Virtualization for the LHCb Online system

CHEP 2010 - Taipei

Dedicato a Zio Renato

Enrico Bonaccorsi, (CERN) enrico.bonaccorsi@cern.ch
Loic Brarda, (CERN) loic.brarda@cern.ch
Gary Moine, (CERN) gary.moine@cern.ch
Niko Neufeld, (CERN) niko.neufeld@cern.ch
Alexander Zvyagin, (CERN) alexander.zvyagin@cern.ch
Outline

• LHCb
 o What is LHCb
 o Online system & Experiment Control System

• Virtualization
 o What we virtualize
 o The choice of the hypervisor
 o Hardware used

• Architecture
 o General Hyper-V
 o LHCb Network & Security implementation

• Performance
 o Network
 o Hard disks

• Quattor integration

• Issues
LHCb & Virtualization

- Completely isolated network
- Data acquisition system
- Experiment Control System

Objectives
- Reduce hardware
- Improve manageability
- High Reliability (in sense of costs)
- Better usage of hardware resources

Enrico Bonaccorsi, Loic Brarda, Gary Moine, Niko Neufeld, Alexander Zvyagin

LHC PROJECT
What do we virtualize?

- **Traditional Virtualization approach: Not Cloud Computing**
- **General log in services/ Terminal services**
 - RDP windows remote desktops
 - SSH gateways
 - NX linux remote desktops
- **Web services**
 - 1 VM per Website
- **Infrastructure services**
 - DNS
 - Firewalls
 - Domain controllers
- **Control PCs**
 - Controlling detector hw, running PVSS (standard LHC SCADA System)
 - Running both on Linux and Windows
 - Some of them need special hardware to control the detector
 - SPECS (special dedicated PCI card)
 - CANBUS (USB)
 - Several more
Hypervisor

allow multiple operating system to run on a host computer

• 4 solutions with active community/support behind:
 o Xen
 • Currently available on Scientific Linux 5
 • Will be replaced by KVM for Scientific Linux 6
 o KVM
 • Necessary Kernel modifications for Scientific Linux 5
 o Vmware
 • Suitable, high price
 o Hyper-V core R2 (free edition)
Hardware & SAN

- **10 Blade Poweredge M610**
 - 2 x E5530 @ 2.4GHz (8 real cores + Hyper Threading)
 - 3 x 8 GB = 24GB RAM
 - 2 x 10Gb network interfaces
 - 2 x 1Gb network interfaces
 - 2 x 8Gb fiber channel interfaces

- **Storage**
 - 2 x 8Gb Fiber channel switches
 - 10 Terabytes for Virtual Machines storage exported from 2 array controllers through 2 independent fiber channel fabrics

- **Network**
 - 2 x 10Gb Ethernet switches
 - 2 x 1Gb Ethernet switches

- **Limits:**
 - Average of 20 VM per Server = ~200 Virtual Machines

Enrico Bonaccorsi, Loic Brarda, Gary Moine, Niko Neufeld, Alexander Zvyagin
Architecture

Hyper-V High Level Architecture

VMWP – Virtual Machine Worker Process

VSP – Virtualization Service Provider

VID – Virtualization Infrastructure Driver

Enrico Bonaccorsi, Loic Brarda, Gary Moine, Niko Neufeld, Alexander Zvyagin
Network architecture & Security

Enrico Bonaccorsi, Loic Brarda, Gary Moine, Niko Neufeld, Alexander Zvyagin
Virtual Machines performances

- **Network** (from VMs to real server inside LHCb Network)
 - Throughput: \(\sim 900 \text{ Megabit/second} \)
 - Latency: \(\sim 0.2 \text{ ms} \)

- **Disk**
 - (512 B blocks – our disk controller always read in 4k blocks)
 - Reading: \(\sim 45 \text{ MegaByte/second} \)
 - Writing: \(\sim 35 \text{ MegaByte/second} \)
Server installation managed by Quattor using network boot/PXE

Boot from network:
- not supported by para-virtualized network interfaces
- supported by emulated network interfaces (very slow)

Solution:
- Do not install
- Use cloning of virtual hard disks (virtual machine template)
- Custom post boot script adjust main config file according to the PTR DNS record of the IP acquired by DHCP
- Let quattor configure the linux virtual machine

New virtual machines ready to be used in less than 10 minutes
Issues

• General issues
 - Time, ntpd -> ntpdate
 - PCI cards -> N/A
 - USB -> USB over IP
 - Software licenses: hardware dependent (PVSS)

• Hyper-V issues
 - Ethernet -> multicast n/a, jumbo frames n/a

• Hardware issues
 - Intel 5500 Series / hyper-v Core / ACPI
 - Cluster filesystem sector size = 512B
Summary and outlook

• Virtualization of LHCb ECS
 o Aim at reduce hardware
 o Special attention to security
 o Many issues tackled and solved (or work around)

• Next phase:
 o USB/IP
 o iSCSI
 o Virtualize almost every control pc
 o Intrusion prevention system
Backup slides
Virtualization CPU overhead

- We run over virtual machines based on KVM what we call the «moore test»
- Moore: software for trigger decision

- Running directly on the real machine we measured:
- ~10% overhead
Sharing of VLAN

- Massive using of 802.1q
- VLAN exported to real servers using a dedicated trunked 10Gb link