Index

Ablation, 70, 74, 76, 77, 81
 pressure, 74, 82, 211, 214
Ablative
 laser intensity, 78
Above-threshold ionization, 281, 298
 few-cycle, 301
Absolute
 instability, 254
Absorption
 anharmonic resonance, 386
 anomalous skin layer, 375
 coefficient, 15, 102
 coherent collisional, 146
 collisional, 91, 118, 148
 in special density profiles, 113
 collisionless, 91, 363
 by anharmonic resonance, 378
 inverse bremsstrahlung, 146
 linear resonance, 154
 nonlinear resonance, 164
 resonance, 42, 152
Acceleration
 bubble, 359
 electron, 173, 181
 of particles, 351, 353
 in a Langmuir wave, 178
 wakefield, 359
Action, 294, 296
 stationary, 303
Adiabatic
 compression, 55, 57
 stabilization, 289
ADK
 ionization rate, 280
Airy function, 108, 109
Amplification
 parametric
 of pulses, 256
Amplitude
 Keldysh, 295
Anharmonic resonance
 absorption, 378
 in cold plasma, 386
 in warm plasma, 386
Anomalous heating, 29
Anomalous skin layer
 absorption, 375
Anti-Stokes
 component, 263
 line, 233, 246, 247
Appearance intensity, 276
Approximation
 eikonal, 93
 optical, 92
 strong field, 292, 306
 WKB, 92, 98
ATI, 281, 298
 few-cycle, 301
Atomic units, 267, 270
Attosecond pulses, 311
Backscattering
 stimulated Brillouin, 249
Ballistic model, 91, 134
Barkas effect, 150
Barrier suppression ionization, 282
Beer’s law, 102
Bernoulli
 equation, 80, 83
Bessel functions, 130, 140, 297
 generalized, 299
 modified, 122
Bichromatic
 laser light, 318
Blast wave, 47
Bohm-Gross
 dispersion relation, 38
Bohr radius, 10
Boltzmann equation, 142
Bounce frequency, 41, 172
Boundary conditions
 Siegert, 287
Breaking
 resonant, 190
 threshold, 189
Bremsstrahlung
 inverse, 146
Brillouin
 diagram, 249
 instability, 242
 -Mandelstam scattering, 242
 scattering, 242, 245, 259
Brunel effect, 376
BSI, 282
Bubble
 acceleration, 359
Buckingham
 π-theorem, 44, 45
C
Canonical
 equations, 337
 Hamilton’s equations, 96
 momentum, 342
 conservation, 365
Canonical momentum
 conservation, 262
Carrier envelope phase, 301
Center
 of mass, 343
 of momentum, 343
Channel-closing, 281, 298
Chaos, 262
Chaotic
 attractor, 187
 electron orbits, 395
Circular polarization, 10, 263
 ionization in, 297
Cluster, 19, 145, 363
Coherent, 236
Cold
 wavebreaking, 183
Collective
 fields, 5
 interaction, 91
 ponderomotive force, 206
 tunneling, 320
Collision
 frequency, 13, 21, 120, 127, 138
 electron-electron, 22
 electron-ion, 135, 139
Collisional
 absorption, 90, 91, 118
 ionization
 laser-driven, 323
Collisional absorption
 in special density profiles, 113
Collisionless
 absorption, 363
 by anharmonic resonance, 378
 shock, 57
Collisions
 overlapping, 126
 simultaneous, 119
COLTRIMS, 320
Complex
 dilation, 287
 scaling, 287, 319
Compression, 63
 adiabatic, 55, 57
 ratio, 55
 wave, 57
Conservation
 canonical momentum, 353, 365
 equation, 36
 quasi-particle, 258
 relativistic
 of momentum, 340
 of particles, 340
Continuity equation, 26
Continuous symmetry, 317
Contraction
 Lorentz, 333
Contravariant, 337
 components, 337
 coordinates, 337
Convective
 instability, 254
Coordinates
 Eulerian, 25
 Lagrangian, 26
 parabolic, 272
Cornu spiral, 184, 185, 382
Coulomb
 correction, 306
 cross section, 21
 focusing, 144
 logarithm, 124, 127, 135–137, 139
 double, 133
 generalized, 145
Index

potential
 tilted, 270
Covariant, 337
 components, 337
 coordinates, 337
 electrodynamics, 348
Criterion
 Piliya-Rosenbluth, 256
Critical
 field, 271, 275, 276
 runaway field, 31
 Mach number, 213, 215
Critical density, 5, 39, 95, 396
 increase, 393
 relativistic, 393
Cross section
 Coulomb, 21
Current
 density, 92
Curvature radius, 221
Cut-off, 39
 $10U_p$, 305
 $2U_p$, 304
 in electron-ion collisions, 136
 for HOHG, 310
Cut-off law
 for photoelectron spectra, 304
D
Death valley, 290
De Broglie
 wavelength, 22
Debye
 length, 17, 18, 121, 125
 potential, 18, 136
Decay
 instabilities, 242
 processes, 259
Decomposition
 Eckart’s, 345
 Landau’s, 347
Dense matter, 6
Density
 critical, 39
 energy, 231
 flux, 97
 ponderomotive, 232
 profile
 reflection-free, 112
Density functional theory
 time-dependent, 319
Density profile
 modifications, 194
Dephasing, 257
Detrapping, 261
Detuning, 285
Diagram
 Brillouin, 249
Dichotomy, 290
Dielectric
 function, 130
 model, 91, 132, 143
Dimensional
 analysis, 45
 matrix, 45, 268
Dimensionless
 variables, 45
Dipole
 Fourier-transformed, 311
 Dipole-dipole correlation function, 312
Direct electron, 307
Dispersion
 relation, 94
 Bohm-Gross, 38
Distribution
 Maxwellian, 348, 365
 Distribution function
 non-Maxwellian, 143
 one-particle, 35, 341
 two-particle, 36
Doppler-broadened
 line profile, 236
Doppler broadening, 236
Doppler effect, 232
 in the medium, 233
Double slit
 in time, 308
Downhill potential, 273
Dressed states, 283
Drude form
 of refractive index, 374
Drude model, 142, 143
Dusty plasma, 146
Dynamic
 stabilization, 289
Dynamic form factor, 237

E
Eckart’s decomposition, 345
Effective
 potential, 271
Ehrenfest theorem, 311
Eigenvalue
 equation, 284
Eikonal
 approximation, 93, 96, 97, 100, 106
Einstein
 coefficients, 148
 force, 335
Electric field
 amplitude
 maximum, 111, 158
 static
 atoms in, 270
Electrodynamics
 covariant, 348
Electromagnetic
 field tensor, 350
Electron
 acceleration, 181
 beam instability, 40
 direct, 307
 plasma wave, 37, 38
 high amplitude, 165
 nonlinear, 167
 sound velocity, 39
 temperature, 24
Electron beam
 quasi-monochromatic, 361
Electron distribution function, 263
Electron orbits
 chaotic, 395
Electron trapping, 181
Electrostatic wave, 38
Energy
 balance, 32
 conservation, 101
 density, 231
 thermal, 24
 electric, 101
 kinetic, 101
 magnetic, 101
 emitted in HOHG, 312
 equations, 27
 Floquet, 283
 flux, 101, 231
 internal, 345
 loss, 16
 oscillation, 358
 quasi, 283, 287
 quiver, 358
 transport, 231
Epstein profile, 177
Epstein transition layer, 99
Equation
 Bernoulli, 80, 83
 Boltzmann, 142
 canonical, 337
 conservation, 36
 eigenvalue, 284
 Hamilton-Jacobi, 96
 harmonic oscillator, 184
 relativistic Vlasov, 262
 Schrödinger
 nonlinear, 223
 time-dependent, 283
 Stokes, 107
 Vlasov, 36, 262
Eulerian
 coordinates, 25
 picture, 25
Exceptional symmetry
 of H-like ions, 276
Expansion
 Fourier, 289
Explosive instability, 260
Exponential wall, 319
F
 Fast ignition, 393
 Fermat’s principle, 94
 Fermi energy, 18
 Few-cycle
 ATI, 301
Field
 critical, 271, 275, 276
 Field ionization, 13
 Field operator, 9
 Field-dressed
 state, 286, 287
 Filamentation, 219
 Fine structure constant, 269
Floquet
 energy, 283
 Hamiltonian, 284, 317
 state, 287, 316
 theorem, 283, 316
 theory, 283, 316
 high-frequency, 290
 non-Hermitian, 287
 R-matrix, 319
Fluid dynamics
 ideal, 340
Fluid models, 24
Flux
 energy, 231
Focal
 averaging, 299, 306
 expansion, 320
 Fock state, 8
Index

Focusing
 self-, 251
Force
 density, 27
 Lorentz, 199, 262, 348
 ponderomotive, 12, 204
 radiation, 193
Form factor
 dynamic, 237
Fourier
 expansion, 283, 289
Fragezeicheneffekt, 249
Freeman resonance, 288
Frequency
 bounce, 172
 collision, 120, 127, 138
 electron-ion, 135, 139
 Rabi, 285
Fresnel formula, 160

G
Galilean relativity, 333
Gauge
 Göppert-Mayer, 293
 invariance, 293
 length, 293
 transformation, 293
 velocity, 293
Gaussian
 laser beam, 220
 super, 144
Gay-Lussac
 experiment, 34
Generation
 hot electron, 172
 magnetic field, 209
Geometrical
 wavebreaking, 183
Giant ions, 145
Glauber state, 8
Göppert-Mayer gauge, 293
Gordon-Volkov-Hamiltonian, 294
Gordon-Volkov state, 294
Group velocity, 39, 96
Growth rate, 47, 245, 260

H
Hamiltonian, 337
 Gordon, 294
 of a free electron, 10
 relativistic, 352
 Volkov, 294
Hamilton-Jacobi equation, 96
 Hamilton’s canonical equations, 96
 Harmonic generation, 267
 Harmonic oscillator, 184
 Harmonic oscillator model, 91
 Hartree-Fock
 time-dependent, 319
 multi-configurational, 320
Heat
 conduction
 electronic, 29
 current density
 anomalous, 182
 flow, 49
 flux
 inhibition, 62, 77
 flux density
 anomalous, 181
 wave, 50, 52, 59, 62
Heating
 anomalous, 29
 Brunel, 376
 $j \times B$, 376
 stochastic, 375
 vacuum, 377
High harmonic
 selection rules, 315
High-frequency
 Floquet theory, 290
High-order
 ATI, 311
 harmonic generation, 308
Hilbert space
 extended, 316
HOHG, 308
Hologram
 of binding potential, 308
Hot electron
 generation, 172
Hugoniot
 equation of state, 55
Huntley’s addition, 50
Hydrodynamic
 wavebreaking, 183, 184
Hysteresis
 ponderomotive, 205

I
Ideal fluid dynamics, 340
Incoherent, 236
Index
 refractive, 93
Induced scattering, 241
Instability
absolute, 254
Brillouin, 242
convective, 254
electron beam, 40
explosive, 260
Langmuir cascade, 242
modulational, 222
oscillating two-stream, 242, 253
parametric decay, 242, 254
Raman, 242
Rayleigh-Taylor, 47
resonant filament, 251
two phonon decay, 242
two plasmon decay, 240, 242, 252

Intensity
appearance, 276
Interaction
collective, 91
Interference
in photoelectron spectra, 306
quantum, 306
Internal energy, 345
Inversion
spatial, 317
Ion
acoustic wave, 42
beam, 362
 stopping, 149
giant, 145
plasma frequency, 43
separation, 68
sound velocity, 43
temperature, 24
Ion momentum
distribution, 322
Ionization, 267
above-threshold, 281, 298
barrier suppression, 282
collisional, 13
energy, 16
field, 13
frequency, 16
multiphoton, 23, 281
multiple, 319
nonsequential, 23, 267, 319, 320
over barrier, 282
probability
differential, 303
rate, 287, 297
 ADK, 280
 Landau, 280
 PPT, 281
time, 296, 302
tunneling, 277, 282
Irreversibility, 374

J
Jacobian, 26, 342, 346

K
Keldysh
 parameter, 280, 282
Keldysh amplitude, 295
Keldysh-Faisal-Reiss theory (KFR), 292
Kinetic theory, 341
 wavebreaking, 186
Kirchhoff's law, 147
Knee
 NSDI, 320
Kramers-Henneberger transformation, 289
Kustaanheimo-Stiefel transformation, 275

L
Lagrange
 equation, 105, 337
Lagrangian, 105, 106, 337
 coordinates, 26
 phase-averaged, 106
 picture, 25
 WKB approximation, 106
Landau
 damping, 37, 39, 259
 ionization rate, 280
 parameter, 21
Landau's decomposition, 347
Langmuir
 cascade, 242
 wave, 38, 95, 178
Larmor formula, 146, 311
Laser
 beam
 Gaussian, 220
 fields
 atoms in, 281
 high power, 6
 intensity
 ablative, 78
 light
 bichromatic, 318
Laser-atom
 interaction, 267
Laser-driven
 collisional ionization, 323
Laser-plasma
 dynamics, 58
 relativistic, 331
Law
 Beer’s, 102
 Kirchhoff’s, 147
 Ohm’s, 92
Least action principle, 105
Length gauge, 293
Lewenstein model, 313
Liénard-Wiechert potentials, 351
Light scattering at relativistic intensities, 259
Light trapping, 261
Line
 anti-Stokes, 233, 246, 247
 Stokes, 233, 246
Linear
 resonance absorption, 154
 polarization ionization in, 299
Liouville theorem, 36, 97
 relativistic, 341
Local density approximation, 320
Logarithm
 Coulomb, 124, 127, 135–137, 139
 generalized, 145
 double, 141
Long-pulse photoelectron spectrum, 299
LOPT, 281
Lorentz
 boost, 350, 371
 contraction, 333
 force, 9, 199, 262, 348
 gauge, 350
 scalar, 349
 transformation, 333
Lotz formula, 16

M
Mach number, 55, 211
 critical, 75, 213, 215
Magnetic field
 generation, 209
Manley-Rowe relations, 258
Matching condition, 247
Matrix
 dimensional, 268
Maxwellian
 distribution, 348, 365
 electron distribution, 15
Mechanical momentum, 342
Medium
 layered, 95
 stratified, 95
Minkowski force, 335
Mode
 quasi, 248
Model
 ballistic, 91, 134
 dielectric, 91
 Drude, 142, 143
 harmonic oscillator, 91
 Lewenstein, 313
Modulational instability, 222
Moment equations, 343, 344
Moments
 first-order, 347
 zeroth order, 347
Momentum
 canonical, 342
 density, 32
 density flux, 32
 distribution of ions, 322
 equations, 27
 flux density tensor, 32
 loss, 134
 mechanical, 342
MPI, 281
Multicomponent plasma, 67
Multi-configurational
 Hartree-Fock time-dependent, 320
Multiphoton ionization, 281
Multiphoton processes, 5
Multiple ionization, 319

N
Newton force, 335
Non-Hermitian
 Floquet theory, 287
Nonlinear
 Schrödinger equation, 223
Non-Maxwellian
 distribution function, 143
Nonresonant ponderomotive effects, 210
Nonsequential ionization, 267, 319, 320
NSDI, 320
 knee, 320
O

OBI, 282
Ohm’s
 law, 92, 101
One-fluid
 description, 31
 model, 24
One-particle
 distribution function, 35, 341
Operator
 phase conjugation, 249
 time evolution, 292
Optical
 approximation, 92
Orbits, 35
Oscillating two-stream instability, 242, 253
Oscillation
 center, 194, 202, 355, 356
 frame, 195
 orbit, 195
 energy, 10, 197, 356, 358
Oscillator
 model, 120, 125
Over barrier ionization, 282
Overdense matter, 363

P

Parabolic coordinates, 272
Parabolic quantum numbers, 274
Parameter
 Keldysh, 280, 282
Parametric amplification
 of pulses, 256
Parametric decay, 242, 254
Particle
 acceleration
 by Langmuir wave, 178
 in laser field, 351
 in vacuum, 353
 trapping, 42, 187, 189
Particle-in-cell
 method, 62, 80, 376, 389
Pauli-Fierz transformation, 289
Perturbation
 quartic, 275
Perturbation theory
 lowest order, 281
Phase
 velocity, 39, 117
Phase conjugated
 plasma mirror, 249
Phase conjugation
 operator, 249
Photon
 density, 97
 flux, 97
 subspace, 285
Photon number, 8
Photon number state, 8
PIC
 simulation, 62, 80, 376, 389
Piliya-Rosenbluth criterion, 256
Piliya’s equation, 115
Plane wave, 7
Plasma
 breakdown, 15
 degenerate, 18
 echoe, 42
 formation, 5
 frequency, 38, 92
 ion, 43
 fully ionized, 24
 heating, 13
 mirror
 phase conjugated, 249
 multicomponent, 67
 production, 60
 rarefied, 35
 wave
 electron, 37, 38
Point explosion, 47
Poisson distribution, 8
Polarization
 circular, 10
 ionization in, 297
 linear
 ionization in, 299
Ponderomotive
 coupling
 resonant, 238
 effects
 nonresonant, 210
 resonant, 228
 force, 12, 193
 collective, 193, 206
 density, 232
 harmonic oscillator, 198
 magnetized plasma, 193
 relativistic, 201
 on single particle, 194
 hysteresis, 205
 potential, 12, 199
 resonant component, 235
 scaling, 310
Potential
 Coulomb
 tilted, 270
Debye, 18, 136
downhill, 273
effective, 271
Liénard-Wiechert, 351
ponderomotive, 12
scalar, 293
uphill, 273
vector, 293
Poynting
 theorem, 101
 vector, 7
PPT
 ionization rate, 281
Pressure
 ablation, 74, 211, 214
electron, 20
 radiation, 214
Principle
 least action, 105
Probability
 current, 279
 flux, 278
Profile steepening, 214
Propagation
 laser light, 91, 95
Propagator
 Gordon-Volkov, 295
Proper time, 334
Pseudo-Euclidean metric, 332
Q
 Quantum holography, 308
 Quantum numbers
 good, 281
 parabolic, 274
Quartic perturbation, 275
Quasi
 classical
 wave function, 277
 energy, 283, 287
 mode, 248
 monochromatic
 electron beam, 361
 neutrality, 16
 particle
 conservation, 258
Quiver
 energy, 358
R
 Rabi
 frequency, 285
 oscillations, 287
Radiation
 field, 8
 force, 193
 pressure, 214
 temperature, 31
 transport, 97
Raman instability, 242
Raman scattering, 242, 251, 259
 backward, 261
Rankine-Hugoniot relations, 54
Rarefaction
 isothermal, 81
Rate
 ADK, 280
 growth, 47, 245, 260
 ionization, 287, 297
 Landau, 280
 partial, 298
 PPT, 281
Ray
 equation, 93, 95
 tracing, 96
Rayleigh length, 221
Rayleigh-Taylor instability, 47
Raytracing, 95
Reaction microscope, 320
Recollision-induced
 excitation, 323
 ionization, 323
Recombination, 267
Reflection
 coefficient, 100, 110, 113
Reflection-free
 density profiles, 112
Refractive
 index, 93, 102
 Drude form, 374
Relations
 Rankine-Hugoniot, 54
Relativistic
 conservation
 of momentum, 340
 of particles, 340
 critical density
 increase, 393
 Hamiltonian, 352
 laser-plasma, 331
 self-focusing, 400
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>velocity addition</td>
<td>336</td>
</tr>
<tr>
<td>Vlasov equation</td>
<td>262</td>
</tr>
<tr>
<td>Rescattering</td>
<td>304</td>
</tr>
<tr>
<td>scenario</td>
<td>320</td>
</tr>
<tr>
<td>time</td>
<td>302</td>
</tr>
<tr>
<td>Resonance</td>
<td></td>
</tr>
<tr>
<td>absorption</td>
<td>42, 152</td>
</tr>
<tr>
<td>linear</td>
<td>154</td>
</tr>
<tr>
<td>nonlinear</td>
<td>164</td>
</tr>
<tr>
<td>Freeman</td>
<td>288</td>
</tr>
<tr>
<td>Resonant</td>
<td></td>
</tr>
<tr>
<td>breaking</td>
<td>190</td>
</tr>
<tr>
<td>coupling</td>
<td>98, 156</td>
</tr>
<tr>
<td>filament instability</td>
<td>251</td>
</tr>
<tr>
<td>interaction</td>
<td>320</td>
</tr>
<tr>
<td>ponderomotive</td>
<td></td>
</tr>
<tr>
<td>component</td>
<td>235</td>
</tr>
<tr>
<td>ponderomotive coupling</td>
<td>238</td>
</tr>
<tr>
<td>ponderomotive effects</td>
<td>228</td>
</tr>
<tr>
<td>wavebreaking</td>
<td>183</td>
</tr>
<tr>
<td>Rotating wave approximation</td>
<td>285</td>
</tr>
<tr>
<td>Rotational symmetry</td>
<td>318</td>
</tr>
<tr>
<td>Runaway field</td>
<td>31</td>
</tr>
</tbody>
</table>

S
- Saddle-point integration, 303
- method, 304
- Scalar, 337
- potential, 293
- Scattering
 - Brillouin, 242, 245
 - Brillouin-Mandelstam, 242
 - induced, 241
 - Raman, 242, 251
 - Thomson, 235
- Schneider's spoons, 180
- Schrödinger equation
 - nonlinear, 223
 - separation, 272
- Screening, 17, 18, 121, 125
- Screening length, 18
- Selection rules
 - high harmonic, 315
- Self-focusing, 219, 251
 - relativistic, 400
- Self-similar solution, 46
- Separation
 - Schrödinger equation, 272
- Separatrix, 41, 175
- SFA, 292, 306
 - transition amplitude, 296
 - transition matrix element, 294
- Shake-off, 320
- Shock
 - collisionless, 57
 - strong, 55
 - velocity, 54
 - wave, 54, 64
- Short-range potential, 306
- Siegert boundary conditions, 287
- Similarity, 44, 69
 - solutions, 44, 46
- Simple man’s theory, 304, 309, 310
- Simulation
 - PIC, 62, 80, 376, 389
 - Vlasov, 179, 262, 368, 370
- Small angle deflection, 22
- Solutions
 - self-similar, 46
 - similarity, 44, 46
- Sound velocity
 - adiabatic, 48
 - electron, 39
 - ion, 43
- Space
 - inversion, 317
- Spectral density function, 237
- Stabilization, 288
 - adiabatic, 289
 - dynamic, 289
- Stark effect, 270
 - linear, 275
 - shift, 12
 - AC, 287, 298
- State
 - field-dressed superposition, 287
 - Floquet, 287
 - Gordon-Volkov, 294
 - Volkov, 294
- Stationary action, 303
 - momentum, 302
- Steady state wave equation, 259
- Stimulated Brillouin backscattering, 249
- Stimulated Raman effect, 257, 259
- Stochastic heating, 375
<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stokes equation</td>
<td>107</td>
</tr>
<tr>
<td>homogeneous</td>
<td>107, 111, 117</td>
</tr>
<tr>
<td>inhomogeneous</td>
<td>115</td>
</tr>
<tr>
<td>line</td>
<td>233, 246</td>
</tr>
<tr>
<td>Stopping ion beam</td>
<td>149</td>
</tr>
<tr>
<td>Strong field approximation</td>
<td>292, 306</td>
</tr>
<tr>
<td>Strong shock</td>
<td>55</td>
</tr>
<tr>
<td>Strong trapping</td>
<td>261</td>
</tr>
<tr>
<td>Super-Gaussian</td>
<td>144</td>
</tr>
<tr>
<td>Superposition of field-dressed states</td>
<td>287</td>
</tr>
<tr>
<td>Superposition of Floquet states</td>
<td>287, 319</td>
</tr>
<tr>
<td>Surface plasmons excitation of</td>
<td>375</td>
</tr>
<tr>
<td>Symmetry</td>
<td>317, 318</td>
</tr>
<tr>
<td>continuous</td>
<td>317</td>
</tr>
<tr>
<td>rotational</td>
<td>318</td>
</tr>
<tr>
<td>TDSE</td>
<td>283</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>electron</td>
<td>24</td>
</tr>
<tr>
<td>ion</td>
<td>24</td>
</tr>
<tr>
<td>radiation</td>
<td>31</td>
</tr>
<tr>
<td>Theory</td>
<td></td>
</tr>
<tr>
<td>Buckingham π, 44</td>
<td>44</td>
</tr>
<tr>
<td>kinetic</td>
<td>341</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
</tr>
<tr>
<td>energy density</td>
<td>24</td>
</tr>
<tr>
<td>speed</td>
<td>13</td>
</tr>
<tr>
<td>Thermalization</td>
<td></td>
</tr>
<tr>
<td>time</td>
<td>22</td>
</tr>
<tr>
<td>Thomas-Fermi, 276</td>
<td></td>
</tr>
<tr>
<td>Thomson differential scattering cross section</td>
<td>236</td>
</tr>
<tr>
<td>Thomson scattering</td>
<td>235, 236</td>
</tr>
<tr>
<td>coherent</td>
<td>236</td>
</tr>
<tr>
<td>incoherent</td>
<td>236</td>
</tr>
<tr>
<td>Three-step model</td>
<td>309</td>
</tr>
<tr>
<td>Threshold</td>
<td></td>
</tr>
<tr>
<td>breaking</td>
<td>189</td>
</tr>
<tr>
<td>Tilted</td>
<td></td>
</tr>
<tr>
<td>Coulomb potential</td>
<td>270</td>
</tr>
<tr>
<td>Time-dependent</td>
<td></td>
</tr>
<tr>
<td>density functional theory</td>
<td>319</td>
</tr>
<tr>
<td>Hartree-Fock, 319</td>
<td></td>
</tr>
<tr>
<td>multi-configurational</td>
<td>320</td>
</tr>
<tr>
<td>Schrödinger equation</td>
<td>283</td>
</tr>
<tr>
<td>Time dilation</td>
<td>333</td>
</tr>
<tr>
<td>Time evolution</td>
<td></td>
</tr>
<tr>
<td>operator</td>
<td>292</td>
</tr>
<tr>
<td>Topological window</td>
<td>307</td>
</tr>
<tr>
<td>Transformation</td>
<td></td>
</tr>
<tr>
<td>gauge</td>
<td>293</td>
</tr>
<tr>
<td>Kramers-Henneberger</td>
<td>289</td>
</tr>
<tr>
<td>Kustaanheimo-Stiefel</td>
<td>275</td>
</tr>
<tr>
<td>Lorentz</td>
<td>333</td>
</tr>
<tr>
<td>Pauli-Fierz, 289</td>
<td></td>
</tr>
<tr>
<td>Transition</td>
<td></td>
</tr>
<tr>
<td>matrix element</td>
<td></td>
</tr>
<tr>
<td>SFA, 294</td>
<td></td>
</tr>
<tr>
<td>Transition layer</td>
<td></td>
</tr>
<tr>
<td>Epstein, 99</td>
<td></td>
</tr>
<tr>
<td>Translation</td>
<td></td>
</tr>
<tr>
<td>in momentum space</td>
<td>293</td>
</tr>
<tr>
<td>in time</td>
<td>317</td>
</tr>
<tr>
<td>Transport</td>
<td></td>
</tr>
<tr>
<td>of energy</td>
<td>231</td>
</tr>
<tr>
<td>Trapping</td>
<td></td>
</tr>
<tr>
<td>in laser beam</td>
<td>260</td>
</tr>
<tr>
<td>of electrons</td>
<td>181, 187, 189</td>
</tr>
<tr>
<td>of electrons in a wave</td>
<td>177, 179</td>
</tr>
<tr>
<td>Tunneling</td>
<td>282</td>
</tr>
<tr>
<td>collective</td>
<td>320</td>
</tr>
<tr>
<td>ionization</td>
<td>277, 282</td>
</tr>
<tr>
<td>Two phonon decay</td>
<td>242</td>
</tr>
<tr>
<td>Two plasmon decay</td>
<td>240, 242, 243, 252</td>
</tr>
<tr>
<td>Two-fluid model</td>
<td>24</td>
</tr>
<tr>
<td>Two-level system</td>
<td>284</td>
</tr>
<tr>
<td>Two-particle distribution function</td>
<td>36</td>
</tr>
<tr>
<td>Units</td>
<td></td>
</tr>
<tr>
<td>atomic</td>
<td>267, 270</td>
</tr>
<tr>
<td>Uphill potential</td>
<td>273</td>
</tr>
<tr>
<td>Vacuum heating</td>
<td>377</td>
</tr>
<tr>
<td>Variables</td>
<td></td>
</tr>
<tr>
<td>dimensionless</td>
<td>45</td>
</tr>
<tr>
<td>Vector</td>
<td></td>
</tr>
<tr>
<td>four</td>
<td>331</td>
</tr>
<tr>
<td>Vector potential</td>
<td>10, 293</td>
</tr>
<tr>
<td>Velocity</td>
<td></td>
</tr>
<tr>
<td>addition theorem</td>
<td>336</td>
</tr>
<tr>
<td>electron sound</td>
<td>39</td>
</tr>
<tr>
<td>gauge</td>
<td>293</td>
</tr>
<tr>
<td>group</td>
<td>39, 96</td>
</tr>
<tr>
<td>phase</td>
<td>39, 117</td>
</tr>
<tr>
<td>Viscosity</td>
<td></td>
</tr>
<tr>
<td>ion</td>
<td>29</td>
</tr>
<tr>
<td>Viscous effects</td>
<td>28</td>
</tr>
</tbody>
</table>
Vlasov
 equation, 36, 262, 342
 simulation, 179, 262, 368, 370
Volkov-state, 294

W
Wakefield
 acceleration, 359
Warm
 wavebreaking, 182
Wave
 blast, 47
 breaking, 42
 compression, 57
 electron plasma
 high amplitude, 165
 nonlinear, 167
 electrostatic, 38
 equation, 92, 93
 ion acoustic, 42
 Langmuir, 38, 178
 nonlinear heat, 50
 rarefaction
 adiabatic, 48
 isothermal, 48
 shock, 54, 64
Wave function
 quasi-classical, 277
Wavebreaking, 182, 184, 262
 cold, 183
 geometrical, 183
 hydrodynamic, 183, 184
 kinetic theory, 186
 resonant, 183, 389
 warm, 182
WKB
 approximation, 92, 98, 106, 109
 theory, 282

X
XUV radiation
 from HOHG, 310