IPVT(J)
 WA1(J) = DIAG(L)*(WA2(L)/DXNORM)
180 CONTINUE

DO 210 J = 1, N
 WA1(J) = WA1(J)/SDIAG(J)
 TEMP = WA1(J)
 JP1 = J + 1
 IF (N .LT. JP1) GO TO 200
 DO 190 I = JP1, N
 WA1(I) = WA1(I) - R(I,J)*TEMP
190 CONTINUE
200 CONTINUE
210 CONTINUE

TEMP = ENORM(N,WA1)
PARC = ((FP/DELTA)/TEMP)/TEMP

DEPENDING ON THE SIGN OF THE FUNCTION, UPDATE PARL OR PARU.

IF (FP .GT. ZERO) PARL = DMAX1(PARL,PAR)
IF (FP .LT. ZERO) PARU = DMIN1(PARU,PAR)

COMPUTE AN IMPROVED ESTIMATE FOR PAR.

PAR = DMAX1(PARL,PAR+PARC)

END OF AN ITERATION.

GO TO 150

TERMATION.

IF (ITER .EQ. 0) PAR = ZERO
RETURN

LAST CARD OF SUBROUTINE LMPAR.

END
SUBROUTINE LMSTR(FCN, M, N, X, FVEC, FJAC, LDFJAC, FTOL, XTOL, GTOL,
* MAXFEV, DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, NJEV,
* IPVT, QTF, WA1, WA2, WA3, WA4)
INTEGER M, N, LDFJAC, MAXFEV, MODE, NPRINT, INFO, NFEV, NJEV
INTEGER IPVT(N)
LOGICAL SING
DOUBLE PRECISION FTOL, XTOL, GTOL, FACTOR
DOUBLE PRECISION X(N), FVEC(M), FJAC(LDFJAC,N), DIAG(N), QTF(N),
 WA1(N), WA2(N), WA3(N), WA4(N)

C
C SUBROUTINE LMSTR
C
THE PURPOSE OF LMSTR IS TO MINIMIZE THE SUM OF THE SQUARES OF
M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF
THE LEVENBERG-MARQUARDT ALGORITHM WHICH USES MINIMAL STORAGE.
THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE
FUNCTIONS AND THE ROWS OF THE JACOBIAN.

THE SUBROUTINE STATEMENT IS

SUBROUTINE LMSTR(FCN, M, N, X, FVEC, FJAC, LDFJAC, FTOL, XTOL, GTOL,
 MAXFEV, DIAG, MODE, FACTOR, NPRINT, INFO, NFEV,
 NJEV, IPVT, QTF, WA1, WA2, WA3, WA4)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS AND THE ROWS OF THE JACOBIAN.
FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN THE
USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M, N, X, FVEC, FJROW, IFLAG)
INTEGER M, N, IFLAG
DOUBLE PRECISION X(N), FVEC(M), FJROW(N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.
IF IFLAG = 1 CALCULATE THE (I-1)-ST ROW OF THE
JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW.

RETURN
END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF LMSTR.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.
X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS THE FUNCTIONS EVALUATED AT THE OUTPUT X.

FJAC IS AN OUTPUT N BY N ARRAY. THE UPPER TRIANGLE OF FJAC CONTAINS AN UPPER TRIANGULAR MATRIX R SUCH THAT

\[T \cdot P \ast (JAC \ast JAC) \ast P = R \ast R, \]

WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J) (SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRIANGULAR PART OF FJAC CONTAINS INFORMATION GENERATED DURING THE COMPUTATION OF R.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N WHICH SPECIFIES THE CELLING DIMENSION OF THE ARRAY FJAC.

FTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN BOTH THE ACTUAL AND PREDICTED RELATIVE REDUCTIONS IN THE SUM OF SQUARES ARE AT MOST FTOL. THEREFORE, FTOL MEASURES THE RELATIVE ERROR DESIRED IN THE SUM OF SQUARES.

XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES IS AT MOST XTOL. THEREFORE, XTOL MEASURES THE RELATIVE ERROR DESIRED IN THE APPROXIMATE SOLUTION.

MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION OCCURS WHEN THE NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS REACHED MAXFEV.

DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.

MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2, THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER VALUES OF MODE ARE EQUIVALENT TO MODE = 1.
FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE
INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF
FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE
TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE
INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE.

NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED
PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE,
FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST
ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND
IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE
FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS
OF FCN WITH IFLAG = 0 ARE MADE.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
INFO IS SET AS FOLLOWS.

INFO = 0 IMPROPER INPUT PARAMETERS.
INFO = 1 BOTH ACTUAL AND PREDICTED RELATIVE REDUCTIONS
IN THE SUM OF SQUARES ARE AT MOST FTOL.
INFO = 2 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES
IS AT MOST XTOL.
INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD.
INFO = 4 THE COSINE OF THE ANGLE BETWEEN FVEC AND ANY
COLUMN OF THE JACOBIAN IS AT MOST GTOL IN
ABSOLUTE VALUE.
INFO = 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS
REACHED MAXFEV.
INFO = 6 FTOL IS TOO SMALL. NO FURTHER REDUCTION IN
THE SUM OF SQUARES IS POSSIBLE.
INFO = 7 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.
INFO = 8 GTOL IS TOO SMALL. FVEC IS ORTHOGONAL TO THE
COLUMNS OF THE JACOBIAN TO MACHINE PRECISION.

NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
CALLS TO FCN WITH IFLAG = 1.

NJEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
CALLS TO FCN WITH IFLAG = 2.

IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT
DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R,
WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS
ORTHO\(G\)NAL (NOT STORED), AND R IS UPPER TRIANGULAR.

COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE FIRST N ELEMENTS OF THE VECTOR \((Q TRANSPOSE)FVEC\).

WA1, WA2, AND WA3 ARE WORK ARRAYS OF LENGTH N.

WA4 IS A WORK ARRAY OF LENGTH M.

SUBPROGRAMS CALLED

USER-SUPPLIED FCN

MINPACK-SUPPLIED ... DPMPAR,ENORM,LMPAR,QRFAC,RWUPDT

FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,DSQRT,MOD

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.

BURTON S. GARBO\(W\), DUDLEY V. GOETSCHEL, KENNETH E. HILLSTROM,
JORGE J. MORE

INTEGER I, IFLAG, ITER, J, L
DOUBLE PRECISION ACTRED, DELTA, DIRDER, EPSMCH, FNORM, FNORM1, GNORM,
* ONE, PAR, PNORM, PRERED, P1, P5, P25, P75, P10001, RATIO,
* SUM, TEMP, TEMP1, TEMP2, XNORM, ZERO

DOUBLE PRECISION DPMPAR, ENORM
DATA ONE, P1, P5, P25, P75, P10001, ZERO
* /1.0D0, 1.0D-1, 5.0D-1, 2.5D-1, 7.5D-1, 1.0D-4, 0.0D0/

EPSMCH IS THE MACHINE PRECISION.

EPSMCH = DPMPAR(1)

INFO = 0
IFLAG = 0
NFEV = 0
NJEV = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. N
* .OR. FTOL .LT. ZERO .OR. XTOL .LT. ZERO .OR. GTOL .LT. ZERO
* .OR. MAXFEV .LE. 0 .OR. FACTOR .LE. ZERO) GO TO 340
IF (MODE .NE. 2) GO TO 20
DO 10 J = 1, N
* IF (DIAG(J) .LE. ZERO) GO TO 340
10 CONTINUE
20 CONTINUE

EVALUATE THE FUNCTION AT THE STARTING POINT

AND CALCULATE ITS NORM.
IFLAG = 1
CALL FCN(M,N,X,FVEC,WA3,IFLAG)
NFEV = 1
IF (IFLAG .LT. 0) GO TO 340
FNORM = ENORM(M,FVEC)

C
C INITIALIZE LEVENBERG-MARQUARDT PARAMETER AND ITERATION COUNTER.
C
PAR = ZERO
ITER = 1
C
BEGINNING OF THE OUTER LOOP.
C
30 CONTINUE
C
IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES.
C
IF (NPRINT .LE. 0) GO TO 40
IFLAG = 0
IF (MOD(ITER-1,NPRINT) .EQ. 0) CALL FCN(M,N,X,FVEC,WA3,IFLAG)
IF (IFLAG .LT. 0) GO TO 340
40 CONTINUE
C
COMPUTE THE QR FACTORIZATION OF THE JACOBIAN MATRIX
C
CALCULATED ONE ROW AT A TIME, WHILE SIMULTANEOUSLY
C
FORMING (Q TRANSPOSE)*FVEC AND STORING THE FIRST
C
N COMPONENTS IN QTF.
C
DO 60 J = 1, N
 QTF(J) = ZERO
 DO 50 I = 1, N
 FJAC(I,J) = ZERO
 CONTINUE
60 CONTINUE
C
IFLAG = 2
DO 70 I = 1, M
 CALL FCN(M,N,X,FVEC,WA3,IFLAG)
 IF (IFLAG .LT. 0) GO TO 340
 TEMP = FVEC(I)
 CALL RWUPDT(N,FJAC,LDFJAC,WA3,QTF,TEMP,WA1,WA2)
 IFLAG = IFLAG + 1
70 CONTINUE

NJEV = NJEV + 1
C
IF THE JACOBIAN IS RANK DEFICIENT, CALL QRFAC TO
C
REORDER ITS COLUMNS AND UPDATE THE COMPONENTS OF QTF.
C
SING = .FALSE.
DO 80 J = 1, N
 IF (FJAC(J,J) .EQ. ZERO) SING = .TRUE.
 IPVT(J) = J
 WA2(J) = ENORM(J,FJAC(1,J))
80 CONTINUE
IF (.NOT.SING) GO TO 130

C
C
LMSR2170
LMSR2180
LMSR2190
LMSR2200
LMSR2210
LMSR2220
LMSR2230
LMSR2240
LMSR2250
LMSR2260
LMSR2270
LMSR2280
LMSR2290
LMSR2300
LMSR2310
LMSR2320
LMSR2330
LMSR2340
LMSR2350
LMSR2360
LMSR2370
LMSR2380
LMSR2390
LMSR2400
LMSR2410
LMSR2420
LMSR2430
LMSR2440
LMSR2450
LMSR2460
LMSR2470
LMSR2480
LMSR2490
LMSR2500
LMSR2510
LMSR2520
LMSR2530
LMSR2540
LMSR2550
LMSR2560
LMSR2570
LMSR2580
LMSR2590
LMSR2600
LMSR2610
LMSR2620
LMSR2630
LMSR2640
LMSR2650
LMSR2660
LMSR2670
LMSR2680
LMSR2690
LMSR2700
CALL QRFAC(N,N,FJAC,LDFJAC,.TRUE.,IPVT,N,WA1,WA2,WA3) LMSR2710
DO 120 J = 1, N
 IF (FJAC(J,J) .EQ. ZERO) GO TO 110
 SUM = ZERO
 DO 90 I = J, N
 SUM = SUM + FJAC(I,J)*QTF(I)
 CONTINUE
 TEMP = -SUM/FJAC(J,J)
 DO 100 I = J, N
 QTF(I) = QTF(I) + FJAC(I,J)*TEMP
 CONTINUE
100 CONTINUE
110 CONTINUE
FJAC(J,J) = WA1(J)
120 CONTINUE
130 CONTINUE

C ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING
C TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.
C
IF (ITER .NE. 1) GO TO 170
IF (MODE .EQ. 2) GO TO 150
DO 140 J = 1, N
 DIAG(J) = WA2(J)
 IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE
140 CONTINUE
150 CONTINUE

C ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X
C AND INITIALIZE THE STEP BOUND DELTA.
C
DO 160 J = 1, N
 WA3(J) = DIAG(J)*X(J)
160 CONTINUE
XNORM = ENORM(N,WA3)
DELTA = FACTOR*XNORM
IF (DELTA .EQ. ZERO) DELTA = FACTOR
170 CONTINUE

C COMPUTE THE NORM OF THE SCALED GRADIENT.
C
GNORM = ZERO
IF (FNORM .EQ. ZERO) GO TO 210
DO 200 J = 1, N
 L = IPVT(J)
 IF (WA2(L) .EQ. ZERO) GO TO 190
 SUM = ZERO
 DO 180 I = 1, J
 SUM = SUM + FJAC(I,J)*(QTF(I)/FNORM)
 CONTINUE
180 GNORM = DMAX1(GNORM,DABS(SUM/WA2(L)))
190 CONTINUE
200 CONTINUE
210 CONTINUE

C
TEST FOR CONVERGENCE OF THE GRADIENT NORM.

IF (GNORM .LE. GTOL) INFO = 4
IF (INFO .NE. 0) GO TO 340

RESCALE IF NECESSARY.

IF (MODE .EQ. 2) GO TO 230
DO 220 J = 1, N
 DIAG(J) = DMAX1(DIAG(J),WA2(J))
220 CONTINUE

CONTINUE

BEGINNING OF THE INNER LOOP.

CONTINUE

Determine the Levenberg-Marquardt Parameter.

CALL LMPAR(N,FJAC,LDFJAC,IPVT,DIAG,QTF,DELTAPAR,WA1,WA2,
 WA3,WA4)

*STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P.

DO 250 J = 1, N
 WA1(J) = -WA1(J)
 WA2(J) = X(J) + WA1(J)
 WA3(J) = DIAG(J)*WA1(J)
250 CONTINUE
PNORM = ENORM(N,WA3)

ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND.

IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM)

EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM.

IFLAG = 1
CALL FCN(M,N,WA2,WA4,WA3,IFLAG)
NFEV = NFEV + 1
IF (IFLAG .LT. 0) GO TO 340
FNORM1 = ENORM(M,WA4)

COMPUTE THE SCALED ACTUAL REDUCTION.

ACTRED = -ONE
IF (P1*FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)**2

COMPUTE THE SCALED PREDICTED REDUCTION AND
THE SCALED DIRECTIONAL DERIVATIVE.

DO 270 J = 1, N
 WA3(J) = ZERO
 L = IPVT(J)
TEMP = WA1(L)
DO 260 I = 1, J
 WA3(I) = WA3(I) + FJAC(I,J) * TEMP
260 CONTINUE
270 CONTINUE
TEMP1 = ENORM(N,WA3)/FNORM
TEMP2 = (DSQRT(PAR) * FNORM) / FNORM
PRERED = TEMP1**2 + TEMP2**2 / P5
DIRDER = -(TEMP1**2 + TEMP2**2)
C
C Compute the ratio of the actual to the predicted reduction.
C
RATIO = ZERO
IF (PRERED .NE. ZERO) RATIO = ACTRED / PRERED
C
UPDATE THE STEP BOUND.
C
IF (RATIO .GT. P25) GO TO 280
 IF (ACTRED .GE. ZERO) TEMP = P5
 IF (ACTRED .LT. ZERO)
 TEMP = P5 * DIRDER / (DIRDER + P5 * ACTRED)
 IF (P1 * FNORM1 .GE. FNORM .OR. TEMP .LT. P1) TEMP = P1
 DELTA = TEMP * DMIN1(DELTA, FNORM / P1)
 PAR = PAR / TEMP
GO TO 300
280 CONTINUE
 IF (PAR .NE. ZERO .AND. RATIO .LT. P75) GO TO 290
 DELTA = FNORM / P5
 PAR = P5 * PAR
290 CONTINUE
300 CONTINUE
C
TEST FOR SUCCESSFUL ITERATION.
C
IF (RATIO .LT. P0001) GO TO 330
C
SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.
C
DO 310 J = 1, N
 X(J) = WA2(J)
 WA2(J) = DIAG(J) * X(J)
310 CONTINUE
DO 320 I = 1, M
 FVEC(I) = WA4(I)
320 CONTINUE
XNORM = ENORM(N, WA2)
FNORM = FNORM1
ITER = ITER + 1
330 CONTINUE
C
TESTS FOR CONVERGENCE.
C
IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL

* .AND. P5*RATIO .LE. ONE) INFO = 1
 IF (DELTA .LE. XTOL*XNORM) INFO = 2
 IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL
 * .AND. P5*RATIO .LE. ONE .AND. INFO .EQ. 2) INFO = 3
 IF (INFO .NE. 0) GO TO 340
C
C TESTS FOR TERMINATION AND STRINGENT TOLERANCES.
C
 IF (NFEV .GE. MAXFEV) INFO = 5
 IF (DABS(ACTRED) .LE. EPSMCH .AND. PRERED .LE. EPSMCH
 * .AND. P5*RATIO .LE. ONE) INFO = 6
 IF (DELTA .LE. EPSMCH*XNORM) INFO = 7
 IF (GNORM .LE. EPSMCH) INFO = 8
 IF (INFO .NE. 0) GO TO 340
C
END OF THE INNER LOOP. REPEAT IF ITERATION UNSUCCESSFUL.
C
 IF (RATIO .LT. P0001) GO TO 240
C
END OF THE OUTER LOOP.
C
340 CONTINUE
C
TERMINATION, EITHER NORMAL OR USER IMPOSED.
C
 IF (IFLAG .LT. 0) INFO = IFLAG
 IFLAG = 0
 IF (NPRINT .GT. 0) CALL FCN(M,N,X,FVEC,WA3,IFLAG)
 RETURN
C
LAST CARD OF SUBROUTINE LMSTR.
C
END
SUBROUTINE LMSTR1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,IPVT,WA,
 * LWA)
INTEGER M,N,LDFJAC,INFO,LWA
INTEGER IPVT(N)
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL FCN

SUBROUTINE LMSTR1

THE PURPOSE OF LMSTR1 IS TO MINIMIZE THE SUM OF THE SQUARES OF
M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF
THE LEVENBERG-MARQUARDT ALGORITHM WHICH USES MINIMAL STORAGE.
THIS IS DONE BY USING THE MORE GENERAL LEAST-SQUARES SOLVER
LMSTR. THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES
THE FUNCTIONS AND THE ROWS OF THE JACOBIAN.

THE SUBROUTINE STATEMENT IS

SUBROUTINE LMSTR1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,
** IPVT,WA,LWA)**

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS AND THE ROWS OF THE JACOBIAN.
FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN THE
USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,FJROW,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.
IF IFLAG = I CALCULATE THE (I-1)-ST ROW OF THE
JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW.

RETURN
END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF LMSTR1.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

FJAC IS AN OUTPUT N BY N ARRAY. THE UPPER TRIANGLE OF FJAC
CONTAINS AN UPPER TRIANGULAR MATRIX R SUCH THAT

\[
P \ast (JAC \ast JAC) \ast P = R \ast R,
\]

WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL
CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J)
(SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRIANGULAR
PART OF FJAC CONTAINS INFORMATION GENERATED DURING
THE COMPUTATION OF R.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS
WHEN THE ALGORITHM ESTIMATES EITHER THAT THE RELATIVE
ERROR IN THE SUM OF SQUARES IS AT MOST TOL OR THAT
THE RELATIVE ERROR BETWEEN X AND THE SOLUTION IS AT
MOST TOL.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
INFO IS SET AS FOLLOWS.

INFO = 0 IMPROPER INPUT PARAMETERS.
INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
IN THE SUM OF SQUARES IS AT MOST TOL.
INFO = 2 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
BETWEEN X AND THE SOLUTION IS AT MOST TOL.
INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD.
INFO = 4 FVEC IS ORTHOGONAL TO THE COLUMNS OF THE
JACOBIAN TO MACHINE PRECISION.
INFO = 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS
REACHED 100\ast(N+1).
INFO = 6 TOL IS TOO SMALL. NO FURTHER REDUCTION IN
THE SUM OF SQUARES IS POSSIBLE.
INFO = 7 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT
DEFINES A PERMUTATION MATRIX P SUCH THAT JAC**P = Q**R,
WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS
ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR.
COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

WA IS A WORK ARRAY OF LENGTH LWA.

LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN 5*N+M.

SUBPROGRAMS CALLED

USER-SUPPLIED FCN

MINPACK-SUPPLIED ... LMSTR

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARbow, DUDLEY V. GOETSCHEL, KENNETH E. HILLSTROM,
JORGE J. MORE

INTEGER MAXFEV,MODE,NFEV,NJEV,NPRINT
DOUBLE PRECISION FACTOR,FTOL,GTOL,XTOL,ZERO
DATA FACTOR,ZERO /1.0D2,0.0D0/
INFO = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. N .OR. TOL .LT. ZERO
* .OR. LWA .LT. 5*N + M) GO TO 10

CALL LMSTR.

MAXFEV = 100*(N + 1)
FTOL = TOL
XTOL = TOL
GTOL = ZERO
MODE = 1
NPRINT = 0
CALL LMSTR(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,GTOL,XTOL,MAXFEV,
* WA(1),MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,IPVT,WA(N+1),
* WA(2*N+1),WA(3*N+1),WA(4*N+1),WA(5*N+1))

IF (INFO .EQ. 8) INFO = 4

10 CONTINUE
RETURN

LAST CARD OF SUBROUTINE LMSTR1.

END
SUBROUTINE QFORM(M,N,Q,LQ,W)
INTEGER M,N,LQ
DOUBLE PRECISION Q(LQ,M),W(M)

SUBROUTINE QFORM

THIS SUBROUTINE PROCEEDS FROM THE COMPUTED QR FACTORIZATION OF
AN M BY N MATRIX A TO ACCUMULATE THE M BY M ORTHOGONAL MATRIX
Q FROM ITS FACTORED FORM.

THE SUBROUTINE STATEMENT IS

SUBROUTINE QFORM(M,N,Q,LQ,W)

WHERE

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF ROWS OF A AND THE ORDER OF Q.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF COLUMNS OF A.

Q IS AN M BY M ARRAY. ON INPUT THE FULL LOWER TRAPEZOID IN
THE FIRST MIN(M,N) COLUMNS OF Q CONTAINS THE FACTORED FORM.
ON OUTPUT Q HAS BEEN ACCUMULATED INTO A SQUARE MATRIX.

LQ IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY Q.

WA IS A WORK ARRAY OF LENGTH M.

SUBPROGRAMS CALLED

FORTRAN-SUPPLIED ... MINO

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARbow, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER I,J,JM1,K,L,MINMN,NP1
DOUBLE PRECISION ONE,SUM,TEMP,ZERO
DATA ONE,ZERO /1.0D0,0.0D0/

MINMN = MINMN(M,N)
IF (MINMN .LT. 2) GO TO 30
DO 20 J = 2, MINMN
 JM1 = J - 1
 DO 10 I = 1, JM1
 Q(I,J) = ZERO

10 CONTINUE
20 CONTINUE
30 CONTINUE

C INITIALIZE REMAINING COLUMNS TO THOSE OF THE IDENTITY MATRIX.

C

NP1 = N + 1
IF (M .LT. NP1) GO TO 60
DO 50 J = NP1, M
 DO 40 I = 1, M
 Q(I,J) = ZERO
 40 CONTINUE
 Q(J,J) = ONE
50 CONTINUE
60 CONTINUE

C ACCUMULATE Q FROM ITS FACTORED FORM.

C

DO 120 L = 1, MINMN
 K = MINMN - L + 1
 DO 70 I = K, M
 WA(I) = Q(I,K)
 Q(I,K) = ZERO
 70 CONTINUE
 Q(K,K) = ONE
 IF (WA(K) .EQ. ZERO) GO TO 110
 DO 100 J = K, M
 SUM = ZERO
 DO 80 I = K, M
 SUM = SUM + Q(I,J)*WA(I)
 80 CONTINUE
 TEMP = SUM/WA(K)
 DO 90 I = K, M
 Q(I,J) = Q(I,J) - TEMP*WA(I)
 90 CONTINUE
100 CONTINUE
110 CONTINUE
120 CONTINUE
RETURN

C LAST CARD OF SUBROUTINE QFORM.

C

END
SUBROUTINE QRFAC(M,N,A,LDA,PIVOT,IPVT,LIPVT,RDIAG,ACNORM,WA)
INTEGER M,N,LDA,LPIVT
INTEGER PIVT(LIPVT)
LOGICAL PIVOT
DOUBLE PRECISION A(LDA,N),RDIAG(N),ACNORM(N),WA(N)

SUBROUTINE QRFAC

THIS SUBROUTINE USES HOUSEHOLDER TRANSFORMATIONS WITH COLUMN
PIVOTING (OPTIONAL) TO COMPUTE A QR FACTORIZATION OF THE
M BY N MATRIX A. THAT IS, QRFAC DETERMINES AN ORTHOGONAL
MATRIX Q, A PERMUTATION MATRIX P, AND AN UPPER TRAPEZOIDAL
MATRIX R WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE,
SUCH THAT A*P = Q*R. THE HOUSEHOLDER TRANSFORMATION FOR
COLUMN K, K = 1,2,...,MIN(M,N), IS OF THE FORM

T = (1/U(K))*U

WHERE U HAS ZEROS IN THE FIRST K-1 POSITIONS. THE FORM OF
THIS TRANSFORMATION AND THE METHOD OF PIVOTING FIRST
APPEARED IN THE CORRESPONDING LINPACK SUBROUTINE.

THE SUBROUTINE STATEMENT IS

SUBROUTINE QRFAC(M,N,A,LDA,PIVOT,IPVT,LIPVT,RDIAG,ACNORM,WA)

WHERE

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF ROWS OF A.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF COLUMNS OF A.

A IS AN M BY N ARRAY. ON INPUT A CONTAINS THE MATRIX FOR
WHICH THE QR FACTORIZATION IS TO BE COMPUTED. ON OUTPUT
THE STRICT UPPER TRAPEZOIDAL PART OF A CONTAINS THE STRICT
UPPER TRAPEZOIDAL PART OF R, AND THE LOWER TRAPEZOIDAL
PART OF A CONTAINS A FACTORED FORM OF Q (THE NON-TRIVIAL
ELEMENTS OF THE U VECTORS DESCRIBED ABOVE).

LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A.

PIVOT IS A LOGICAL INPUT VARIABLE. IF PIVOT IS SET TRUE,
THEN COLUMN PIVOTING IS ENFORCED. IF PIVOT IS SET FALSE,
THEN NO COLUMN PIVOTING IS DONE.

IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH LIPVT. IPVT
DEFINES THE PERMUTATION MATRIX P SUCH THAT A*P = Q*R.
COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.
IF PIVOT IS FALSE, IPVT IS NOT REFERENCED.
LIPVT IS A POSITIVE INTEGER INPUT VARIABLE. IF PIVOT IS FALSE, THEN LIPVT MAY BE AS SMALL AS 1. IF PIVOT IS TRUE, THEN LIPVT MUST BE AT LEAST N.

RDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE DIAGONAL ELEMENTS OF R.

ACNORM IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE NORMS OF THE CORRESPONDING COLUMNS OF THE INPUT MATRIX A. IF THIS INFORMATION IS NOT NEEDED, THEN ACNORM CAN COINCIDE WITH RDIAG.

WA IS A WORK ARRAY OF LENGTH N. IF PIVOT IS FALSE, THEN WA CAN COINCIDE WITH RDIAG.

SUBPROGRAMS CALLED

MINPACK-SUPPLIED ... DPMPAR,ENORM
FORTRAN-SUPPLIED ... DMA1,DSQRT,MINO

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARbow, KENNETH E. HILLstrom, JORGE J. MORE

INTEGER I,J,JP1,K,KMAX,MINMN
DOUBLE PRECISION AJNORM,EPsmch,ONE,P05,SUM,TEMp,ZERO
DOUBLE PRECISION DPMPAR,ENORM
DATA ONE,P05,ZERO /1.0D0,5.0D-2,0.0D0/

EPSMCH IS THE MACHINE PRECISION.
EPsmch = DPMPAR(1)

COMPUTE THE INITIAL COLUMN NORMS AND INITIALIZE SEVERAL ARRAYS.

DO 10 J = 1, N
 ACNORM(J) = ENORM(M,A(1,J))
 RDIAG(J) = ACNORM(J)
 WA(J) = RDIAG(J)
 IF (PIVOT) IPVT(J) = J
10 CONTINUE

REDUCE A TO R WITH HOUSEHOLDER TRANSFORMATIONS.

MINMN = MINO(M,N)
DO 110 J = 1, MINMN
 IF (.NOT.PIVOT) GO TO 40
110 CONTINUE

BRING THE COLUMN OF LARGEST NORM INTO THE PIVOT POSITION.

KMAX = J
DO 20 K = J, N
IF (RDIAG(K) .GT. RDIAG(KMAX)) KMAX = K
CONTINUE
IF (KMAX .EQ. J) GO TO 40
DO 30 I = 1, M
 TEMP = A(I,J)
 A(I,J) = A(I,KMAX)
 A(I,KMAX) = TEMP
30 CONTINUE
RDIAG(KMAX) = RDIAG(J)
WA(KMAX) = WA(J)
K = IPVT(J)
IPVT(J) = IPVT(KMAX)
IPVT(KMAX) = K
40 CONTINUE
C
C COMPUTE THE HOUSEHOLDER TRANSFORMATION TO REDUCE THE
C J-TH COLUMN OF A TO A MULTIPLE OF THE J-TH UNIT VECTOR.
C
AJNORM = ENORM(M-J+1,A(J,J))
IF (AJNORM .EQ. ZERO) GO TO 100
IF (A(J,J) .LT. ZERO) AJNORM = -AJNORM
DO 50 I = J, M
 A(I,J) = A(I,J)/AJNORM
50 CONTINUE
A(J,J) = A(J,J) + ONE
C
C APPLY THE TRANSFORMATION TO THE REMAINING COLUMNS
C AND UPDATE THE NORMS.
C
JP1 = J + 1
IF (N .LT. JP1) GO TO 100
DO 90 K = JP1, N
 SUM = ZERO
 DO 60 I = J, M
 SUM = SUM + A(I,J)*A(I,K)
 60 CONTINUE
 TEMP = SUM/A(J,J)
 DO 70 I = J, M
 A(I,K) = A(I,K) - TEMP*A(I,J)
 70 CONTINUE
IF (.NOT.PIVOT .OR. RDIAG(K) .EQ. ZERO) GO TO 80
TEMP = A(J,K)/RDIAG(K)
RDIAG(K) = RDIAG(K) + TEMP**2
IF (P05*(RDIAG(K)/WA(K))**2 .GT. EPSMCH) GO TO 80
RDIAG(K) = ENORM(M-J,A(JP1,K))
WA(K) = RDIAG(K)
80 CONTINUE
90 CONTINUE
100 CONTINUE
RDIAG(J) = -AJNORM
110 CONTINUE
RETURN
C
C LAST CARD OF SUBROUTINE QRFAC.
C

END
SUBROUTINE QRSOLV(N,R,LDR,IPVT,DIAQ,QTB,X,SDIAQ,WA)

INTEGER N, LDR
INTEGER IPVT(N)
DOUBLE PRECISION R(LDR,N), DIAQ(N), QTB(N), X(N), SDIAQ(N), WA(N)

SUBROUTINE QRSOLV

GIVEN AN M BY N MATRIX A, AN N BY N DIAGONAL MATRIX D,
AND AN M-VECTOR B, THE PROBLEM IS TO DETERMINE AN X WHICH
SOLVES THE SYSTEM

\[A^T X = B, \quad D^T X = 0, \]

IN THE LEAST SQUARES SENSE.

THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM
IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE
QR FACTORIZATION, WITH COLUMN PIVOTING, OF A. THAT IS, IF
\[A^T P = Q^T R, \] WHERE P IS A PERMUTATION MATRIX, Q HAS ORTHOGONAL
COLUMNS, AND R IS AN UPPER TRIANGULAR MATRIX WITH DIAGNOL
ELEMENTS OF NONINCREASING MAGNITUDE, THEN QRSOLV EXPECTS
THE FULL UPPER TRIANGLE OF R, THE PERMUTATION MATRIX P,
AND THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. THE SYSTEM
\[A^T X = B, \quad D^T X = 0, \] IS THEN EQUIVALENT TO

\[T \quad T \]
\[R^T Z = Q^T B, \quad P^T D^T P^T Z = 0, \]
WHERE X = P^T Z. IF THIS SYSTEM DOES NOT HAVE FULL RANK,
THEN A LEAST SQUARES SOLUTION IS OBTAINED. ON OUTPUT QRSOLV
ALSO PROVIDES AN UPPER TRIANGULAR MATRIX S SUCH THAT

\[T \quad T \]
\[P^T (A^T A + D^T D)^T P = S^T S. \]
S IS COMPUTED WITHIN QRSOLV AND MAY BE OF SEPARATE INTEREST.

THE SUBROUTINE STATEMENT IS

SUBROUTINE QRSOLV(N,R,LDR,IPVT,DIAQ,QTB,X,SDIAQ,WA)

WHERE

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.
R IS AN N BY N ARRAY. ON INPUT THE FULL UPPER TRIANGLE
MUST CONTAIN THE FULL UPPER TRIANGLE OF THE MATRIX R.
ON OUTPUT THE FULL UPPER TRIANGLE IS UNALTERED, AND THE
STRCT LOWER TRIANGLE CONTAINS THE STRICT UPPER TRIANGLE
(TRANSPOSE) OF THE UPPER TRIANGULAR MATRIX S.
LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.
IPVT is an integer input array of length N which defines the permutation matrix P such that A*P = Q*R. COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.

DIAG is an input array of length N which must contain the diagonal elements of the matrix D.

QTB is an input array of length N which must contain the first N elements of the vector (Q transpose)*B.

X is an output array of length N which contains the least squares solution of the system A*x = B, D*x = 0.

SDIAG is an output array of length N which contains the diagonal elements of the upper triangular matrix S.

WA is a work array of length N.

Subprograms called:

FORTRAN-supplied ... DABS,DSQRT

Argonne National Laboratory. MINPACK project. March 1980.

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

INTEGER I,J,JP1,K,KP1,L,NSING
DOUBLE PRECISION COS,COTAN,P5,P25,QTBPJ,SIN,SUM,TAN,TEMP,ZERO
DATA P5,P25,ZERO /5.0D-1,2.5D-1,0.0D0/

DO 20 J = 1, N
 DO 10 I = J, N
 R(I,J) = R(J,I)
 10 CONTINUE
 X(J) = R(J,J)
 WA(J) = QTB(J)
 CONTINUE

Eliminate the diagonal matrix D using a Givens rotation.

DO 100 J = 1, N
 PREPARE THE ROW OF D TO BE ELIMINATED, LOCATING THE
 DIAGONAL ELEMENT USING P FROM THE QR FACTORIZATION.
 L = IPVT(J)
 IF (DIAG(L) .EQ. ZERO) GO TO 90
 DO 30 K = J, N
 SDIAG(K) = ZERO
 30 CONTINUE

SDIAG(J) = DIAG(L)

C
C THE TRANSFORMATIONS TO ELIMINATE THE ROW OF D
C MODIFY ONLY A SINGLE ELEMENT OF (Q TRANSPOSE)*B
C BEYOND THE FIRST N, WHICH IS INITIALLY ZERO.
C
C QTBPJ = ZERO
DO 80 K = J, N
C
C DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE
C APPROPRIATE ELEMENT IN THE CURRENT ROW OF D.
C
C IF (SDIAG(K) .EQ. ZERO) GO TO 70
IF (DABS(R(K,K)) .GE. DABS(SDIAG(K))) GO TO 40
COTAN = R(K,K)/SDIAG(K)
SIN = P5/DSQRT(P25+P25*COTAN**2)
COS = SIN*COTAN
GO TO 50

40 CONTINUE
TAN = SDIAG(K)/R(K,K)
COS = P5/DSQRT(P25+P25*TAN**2)
SIN = COS*TAN
CONTINUE

C
C COMPUTE THE MODIFIED DIAGONAL ELEMENT OF R AND
C THE MODIFIED ELEMENT OF ((Q TRANSPOSE)*B,0).
C
C R(K,K) = COS*R(K,K) + SIN*SDIAG(K)
TEMP = COS*WA(K) + SIN*QTBPJ
QTBPJ = -SIN*WA(K) + COS*QTBPJ
WA(K) = TEMP

C
C ACCUMULATE THE TRANFORMATION IN THE ROW OF S.
C
C KP1 = K + 1
IF (N .LT. KP1) GO TO 70
DO 60 I = KP1, N
 TEMP = COS*R(I,K) + SIN*SDIAG(I)
 SDIAG(I) = -SIN*R(I,K) + COS*SDIAG(I)
 R(I,K) = TEMP
 CONTINUE

60 CONTINUE
70 CONTINUE
80 CONTINUE
90 CONTINUE

C
C STORE THE DIAGONAL ELEMENT OF S AND RESTORE
C THE CORRESPONDING DIAGONAL ELEMENT OF R.
C
C SDIAG(J) = R(J,J)
R(J,J) = X(J)

C
C SOLVE THE TRIANGULAR SYSTEM FOR Z. IF THE SYSTEM IS
C SINGULAR, THEN OBTAIN A LEAST SQUARES SOLUTION.
C
NSING = N
DO 110 J = 1, N
 IF (SDIAG(J) .EQ. ZERO .AND. NSING .EQ. N) NSING = J - 1
 IF (NSING .LT. N) WA(J) = ZERO
110 CONTINUE
 IF (NSING .LT. 1) GO TO 150
DO 140 K = 1, NSING
 J = NSING - K + 1
 SUM = ZERO
 JP1 = J + 1
 IF (NSING .LT. JP1) GO TO 130
DO 120 I = JP1, NSING
 SUM = SUM + R(I,J)*WA(I)
120 CONTINUE
 CONTINUE
130 CONTINUE
 WA(J) = (WA(J) - SUM)/SDIAG(J)
140 CONTINUE
150 CONTINUE
C
C PERMUTE THE COMPONENTS OF Z BACK TO COMPONENTS OF X.
C
DO 160 J = 1, N
 L = IPVT(J)
 X(L) = WA(J)
160 CONTINUE
RETURN
C
C LAST CARD OF SUBROUTINE QRSOLV.
C
END
SUBROUTINE RWUPDT(N,R,LDR,W,B,ALPHA,COS,SIN)
INTEGER N,LDR
DOUBLE PRECISION ALPHA
DOUBLE PRECISION R(LDR,N),W(N),B(N),COS(N),SIN(N)

SUBROUTINE RWUPDT

GIVEN AN N BY N UPPER TRIANGULAR MATRIX R, THIS SUBROUTINE
COMPUTES THE QR DECOMPOSITION OF THE MATRIX FORMED WHEN A ROW
IS ADDED TO R. IF THE ROW IS SPECIFIED BY THE VECTOR W, THEN
RWUPDT DETERMINES AN ORTHOGONAL MATRIX Q SUCH THAT WHEN THE
N+1 BY N MATRIX COMPOSED OF R AUGMENTED BY W IS PREMULTIPLIED
BY (Q TRANSPOSE), THE RESULTING MATRIX IS UPPER TRAPEZOIDAL.
THE MATRIX (Q TRANSPOSE) IS THE PRODUCT OF N TRANSFORMATIONS

G(N)*G(N-1)* ... *G(1)

WHERE G(I) IS A GIVENS ROTATION IN THE (I,N+1) PLANE WHICH
ELIMINATES ELEMENTS IN THE (N+1)-ST PLANE. RWUPDT ALSO
COMPUTES THE PRODUCT (Q TRANSPOSE)*C WHERE C IS THE
(N+1)-VECTOR (B,ALPHA). Q ITSELF IS NOT ACCUMULATED, RATHER
THE INFORMATION TO RECOVER THE G ROTATIONS IS SUPPLIED.

THE SUBROUTINE STATEMENT IS

SUBROUTINE RWUPDT(N,R,LDR,W,B,ALPHA,COS,SIN)
WHERE

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.

R IS AN N BY N ARRAY. ON INPUT THE UPPER TRIANGULAR PART OF
R MUST CONTAIN THE MATRIX TO BE UPDATED. ON OUTPUT R
CONTAINS THE UPDATED TRIANGULAR MATRIX.

LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.

W IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE ROW
VECTOR TO BE ADDED TO R.

B IS AN ARRAY OF LENGTH N. ON INPUT B MUST CONTAIN THE
FIRST N ELEMENTS OF THE VECTOR C. ON OUTPUT B CONTAINS
THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*C.

ALPHA IS A VARIABLE. ON INPUT ALPHA MUST CONTAIN THE
(N+1)-ST ELEMENT OF THE VECTOR C. ON OUTPUT ALPHA CONTAINS
THE (N+1)-ST ELEMENT OF THE VECTOR (Q TRANSPOSE)*C.

COS IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE
COSINES OF THE TRANSFORMING GIVENS ROTATIONS.

SIN IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE
SINES OF THE TRANSFORMING GIVENS ROTATIONS.

SUBPROGRAMS CALLED
FORTRAN-SUPPLIED ... DABS, DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, DUDLEY V. GOETSCHEL, KENNETH E. HILLSTROM,
JULIE J. MORE

INTEGER I, J, JM1
DOUBLE PRECISION COTAN, ONE, P5, P25, ROWJ, TAN, TEMP, ZERO
DATA ONE, P5, P25, ZERO / 1.0D0, 5.0D-1, 2.5D-1, 0.0D0/

DO 60 J = 1, N
 ROWJ = W(J)
 JM1 = J - 1

 APPLY THE PREVIOUS TRANSFORMATIONS TO
 R(I, J), I=1, 2, ..., J-1, AND TO W(J).

 IF (JM1 .LT. 1) GO TO 20
 DO 10 I = 1, JM1
 TEMP = COS(I) * R(I, J) + SIN(I) * ROWJ
 ROWJ = -SIN(I) * R(I, J) + COS(I) * ROWJ
 R(I, J) = TEMP
 10 CONTINUE

20 CONTINUE

 DETERMINE A GIVENS ROTATION WHICH ELIMINATES W(J).

 COS(J) = ONE
 SIN(J) = ZERO
 IF (ROWJ .EQ. ZERO) GO TO 50
 IF (DABS(R(J, J)) .GE. DABS(ROWJ)) GO TO 30
 COTAN = R(J, J)/ROWJ
 SIN(J) = P5/DSQRT(P25 + P25 * COTAN**2)
 COS(J) = SIN(J) * COTAN
 GO TO 40

30 CONTINUE
 TAN = ROWJ/R(J, J)
 COS(J) = P5/DSQRT(P25 + P25 * TAN**2)
 SIN(J) = COS(J) * TAN

40 CONTINUE

 APPLY THE CURRENT TRANSFORMATION TO R(J, J), B(J), AND ALPHA.

 R(J, J) = COS(J) * R(J, J) + SIN(J) * ROWJ
 TEMP = COS(J) * B(J) + SIN(J) * ALPHA
 ALPHA = -SIN(J) * B(J) + COS(J) * ALPHA
 B(J) = TEMP

50 CONTINUE

60 CONTINUE
RETURN

C

LAST CARD OF SUBROUTINE RWUPDT.

C

END
SUBROUTINE R1MPYQ(M,N,A,LDA,V,W)
INTEGER M,N,LDA
DOUBLE PRECISION A(LDA,N),V(N),W(N)

SUBROUTINE R1MPYQ

GIVEN AN M BY N MATRIX A, THIS SUBROUTINE COMPUTES A*Q WHERE
Q IS THE PRODUCT OF 2*(N - 1) TRANSFORMATIONS

\[GV(N-1) \times \ldots \times GV(1) \times GW(1) \times \ldots \times GW(N-1) \]

AND GV(I), GW(I) ARE GIVEN S ROTATIONS IN THE (I,N) PLANE WHICH
ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, RESPECTIVELY.
Q ITSELF IS NOT GIVEN, RATHER THE INFORMATION TO RECOVER THE
GV, GW ROTATIONS IS SUPPLIED.

THE SUBROUTINE STATEMENT IS

SUBROUTINE R1MPYQ(M,N,A,LDA,V,W)

WHERE

\[M] IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF ROWS OF A.

\[N] IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF COLUMNS OF A.

\[A] IS AN M BY N ARRAY. ON INPUT A MUST CONTAIN THE MATRIX
TO BE POSTMULTIPLIED BY THE ORTHOGONAL MATRIX Q
DESCRIBED ABOVE. ON OUTPUT A*Q HAS REPLACED A.

\[LDA] IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A.

\[V] IS AN INPUT ARRAY OF LENGTH N. V(I) MUST CONTAIN THE
INFORMATION NECESSARY TO RECOVER THE GIVENS ROTATION GV(I)
DESCRIBED ABOVE.

\[W] IS AN INPUT ARRAY OF LENGTH N. W(I) MUST CONTAIN THE
INFORMATION NECESSARY TO RECOVER THE GIVENS ROTATION GW(I)
DESCRIBED ABOVE.

SUBROUTINES CALLED

FORTRAN-SUPPLIED ... DABS, DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARROW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER I,J,NMJ,NM1
DOUBLE PRECISION COS,ONE,SIN,TEMP
DATA ONE /1.0D0/

C APPLY THE FIRST SET OF GIVEN ROTATIONS TO A.
C
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 50
DO 20 NMJ = 1, NM1
 J = N - NMJ
 IF (DABS(V(J)) .GT. ONE) COS = ONE/V(J)
 IF (DABS(V(J)) .GT. ONE) SIN = D SQRT(ONE-COS**2)
 IF (DABS(V(J)) .LE. ONE) SIN = V(J)
 IF (DABS(V(J)) .LE. ONE) COS = D SQRT(ONE-SIN**2)
 DO 10 I = 1, M
 TEMP = COS**A(I,J) - SIN**A(I,N)
 A(I,N) = SIN**A(I,J) + COS**A(I,N)
 A(I,J) = TEMP
 10 CONTINUE
20 CONTINUE

C APPLY THE SECOND SET OF GIVEN ROTATIONS TO A.
C
DO 40 J = 1, NM1
 IF (DABS(W(J)) .GT. ONE) COS = ONE/W(J)
 IF (DABS(W(J)) .GT. ONE) SIN = D SQRT(ONE-COS**2)
 IF (DABS(W(J)) .LE. ONE) SIN = W(J)
 IF (DABS(W(J)) .LE. ONE) COS = D SQRT(ONE-SIN**2)
 DO 30 I = 1, M
 TEMP = COS**A(I,J) + SIN**A(I,N)
 A(I,N) = -SIN**A(I,J) + COS**A(I,N)
 A(I,J) = TEMP
 30 CONTINUE
40 CONTINUE
50 CONTINUE
RETURN

C LAST CARD OF SUBROUTINE R1MPYQ.
C
END
SUBROUTINE R1UPDT(M,N,S,LS,U,V,W,SING)
INTEGER M,N,LS
LOGICAL SING
DOUBLE PRECISION S(LS),U(M),V(N),W(M)

SUBROUTINE R1UPDT

GIVEN AN M BY N LOWER TRAPEZOIDAL MATRIX S, AN M-VECTOR U,
AND AN N-VECTOR V, THE PROBLEM IS TO DETERMINE AN
ORTHOGONAL MATRIX Q SUCH THAT

\[T = (S + U \cdot V) \cdot Q \]

IS AGAIN LOWER TRAPEZOIDAL.

THIS SUBROUTINE DETERMINES Q AS THE PRODUCT OF 2*(N - 1)
TRANSFORMATIONS

\[G(V(1) \cdot \ldots \cdot G(V(N-1)) \cdot G(V(N-1) \cdot \ldots \cdot G(V(1)) \cdot \ldots \cdot G(V(1)) \]
WHERE GV(I), GW(I) ARE GIVEN ROTATIONS IN THE (I,N) PLANE
WHICH ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES,
RESPECTIVELY. Q ITSELF IS NOT ACCUMULATED, RATHER THE
INFORMATION TO RECOVER THE GV, GW ROTATIONS IS RETURNED.

THE SUBROUTINE STATEMENT IS

SUBROUTINE R1UPDT(M,N,S,LS,U,V,W,SING)

WHERE

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF ROWS OF S.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF COLUMNS OF S. N MUST NOT EXCEED M.

S IS AN ARRAY OF LENGTH LS. ON INPUT S MUST CONTAIN THE LOWER
TRAPEZOIDAL MATRIX S STORED BY COLUMNS. ON OUTPUT S CONTAINS
THE LOWER TRAPEZOIDAL MATRIX PRODUCED AS DESCRIBED ABOVE.

LS IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN
(N*(2*M-N+1))/2.

U IS AN INPUT ARRAY OF LENGTH M WHICH MUST CONTAIN THE
VECTOR U.

V IS AN ARRAY OF LENGTH N. ON INPUT V MUST CONTAIN THE VECTOR
V. ON OUTPUT V(I) CONTAINS THE INFORMATION NECESSARY TO
RECOVER THE GIVENS ROTATION GV(I) DESCRIBED ABOVE.

W IS AN OUTPUT ARRAY OF LENGTH M. W(I) CONTAINS INFORMATION
NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) DESCRIBED
ABOVE.

SING IS A LOGICAL OUTPUT VARIABLE. SING IS SET TRUE IF ANY
OF THE DIAGONAL ELEMENTS OF THE OUTPUT S ARE ZERO. OTHERWISE
SING IS SET FALSE.

SUBPROGRAMS CALLED

MINPACK-SUPPLIED ... DPMPAR

FORTRAN-SUPPLIED ... DABS,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE,
JOHN L. NAZARETH

INTEGER I,J,JJ,L,NMJ,NM1
DOUBLE PRECISION COS,COTAN,GIANT,ONE,P5,P25,SIN,TAN,TAU,TEMP,
* ZERO
DOUBLE PRECISION DPMPAR
DATA ONE,P5,P25,ZERO /1.0D0,5.0D-1,2.5D-1,0.0D0/

GIANT IS THE LARGEST MAGNITUDE.

GIANT = DPMPAR(3)

INITIALIZE THE DIAGONAL ELEMENT POINTER.

JJ = (N*(2*M - N + 1))/2 - (M - N)

MOVE THE NONTRIVIAL PART OF THE LAST COLUMN OF S INTO W.

L = JJ
DO 10 I = N, M
 W(I) = S(L)
 L = L + 1
10 CONTINUE

ROTATE THE VECTOR V INTO A MULTIPLE OF THE N-TH UNIT VECTOR
IN SUCH A WAY THAT A SPIKE IS INTRODUCED INTO W.

NM1 = N - 1
IF (NM1 .LT. 1) GO TO 70
DO 60 NMJ = 1, NM1
 J = N - NMJ
 JJ = JJ - (M - J + 1)
 W(J) = ZERO
 IF (V(J) .EQ. ZERO) GO TO 50

DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE
J-TH ELEMENT OF V.
IF (DABS(V(N)) .GE. DABS(V(J))) GO TO 20
 COTAN = V(N)/V(J)
 SIN = P5/DSQRT(P25+P25*COTAN**2)
 COS = SIN*COTAN
 TAU = ONE
 IF (DABS(COS)**GIANT .GT. ONE) TAU = ONE/COS
 GO TO 30
20 CONTINUE
 TAN = V(J)/V(N)
 COS = P5/DSQRT(P25+P25*TAN**2)
 SIN = COS*TAN
 TAU = SIN
30 CONTINUE

C APPLY THE TRANSFORMATION TO V AND STORE THE INFORMATION
C NECESSARY TO RECOVER THE GIVENS ROTATION.
C
 V(N) = SIN*V(J) + COS*V(N)
 V(J) = TAU

C APPLY THE TRANSFORMATION TO S AND EXTEND THE SPIKE IN W.
C
 L = JJ
 DO 40 I = J, M
 TEMP = COS*S(L) - SIN*W(I)
 W(I) = SIN*S(L) + COS*W(I)
 S(L) = TEMP
 L = L + 1
40 CONTINUE
50 CONTINUE
60 CONTINUE
70 CONTINUE

C ADD THE SPIKE FROM THE RANK 1 UPDATE TO W.
C
 DO 80 I = 1, M
 W(I) = W(I) + V(N)*U(I)
80 CONTINUE

C ELIMINATE THE SPIKE.
C
 SING = .FALSE.
 IF (NM1 .LT. 1) GO TO 140
 DO 130 J = 1, NM1
 IF (W(J) .EQ. ZERO) GO TO 120
 C
 C DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE
 C J-TH ELEMENT OF THE SPIKE.
 C
 IF (DABS(S(JJ)) .GE. DABS(W(J))) GO TO 90
 COTAN = S(JJ)/W(J)
 SIN = P5/DSQRT(P25+P25*COTAN**2)
 COS = SIN*COTAN
 TAU = ONE
 90 CONTINUE
IF (DBLS(COS)*GIAN .GT. ONE) TAU = ONE/COS
GO TO 100
90 CONTINUE
 TAN = W(J)/S(JJ)
 COS = P5/DSQRT(P25+P25*TAN**2)
 SIN = COS*TAN
 TAU = SIN
100 CONTINUE
C
C APPLY THE TRANSFORMATION TO S AND REDUCE THE SPIKE IN W.
C
L = JJ
 DO 110 I = J, M
 TEMP = COS*S(L) + SIN*W(I)
 W(I) = -SIN*S(L) + COS*W(I)
 S(L) = TEMP
 L = L + 1
110 CONTINUE
C
C STORE THE INFORMATION NECESSARY TO RECOVER THE
C GIVENS ROTATION.
C
W(J) = TAU
120 CONTINUE
C
C TEST FOR ZERO DIAGONAL ELEMENTS IN THE OUTPUT S.
C
IF (S(JJ) .EQ. ZERO) SING = .TRUE.
 JJ = JJ + (M - J + 1)
130 CONTINUE
140 CONTINUE
C
C MOVE W BACK INTO THE LAST COLUMN OF THE OUTPUT S.
C
L = JJ
 DO 150 I = N, M
 S(L) = W(I)
 L = L + 1
150 CONTINUE
 IF (S(JJ) .EQ. ZERO) SING = .TRUE.
 RETURN
C
C LAST CARD OF SUBROUTINE R1UPDT.
C
END
REAL FUNCTION SPMPAR(I)
INTEGER I

FUNCTION SPMPAR

THIS FUNCTION PROVIDES SINGLE PRECISION MACHINE PARAMETERS
WHEN THE APPROPRIATE SET OF DATA STATEMENTS IS ACTIVATED (BY
REMOVING THE C FROM COLUMN 1) AND ALL OTHER DATA STATEMENTS ARE
RENDERED INACTIVE. MOST OF THE PARAMETER VALUES WERE OBTAINED
FROM THE CORRESPONDING BELL LABORATORIES PORT LIBRARY FUNCTION.

THE FUNCTION STATEMENT IS

REAL FUNCTION SPMPAR(I)

WHERE

I IS AN INTEGER INPUT VARIABLE SET TO 1, 2, OR 3 WHICH
SELECTS THE DESIRED MACHINE PARAMETER. IF THE MACHINE HAS
T BASE B DIGITS AND ITS SMALLEST AND LARGEST EXONENTS ARE
EMIN AND EMAX, RESPECTIVELY, THEN THESE PARAMETERS ARE

SPMPAR(1) = B**((1 - T), THE MACHINE PRECISION,

SPMPAR(2) = B**((EMIN - 1), THE SMALLEST MAGNITUDE,

SPMPAR(3) = B**EMAX*(1 - B**(-T)), THE LARGEST MAGNITUDE.

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARROW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER MCHEPS(2)
INTEGER MINMAG(2)
INTEGER MAXMAG(2)
REAL RMACH(3)
EQUIVALENCE (RMACH(1),MCHEPS(1))
EQUIVALENCE (RMACH(2),MINMAG(1))
EQUIVALENCE (RMACH(3),MAXMAG(1))

MACHINE CONSTANTS FOR THE IBM 360/370 SERIES,
THE AMDahl 470/V6, THE ICL 2900, THE ITEL AS/6,
THE XEROX SIGMA 5/7/9 AND THE SEL SYSTEMS 85/86.

DATA RMACH(1) / Z3C1000000 /
DATA RMACH(2) / Z001000000 /
DATA RMACH(3) / Z7FFFFFFF /

MACHINE CONSTANTS FOR THE HONEYWELL 600/6000 SERIES.

DATA RMACH(1) / 0716400000000 /
DATA RMACH(2) / 0402400000000 /
DATA RMACH(3) / 0376777777777 /
MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES.

DATA RMACH(1) / 16414000000000000000B /
DATA RMACH(2) / 00014000000000000000B /
DATA RMACH(3) / 37767777777777777777B /

MACHINE CONSTANTS FOR THE PDP-10 (KA OR KI PROCESSOR).

DATA RMACH(1) / "1474000000000 /
DATA RMACH(2) / "0004000000000 /
DATA RMACH(3) / "37777777777777777777 /

MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING 32-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).

DATA MCHEPS(1) / 889192448 /
DATA MINMAG(1) / 8388608 /
DATA MAXMAG(1) / 2147483647 /

DATA RMACH(1) / 006500000000 /
DATA RMACH(2) / 000040000000 /
DATA RMACH(3) / 017777777777 /

MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING 16-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).

DATA MCHEPS(1),MCHEPS(2) / 13568, 0 /
DATA MINMAG(1),MINMAG(2) / 128, 0 /
DATA MAXMAG(1),MAXMAG(2) / 32767, -1 /

DATA MCHEPS(1),MCHEPS(2) / 0032400, 0000000 /
DATA MINMAG(1),MINMAG(2) / 0000200, 0000000 /
DATA MAXMAG(1),MAXMAG(2) / 0077777, 0177777 /

MACHINE CONSTANTS FOR THE BURROUGHS 5700/6700/7700 SYSTEMS.

DATA RMACH(1) / 01301000000000000000 /
DATA RMACH(2) / 01771000000000000000 /
DATA RMACH(3) / 00777777777777777777 /

MACHINE CONSTANTS FOR THE BURROUGHS 1700 SYSTEM.

DATA RMACH(1) / Z4EA800000 /
DATA RMACH(2) / Z400800000 /
DATA RMACH(3) / Z5FFFFFFFF /

MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES.

DATA RMACH(1) / 01474000000000000000 /
DATA RMACH(2) / 00004000000000000000 /
DATA RMACH(3) / 03777777777777777777 /

MACHINE CONSTANTS FOR THE DATA GENERAL ECLIPSE S/200.
NOTE - IT MAY BE APPROPRIATE TO INCLUDE THE FOLLOWING CARD -
STATIC RMACH(3)
DATA MINMAG/20K,0/,MAXMAG/77777K,177777K/
DATA MCHEPS/36020K,0/

MACHINE CONSTANTS FOR THE HARRIS 220.
DATA MCHEPS(1),MCHEPS(2) / '20000000, '00000353 /
DATA MINMAG(1),MINMAG(2) / '20000000, '00000201 /
DATA MAXMAG(1),MAXMAG(2) / '37777777, '00000177 /

MACHINE CONSTANTS FOR THE CRAY-1.
DATA RMACH(1) / 037722400000000000000000B /
DATA RMACH(2) / 020003400000000000000000B /
DATA RMACH(3) / 057777777777777777776B /

MACHINE CONSTANTS FOR THE PRIME 400.
DATA MCHEPS(1) / :10000000153 /
DATA MINMAG(1) / :10000000000 /
DATA MAXMAG(1) / :17777777777 /

SPMPAR = RMACH(I)
RETURN

LAST CARD OF FUNCTION SPMPAR.

END
DOUBLE PRECISION FUNCTION DPMPAR(I)
INTEGER I

FUNCTION DPMPAR

THIS FUNCTION PROVIDES DOUBLE PRECISION MACHINE PARAMETERS
WHEN THE APPROPRIATE SET OF DATA STATEMENTS IS ACTIVATED (BY
REMOVING THE C FROM COLUMN 1) AND ALL OTHER DATA STATEMENTS ARE
RENDERED INACTIVE. MOST OF THE PARAMETER VALUES WERE OBTAINED
FROM THE CORRESPONDING BELL LABORATORIES PORT LIBRARY FUNCTION.

THE FUNCTION STATEMENT IS

DOUBLE PRECISION FUNCTION DPMPAR(I)

WHERE

I IS AN INTEGER INPUT VARIABLE SET TO 1, 2, OR 3 WHICH
SELECTS THE DESIRED MACHINE PARAMETER. IF THE MACHINE HAS
T BASE B DIGITS AND ITS SMALLEST AND LARGEST EXPONENTS ARE
EMIN AND EMAX, RESPECTIVELY, THEN THESE PARAMETERS ARE

DPMPAR(1) = B**(-1 - T), THE MACHINE PRECISION,

DPMPAR(2) = B**((EMIN - 1), THE SMALLEST MAGNITUDE,

DPMPAR(3) = B**EMAX*(1 - B**(-1)), THE LARGEST MAGNITUDE.

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARROW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER MCHEPS(4)
INTEGER MINMAG(4)
INTEGER MAXMAG(4)
DOUBLE PRECISION DMACH(3)
EQUIVALENCE (DMACH(1),MCHEPS(1))
EQUIVALENCE (DMACH(2),MINMAG(1))
EQUIVALENCE (DMACH(3),MAXMAG(1))

MACHINE CONSTANTS FOR THE IBM 360/370 SERIES,
THE AMDAHL 470/V6, THE ICL 2900, THE ITEL AS/6,
THE XEROX SIGMA 5/7/9 AND THE SEL SYSTEMS 85/86.

DATA MCHEPS(1),MCHEPS(2) / 2341000000, Z000000000 /
DATA MINMAG(1),MINMAG(2) / 2001000000, Z000000000 /
DATA MAXMAG(1),MAXMAG(2) / 27FFFFFF, ZFFFFFFF /

MACHINE CONSTANTS FOR THE HONEYWELL 600/6000 SERIES.

DATA MCHEPS(1),MCHEPS(2) / 0606400000000, 00000000000000 /
DATA MINMAG(1),MINMAG(2) / 04024000000000, 0000000000000000 /
DATA MAXMAG(1),MAXMAG(2) / 0376777777777, 0777777777777 /
MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES.

DATA MCHEPS(1) / 156140000000000000000000B /
DATA MCHEPS(2) / 150100000000000000000000B /
DATA MINMAG(1) / 006040000000000000000000B /
DATA MINMAG(2) / 000000000000000000000000B /
DATA MAXMAG(1) / 37767777777777777777B /
DATA MAXMAG(2) / 37167777777777777777B /

MACHINE CONSTANTS FOR THE PDP-10 (KA PROCESSOR).

DATA MCHEPS(1),MCHEPS(2) / "114400000000", "000000000000000000000000B /
DATA MINMAG(1),MINMAG(2) / "033400000000", "000000000000000000000000B /
DATA MAXMAG(1),MAXMAG(2) / "347777777777", "34777777777777777777B /

MACHINE CONSTANTS FOR THE PDP-10 (KI PROCESSOR).

DATA MCHEPS(1),MCHEPS(2) / "104400000000", "000000000000000000000000B /
DATA MINMAG(1),MINMAG(2) / "000400000000", "000000000000000000000000B /
DATA MAXMAG(1),MAXMAG(2) / "377777777777", "37777777777777777777B /

MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING 32-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).

DATA MCHEPS(1),MCHEPS(2) / 620756992, 0 /
DATA MINMAG(1),MINMAG(2) / 8388608, 0 /
DATA MAXMAG(1),MAXMAG(2) / 2147483647, -1 /

DATA MCHEPS(1),MCHEPS(2) / 004500000000, 000000000000000000000000B /
DATA MINMAG(1),MINMAG(2) / 000040000000, 000000000000000000000000B /
DATA MAXMAG(1),MAXMAG(2) / 017777777777, 03777777777777777777B /

MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING 16-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).

DATA MCHEPS(1),MCHEPS(2) / 9472, 0 /
DATA MCHEPS(3),MCHEPS(4) / 0, 0 /
DATA MINMAG(1),MINMAG(2) / 128, 0 /
DATA MINMAG(3),MINMAG(4) / 0, 0 /
DATA MAXMAG(1),MAXMAG(2) / 32767, -1 /
DATA MAXMAG(3),MAXMAG(4) / -1, -1 /

DATA MCHEPS(1),MCHEPS(2) / 0022400, 0000000 /
DATA MCHEPS(3),MCHEPS(4) / 0000000, 0000000 /
DATA MINMAG(1),MINMAG(2) / 00000200, 0000000 /
DATA MINMAG(3),MINMAG(4) / 0000000, 0000000 /
DATA MAXMAG(1),MAXMAG(2) / 0077777, 0177777 /

DATA MCHEPS(1),MCHEPS(2) / 0022400, 0000000 /
DATA MCHEPS(3),MCHEPS(4) / 0000000, 0000000 /
DATA MINMAG(1),MINMAG(2) / 00000200, 0000000 /
DATA MINMAG(3),MINMAG(4) / 0000000, 0000000 /
DATA MAXMAG(1),MAXMAG(2) / 0077777, 0177777 /
DATA MAXMAG(3), MAXMAG(4) / 01777777, 01777777 /
DPPR1090
DPPR1100
DPPR1110
DPPR1120
DPPR1130
DPPR1140
DPPR1150
DPPR1160
DPPR1170
DPPR1180
DPPR1190
DPPR1200
DPPR1210
DPPR1220
DPPR1230
DPPR1240
DPPR1250
DPPR1260
DPPR1270
DPPR1280
DPPR1290
DPPR1300
DPPR1310
DPPR1320
DPPR1330
DPPR1340
DPPR1350
DPPR1360
DPPR1370
DPPR1380
DPPR1390
DPPR1400
DPPR1410
DPPR1420
DPPR1430
DPPR1440
DPPR1450
DPPR1460
DPPR1470
DPPR1480
DPPR1490
DPPR1500
DPPR1510
DPPR1520
DPPR1530
DPPR1540
DPPR1550
DPPR1560
DPPR1570
DPPR1580
DPPR1590
DPPR1600
DPPR1610
DPPR1620
C MACHINE CONSTANTS FOR THE CRAY-1.
C DATA MCHEPS(1) / 037642400000000000000000B /
C DATA MCHEPS(2) / 00000000000000000000000B /
C DATA MINMAG(1) / 02000340000000000000000B /
C DATA MINMAG(2) / 00000000000000000000000B /
C DATA MAXMAG(1) / 0577777777777777777777B /
C DATA MAXMAG(2) / 0000007777777777777776B /
C MACHINE CONSTANTS FOR THE PRIME 400.
C DATA MCHEPS(1),MCHEPS(2) / :10000000000, :00000000123 /
C DATA MINMAG(1),MINMAG(2) / :10000000000, :00000100000 /
C DATA MAXMAG(1),MAXMAG(2) / :17777777777, :37777677776 /
C DPMPAR = DMACH(I)
C RETURN
C LAST CARD OF FUNCTION DPMPAR.
C END
Distribution for ANL-80-74

Internal:

J. M. Boyle J. J. Moré
W. J. Cody National Energy Software Center (100)
T. F. Coleman D. M. Pahis
W. R. Cowell L. M. Phebus (2)
J. J. Dongarra G. W. Pieper
B. S. Garbow (100) R. C. Raffenetti
G. T. Garvey R. J. Royston
K. E. Hillstrom D. C. Sorensen
A. B. Kriselunas B. T. Smith
J. N. Lyness ANL Contract File
P. C. Messina ANL Libraries
M. Minkoff TIS Files (6)

External:

DOE-TIC, for distribution per UC-32 (183)
Manager, Chicago Operations and Regional Office, DOE-CORO
Chief, Office of Patent Counsel, DOE-CORO
President, Argonne Universities Association
Applied Mathematics Division Review Committee:
G. Estrin, U. California, Los Angeles
W. M. Gentleman, U. Waterloo
J. M. Ortega, U. Virginia
E. N. Pinson, Bell Telephone Labs.
S. Rosen, Purdue U.
M. F. Wheeler, Rice U.
D. M. Young, Jr., U. Texas at Austin
International Mathematical and Statistical Libraries (100)

☆ U.S. GOVERNMENT PRINTING OFFICE: 1980 — 651.118/22