Commissioning of the ATLAS Muon High Level Trigger with beam collisions at the LHC

CHEP 2010
at Academia Sinica in Taipei, Taiwan
18-22 October 2010.
Takayuki Kanno*, Tokyo Institute of Technology for the ATLAS Collaboration

*Thanks Global Center of Excellence Program "Nanoscience and Quantum Physics“ for financial support.
The ATLAS Detector

is designed for physics in p-p (and heavy ion) collision at LHC.

It consists of many sub-detectors.

• Inner Detector (ID):
 – Charged particle measurement

• Calorimeter (CAL):
 – Energy measurement of particles

• Muon Spectrometer (MS):
 largest sub-detector to detect & reconstruct muons
 – Barrel & Endcap Toroid Magnets: Bend muon tracks → momentum measurement
 – Trigger Chambers: Resistive Plate Chambers (RPC), Thin Gap Chambers (TGC)
 – Precision Chambers: Monitored Drift Tubes (MDT), Cathode Strip Chambers (CSC)
The ATLAS Trigger System

- **Level 1 Trigger (L1)**
 - Custom-made hardware based
 - ~75kHz → Readout Buffer
 - Geometrical info → HLT

- **High Level Trigger (HLT)**
 - Level 2 & Event Filter
 - Fully software based

- **Level 2 (L2)**
 - Fast & simple algorithm
 - Request the data around the region identified by L1 to Readout System
 - ~3kHz → Event Builder

- **Event Filter (EF)**
 - Complete event data accessible
 - Make use of the Offline reconstruction algorithm
 - ~200Hz → Recorded
Commissioning of the ATLAS Muon Trigger with beam collisions

In this talk, the ATLAS Muon trigger is evaluated in the following aspects:

• Trigger efficiency
• Residual of p_T (transverse momentum)
• Trigger rates

for each of the 3 levels of the trigger

• Offline good muons are selected as a reference
 - Cut on momentum
 • momentum $>$ 4 GeV, $p_T >$ 2 GeV
 - Enough hits in ID
 • # silicon tracker hits $>$ 5, # pixel hits $>$ 0
 - Good matching between ID & MS track
 • match $\chi^2 <$ 50

Contents:
1. Level 1 Muon Trigger
2. Level 2 Muon Trigger
3. Event Filter Muon Trigger
4. Trigger Rates

Oct. 21th, 2010
Takayuki Kanno
Data Sample

- Data taken from p-p collision at $\sqrt{s} = 7$TeV between April and July 2010
 \[\text{Integrated Luminosity of } \sim 94 \text{nb}^{-1} \]
 (with requirement detectors were in operation)
 \[\text{for Level 1 study} \]
 \[\text{for Level 1 study} \]
- Trigger Requirement
 - For Level 1 study: **Independent trigger**
 - Level 1 Minimum Bias trigger
 (cross-checked using Level 1 Calorimeter Trigger)
 - For HLT study: **Level 1 muon Trigger**
 - HLT was running but not rejecting the events
- Events selection
 - vertex with at least 3 tracks & $|z_{\text{vertex}}| < 150$ mm
 \[\text{Reject the background e.g. cosmic-ray induced event} \]
Level 1 Muon Trigger
Level 1 Muon Trigger

- Dedicated Trigger Chamber
 - Barrel ($|\eta| < 1.05$)
 - Resistive Plate Chamber (RPC)
 - Endcap ($|\eta| > 1.05$)
 Thin Gap Chamber (TGC)
- RPC and TGC have several layers, which form coincidences for muon detection
- Toroidal magnetic field induces $\Delta \eta$ differences between layers in coincidence, which allows p_T measurement
Level 1 Muon Trigger Efficiency

- Efficiency defined as

\[
\frac{\text{# offline muons triggered by Level 1}}{\text{# offline muons}}
\]

An offline muon was regarded to be triggered if it matches to L1 muon in \(\eta-\phi\) plane

- Plateau efficiency is obtained
 - Barrel: \(~73\%\), Endcap: \(~90\%\)
 - Efficiency at Barrel is lower than at Endcap because of geometrical acceptance (detector feet, Toroid Magnets support structure)
Level 2 Muon Trigger
Level 2 Muon Trigger

- Level 2 Muon Trigger consists of 3 sub-algorithms
 - **Stand-alone Muon** Reconstruction
 - In addition to Trigger Chambers, Precision Chambers (MDT) are used
 - Fast pattern recognition & drift time fit on MDT tubes
 - Look-Up Table for p_T determination
 - **Combined Muon** Reconstruction
 - Back-extrapolate Stand-alone track and combine it to Inner Detector track
 - Refine track parameter by adding ID track information
 - Rejection of background
 - Decay of π/K in flight
 - Cosmic ray induced event
 - **Isolated Muon** Finder (*not covered in this talk)
 - Uses Calorimeter and Inner Detector information to find isolated muon
 - At LHC, muons mainly come from heavy flavor jets.
 - Isolated Muon finder is deployed to retain high efficiency (lower p_T threshold) for muons from e.g. W/Z/τ
Level 2 Muon Trigger Efficiency

- **Relative** efficiency defined as
 - *Standalone*: \(\frac{\text{# muons triggered by L2 Stand-alone}}{\text{# muons triggered by L1}} \)
 - *Combined*: \(\frac{\text{# muons triggered by L2 Combined}}{\text{# muons triggered by L2 Stand-alone}} \)

- Good performance
 - High plateau efficiency
 - Sharp turn-on curve

- Good agreement between data and MC

Eff. of **Stand-alone:**
- **Barrel** \((|\eta|<1.05) \)
- **Endcap** \((|\eta|>1.05) \)

ATLAS Preliminary
\(\sqrt{s}=7 \text{ TeV}, \text{ Data 2010} \)
Performance of Level 2 algorithm

Residual of p_T wrt.
Offline defined as:
$$r = \frac{1}{p_T^{off}} - \frac{1}{p_T^{L2}}$$

Gaussian fit performed on Residual distribution

- Stand-alone: Shift of mean
- Slightly worse resolution in data than MC
 → Under investigation

Combined: smaller sigma (1~2%) than Stand-alone (≈10%)
(at p_T 2~20 GeV) due to additional ID track information

Oct. 21th, 2010
Takayuki Kanno
Event Filter Muon Trigger
Event Filter Muon Trigger

- Event Filter Muon Trigger consists of
 - **Stand-alone** reconstruction
 - Find the hit segments in Muon Spectrometer and build the track
 - Back-extrapolate the track from Muon Spectrometer to Interaction Point
 » take Calorimeter info into account for scattering & energy loss
 - **Combined** reconstruction
 - “Outside-in” Algorithm
 - Combine the Stand-alone track with the Inner Detector track
 - “Inside-out” Algorithm
 - Start from Inner Detector track around L2 muon
 - Extrapolate it to Muon Spectrometer to find hits
Event Filter Muon Trigger Efficiency

- **Relative efficiency** defined as:
 - **Standalone:**
 - # muons triggered by EF Stand-alone
 - # muons triggered by L2 Stand-alone
 - **Combined:**
 - # muons triggered by EF Combined
 - # muons triggered by L2 Combined

 - Good performance
 - High plateau efficiency
 - Sharp turn-on curve
 - Good agreement between data and MC

* data-MC comparison not yet performed for “Inside-out”

Oct. 21th, 2010
Takayuki Kanno
Performance of Event Filter algorithm

Residual of p_T wrt. Offline:

$$ r = \frac{1}{P_T^{off}} - \frac{1}{P_T^{EF}} $$

- Slight difference between data and MC \rightarrow On-going Investigation
 - e.g. refine alignment of Muon Spectrometer
- Sigma $\sim 1\%$ (at p_T 2\sim30 GeV)
 - Well refined measurement wrt. Offline compared to L2 (Stand-alone: $\sim 10\%$, Combined: 1\sim2\%)
Trigger Rate
Trigger Rate Study

- Trigger rate must be retained within the limit of DAQ system, while Physics Analysis needs sufficient trigger efficiency
 → Trigger rate is important information

- Fit on data is performed with the equation:
 \[r = c_1 L + c_0 N_{BC} \]
 - \(L \): Instantaneous luminosity
 - Collision component
 - \(N_{BC} \): number of bunches open to the trigger
 - Accidental component (e.g. cosmic)
 → Fit describes data well
Trigger Rate Reduction in HLT

Rate of L2 & EF relative to L1, obtained from data (rejection power)

- Combined trigger has more rejection power than Stand-alone trigger
 - Background rejection
 - Better p_T resolution

Oct. 21th, 2010
Takayuki Kanno
Summary

• Commissioning of the ATLAS Muon Trigger was done with ~94nb$^{-1}$ beam collision data
 – Trigger efficiency relative to Offline muon
 – Residual of p_T between Trigger algorithm and Offline
• Trigger performance was well verified
 – Reasonable turn-on curves with good plateau efficiency
 – Generally good agreement with MC
 • Some discrepancy indicates current status of tuning, which will be investigated with future study
• Trigger Rate was measured at each level of the muon trigger
backups
Level 1 RPC efficiency

- Comparison to MC
 - minimum bias MC
 - single muon MC
- Good agreement between data and MC
Level 2 Standalone Muon Reconstruction

- In addition to Trigger Chamber, Precision Chamber is used
 - Monitored Drift Tube (MDT)
- Find the MDT hits around the Level 1 hits

\[p_T \text{ is measured as} \]
- **Barrel**: \(p_T = [A]R + [B] \)
- **Endcap**: \(1/p_T = [A]\alpha + [B] \)

where \(\eta - \phi \text{ binned Look-Up Table} \)
define coefficient \([A] \& [B]\)

Oct. 21th, 2010 Takayuki Kanno
Level 2 Combined Muon Reconstruction

- Inner Detector track is combined to Muon Spectrometer Standalone track
 - Rejection of background
 - decay of π/K in flight
 - cosmic shower
 - Refining track parameter resolution
- Back-extrapolate Standalone track to Interaction Point
- Gather match candidate of Inner Detector track
- Find the best match Inner Detector track with χ^2_{match}
 - χ^2_{match}: taken with p_T, η, ϕ
 between Inner Detector track and Standalone track
- Muon p_T is refined to the weighted mean of Inner Detector track p_T and Standalone track p_T
Level 2 Isolated Muon Finder

- At LHC, muons mainly come from heavy flavor jets.
- Isolated Muon finder is deployed to retain high efficiency (with low p_T threshold) for muons from e.g. W/Z/\(\tau\)

- Calo based Isolation
 - Define Inner and Outer Cone (for electromagnetic calorimeter and hadronic calorimeter separately)
 - Calculate the sum of E_T of calorimeter located outside the Inner Cone and inside the Outer Cone, to be used for judgment of isolation

- ID track based Isolation
 - Collect the Inner Detector track in a cone of $\Delta R < 0.2$ around the muon
 - Calculate the ratio $\Sigma p_{T,ID\text{track}} / p_{T,muon}$, to be used for judgment of isolation
Performance of L2 Isolated Muon Finder

- Input variables: agreement between data and MC is fair

 - sum of p_T of Inner Detector tracks around muon in $\Delta R < 0.2$
 - sum of E_T at ECAL in $0.07 < \Delta R < 0.4$
 - sum of E_T at HCAL in $0.1 < \Delta R < 0.4$

- $\Sigma p_{T,track} / p_{T,muon} < 0.01$
- $\Sigma E_{T,ECAL} < 5.5$ GeV
- $\Sigma E_{T,HCAL} < 7$ GeV

is applied to check p_T distribution

- Reasonable agreement between data and MC

Oct. 21th, 2010
Takayuki Kanno
Event Filter Standalone Muon Trigger Efficiency

- **Relative** efficiency is defined as
 \[
 \frac{\text{# muons triggered by Event Filter MS}}{\text{# muons triggered by Level 2 MS}}
 \]

- Good performance
 - plateau efficiency > 99%

- Rejection at low p_T region not so powerful, indicating Level 1 & Level 2 are already selective

- Good agreement between data and MC
Event Filter Combined Muon Trigger Efficiency

- **Relative** efficiency is defined as
 \[
 \frac{\text{# muons triggered by Event Filter CB}}{\text{# muons triggered by Level 2 CB}}
 \]

- Good performance
 - plateau efficiency > 99%

- Rejection at low p_T region not so powerful, indicating Level 1 & Level 2 are already selective

- Good agreement between data and MC

- Sharpest turn-on curve obtained with the help of almost offline-like reconstruction at Event Builder
Event Filter “Inside-out” Algorithm Trigger Efficiency

- **Relative** efficiency is defined as

 \[
 \frac{\text{# muons triggered by “Inside-out”}}{\text{# muons triggered by Level 2 CB}}
 \]

- Good performance evaluated on data
Trigger Rate Extrapolation to Higher Luminosity

- baseline information to be used for future
The Muon System in the ATLAS Detector

- Trigger Chambers
 - Resistive Plate Chambers (RPC)
 - Thin Gap Chambers (TGC)

- Precision Chambers
 - Monitored Drift Tubes (MDT)
 - Cathode Strip Chambers (CSC)