Enhancement of the ATLAS Trigger System with a Hardware Tracker Finder FTK

Jinlong Zhang
for the FTK collaboration
Outline

• Motivation
• FTK approach
• System overview and component functionality
• Performance
 – Single particle efficiency and timing
 – Identifying physics objects at 3×10^{34}
• Summary
Trigger with Tracks

• Enhancement of the capability to examine the event characteristic at the LVL1 rate with all tracks

• Identification of heavy fermion objects originated from possible new physics scenarios (e.g., Higgs decay) in the enormous QCD jet background
 – b-jets: displaced vertices or tracks with large impact parameter
 – τ-jets: 1 or 3 tracks in a narrow cone with a surrounding isolation region

• Effective lepton selection with tracking isolation
The challenge & the Solution

• The increasing LHC luminosity leads higher rate and larger event size.
 – The trigger problem at high P_T can’t be solved by just increasing thresholds
 – Suppression of the higher background rates will require more sophisticated algorithms in earlier trigger levels
 – Pileup increases the need for tracking and its execution time

• With introducing FTK, the global tracking would be completed at the beginning of the Level-2 trigger (LVL2). Thus the LVL2 processing power can be used more on needed sophisticated algorithms.
ATLAS TDAQ+FTK

TWEPP, 09/23/2010

Jinlong Zhang
Fast TracKer (FTK) Approach

Use hardware to perform the global tracking in two steps:

- Pattern recognition and track fit

Pattern recognition in coarse resolution
(superstrip → road)

Track fit in full resolution (hits in a road)
\[F(x_1, x_2, x_3, \ldots) \sim a_0 + a_1\Delta x_1 + a_2\Delta x_2 + a_3\Delta x_3 + \ldots = 0 \]

Road size to balance the workload between two steps
Pattern Recognition

Prestored patterns (10^9)

Content-addressable Memory (CAM)

Hits of the event

Fast pattern recognition
Content-addressable Memory (CAM)

- Take user data as input rather than the address
- Search the entire memory in a single operation
- Used often in network search elements
- Available commercially and in HEP custom design (limited)
 - INFN AM able to identify correlation among input data words received on different clock cycles

<table>
<thead>
<tr>
<th></th>
<th>AM INFN (2004)</th>
<th>CAM (latest)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability</td>
<td>Non-commercial</td>
<td>Good</td>
</tr>
<tr>
<td>Technology</td>
<td>180 nm</td>
<td>55 nm</td>
</tr>
<tr>
<td>Speed</td>
<td>40 MHz</td>
<td>500 MHz</td>
</tr>
<tr>
<td>Size</td>
<td>(6x16) X 5K</td>
<td>36X 1024K, 576X 64K</td>
</tr>
<tr>
<td>Max Channels</td>
<td>384K</td>
<td>576</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Price</td>
<td>10-15 €</td>
<td>O (100-200 €)</td>
</tr>
</tbody>
</table>

2) http://www.netlogicmicro.com/Products/Layer2/Layer2-3.htm
Track Fitting

• Determine the helix parameters and χ^2
• Fit with the local silicon hit coordinates (one module in each layer) in linear

$$ p_i = \sum_{j=1}^{14} a_{ij} x_j + b_i $$

- p_i: the helix parameters and χ^2 components
- X_j: the hit coordinates in the silicon layers
- a_{ij} & b_i: prestored constants determined from full simulation or real data track

• Very fast in DSPs (~1 ns per track)
System Overview

- 8 φ sectors, each with one crate, 8 (12) crates @ 10^{34} (3X10^{34}) total
- 4X2 η−φ towers in each sector, each tower with one slot unit
- Overlaps to maintain high efficiency

- PIX (3 layers) & SCT (4 double layers)
- Architecture of 11 layers in one step (PIX 3 + SCT 4 axial + SCT 4 stereo) unaffordable
- Options:
 - 7 layers (PIX 3 + SCT 4 axial)
 - SCT1st – PIX2nd (8→4)
System Functional Sketch

Pixels & SCT
 RODs
 50-100 KHz event rate
 S-links

RODs

Data Formatter (DF)

cluster finding
split by layer

overlap regions

HITS

8x \eta-\phi towers

Raw data ROBs

Second stage

Core Crate

DO

AM brd

TF

HW

Track data ROB

~Offline quality

Track parameters
Data Formatter (DF)

- Receive the silicon hits from the pixels and SCT
- Perform cluster finding (2D in pixels)
- Sends the cluster centroids to the appropriate η-ϕ towers in the core crates
Process Unit (AM board)

• Contain 4 mezzanine cards, each connected to a separate DO, TF, HW chain.
• The mezzanine card holds 32 custom standard-cell content-addressable memory chips
 – 3.7K patterns per existing AM chip (for 8 layers); 1.8 W power consumption per chip
 – 60-135K patterns possible for the next generation chip (65-90nm, custom cell, larger size, 3D technology)

1) Associative Memory design for the FastTrack processor (FTK) at ATLAS (ATL-DAQ-PROC-2010-013)
• Tree Search Processor (TSP) improves the resolution by a factor 2 to reject fake roads before track fitting
Process Unit (AUX card)

- **Data Organizer (DO)**
 - Store full resolution hits in a smart database
 - Send hits at a coarser resolution to the Associative Memory (AM) for pattern recognition
 - Fetch the hits in a road and send to the Track Fitter for a matched pattern

- **Track Fitter (TF)**
 - Use DSPs in an FPGA to calculate the helix parameters and the components of the χ^2
 - store the constants in the internal FPGA memory
 - Expect ns per track with 288 DSPs in the FPGA being considered

- **Hit Warrior (HW)**
 - Remove duplicate tracks defined as having more than N hits in common with another track
 - Employ an associative memory built on the fly and implemented in an FPGA
Processor Unit Prototype

AMBoard

Standard cell chip

Control FPGA

Input FIFOs

P3 serial LVDS DRIVERS & RECEIVERS

40 MHz clock

LAMB

AUX card

DO+TF+HW

Connectors for track output

Connectors for hit input
Interface to the Current TDAQ

• Input
 – Dual output SLINK interface in the RODs of PIX and SCT

• Output
 – ROD: The tracks from the second stage that pass a χ^2 cut are sent to a ROD
 – ROS: Special configuration or special running mode is necessary.
 • The typical output event size for all tracks with PT > 1 GeV/c at 3×10^{34} is 5.0 kB.
 • Data is desirable at the full LVL1 rate for the LVL2 algorithms.
Single Track Efficiency

- The overall efficiency has not yet been optimized
- The dip at $\eta = 0$ is an artifact of how we produced the pattern bank
- The dip near $|\eta| = 1.2$, the region between the barrel and the forward, will be optimized
Timing

- WH(bb) MC events are used.
- FTK finishes global tracking in 25 µs at 3×10^{34}.
- Current LVL2 need 25 ms per jet or lepton RoI at 3×10^{34} and the number of RoIs is large.
Summary

- Global tracking can make a significant contribution to the ATLAS trigger.
- A conceptual design shows that an affordable FTK will take less than 100 μs/event at the LHC design luminosity and beyond, and have excellent physics performance.
- The implementation can help ATLAS even at low luminosity.
Single Track Helix Parameter Resolution

![Graphs showing Offline FTK comparisons]

TWEPP, 09/23/2010
Jinlong Zhang
b-tagging at 3×10^{34}

- Using signed impact-parameter significance likelihood tagger
- To test more sophisticated b-taggers to have a larger light-quark rejection
τ-tagging at 3×10^{34}

- Requiring 1 (2 or 3) tracks in the signal cone for 1 (3) prong τ's and no tracks with $P_T > 1.5 \text{ GeV}/c$ in the isolation cone
- With $\sim 10^{-3}$ jet fake probability
Lepton (muon) Isolation at 3×10^{34}

- Calorimeter isolation usually used to suppress QCD background but will deteriorate due to energy from 75 pileups at 3×10^{34}
- Track isolation will still work due to using only tracks pointing within a few mm of the muon at the beamline