Introduction to the LHC Upgrade Program and Summary of Physics Motivations - Upgrade scenario for the LHC complex

Evans, L (CERN)

03 November 2010

The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project EuCARD, grant agreement no. 227579.

This work is part of EuCARD Work Package 4: AccNet: Accelerator Science Networks.
Upgrade scenario for the LHC complex

Lyn Evans

sLHC Seminar, CERN 8th June 2009
Tevatron luminosity evolution

Collider Run II Peak Luminosity

Date

Peak Luminosity

Peak Luminosity

Peak Lum 20x Average

L. Evans – EDMS Document 1002533
Peak Luminosity

\[L = \frac{N_b^2 n_b f_r \gamma}{4\pi \varepsilon_n \beta^* F} \]

- \(N_b \) number of particles per bunch
- \(n_b \) number of bunches
- \(f_r \) revolution frequency
- \(\varepsilon_n \) normalised emittance
- \(\beta^* \) beta value at Ip
- \(F \) reduction factor due to crossing angle

**Diagram:

- \(N_b, \varepsilon_n \) injector chain
- \(\beta^* \) LHC insertion
- \(F \) beam separation schemes
- \(n_b \) electron cloud effect
Goal of “Phase I” upgrade:

Enable focusing of the beams to $\beta^* = 0.25$ m in IP1 and IP5, and reliable operation of the LHC at double the operating luminosity on the horizon of the physics run in 2013.

Scope of “Phase I” upgrade:

1. Upgrade of ATLAS and CMS experimental insertions. The interfaces between the LHC and the experiments remain unchanged at ± 19 m.
2. Replace the present triplets with wide aperture quadrupoles based on the LHC dipole cables (Nb-Ti) cooled at 1.9 K.
3. Upgrade the D1 separation dipole, TAS and collimation system so as to be compatible with the inner triplet aperture.
4. The cooling capacity of the cryogenic system and other main infrastructure elements remain unchanged.
5. Modifications of other insertion magnets (e.g. D2-Q4) and introduction of other equipment in the insertions to the extent of available resources.
Several departments are involved in the “Phase I” project:

TE Department: low-beta quadrupoles and correctors, D1 separation dipoles, magnet testing, magnet protection and cold powering, vacuum equipment, QRL modifications.

BE Department: optics and performance, power converters, instrumentation, TAS and other beam-line absorbers, …

EN Department: cryostat support and alignment equipment, interfaces with the experiments, installation, design effort, …

SLHC-PP collaborators.

Milestones:

- Model quadrupole: end 2009
- Pre-series quadrupole: 2010
- String test: 2012
- Installation: shutdown 2013
Present limitations

1. Lack of reliability:

Ageing accelerators (PS is 48 years old !) operating far beyond initial parameters

→ need for new accelerators designed for the needs of SLHC

2. Main performance limitation:

Excessive incoherent space charge tune spreads DQSC at injection in the PSB (50 MeV) and PS (1.4 GeV) because of the high required beam brightness N/e*.

→ need to increase the injection energy in the synchrotrons

- Increase injection energy in the PSB from 50 to 160 MeV kinetic
- Increase injection energy in the SPS from 25 to 50 GeV kinetic
- Design the PS successor (PS2) with an acceptable space charge effect for the maximum beam envisaged for SLHC: => injection energy of 4 GeV

\[
\Delta Q_{SC} \propto \frac{N_b}{\varepsilon_{x,y}} \cdot \frac{R}{\beta\gamma^2}
\]

with \(N_b\): number of protons/bunch
\(\varepsilon_{x,y}\): normalized transverse emittances
\(R\): mean radius of the accelerator
\(\beta\gamma\): classical relativistic parameters
Upgrade components

- **Linac2**: 50 MeV, 160 MeV, 1.4 GeV
- **PSB**: 4 GeV
- **PS**: 26 GeV, 50 GeV
- **SPS**: 450 GeV, 1 TeV, 7 TeV, ~14 TeV
- **LHC / SLHC**: 1 TeV, ~14 TeV
- **SPS+**: 50 GeV to 1000 GeV
- **PS2**: (~5 to 50 GeV – 0.3 Hz)
- **LPSPL**: Low Power Superconducting Proton Linac (4 GeV)
- **Linac4**: 4 GeV, 26 GeV, 50 GeV, 450 GeV, 1 TeV
- **SLHC**: “Superluminosity” LHC (up to $10^{35} \text{ cm}^{-2}\text{s}^{-1}$)
- **DLHC**: “Double energy” LHC (1 to ~14 TeV)

Proton flux / Beam power
Layout of the new injectors

PS2
SPS
SPL
Linac4
PS
Linac4

VUE EN PLAN – 1/2500
Note: Recherche les références des bâtiments SPL sur le plan intitulé "SPL PROJECT"
Stage 1: Linac4

• Direct benefits of the new linac

Stop of Linac2:
 • End of recurrent problems with Linac2 (vacuum leaks, etc.)
 • End of use of obsolete RF triodes (hard to get + expensive)

Higher performance:
 • Space charge decreased by a factor of 2 in the PSB
 => potential to double the beam brightness and fill the PS with the LHC beam in a single pulse,
 => easier handling of high intensity. Potential to double the intensity per pulse.
 • Low loss injection process (Charge exchange instead of betatron stacking)
 • High flexibility for painting in the transverse and longitudinal planes (high speed chopper at 3 MeV in Linac4)

First step towards the SPL:
 • Linac4 will provide beam for commissioning LPSPL + PS2 without disturbing physics.

• Benefits for users of the PSB

Good match between space charge limits at injection in the PSB and PS
 => for LHC, no more long flat bottom at PS injection + shorter flat bottom at SPS injection: easier/ more reliable operation / potential for ultimate beam from the PS

More intensity per pulse available for PSB beam users (ISOLDE) – up to 2´

More PSB cycles available for other uses than LHC
Stage 2: LPSPL + PS2

• **Direct benefits of the LPSPL + PS2**

 Stop of PSB and PS:
 - End of recurrent problems (damaged magnets in the PS, etc.)
 - End of maintenance of equipment with multiple layers of modifications
 - End of operation of old accelerators at their maximum capability
 - Safer operation at higher proton flux (adequate shielding and collimation)

 Higher performance:
 - Capability to deliver 2.2 times the ultimate beam for LHC to the SPS
 => potential to prepare the SPS for supplying the beam required for the SLHC,
 - Higher injection energy in the SPS + higher intensity and brightness
 => easier handling of high intensity. Potential to increase the intensity per pulse.

 First step towards the SPL:
 - Linac4 will provide beam for commissioning LPSPL + PS2 without disturbing physics.

• **Benefits for users of the LPSPL and PS2**

 More than 50 % of the LPSPL pulses will be available (not needed by PS2)

 => New nuclear physics experiments – extension of ISOLDE (if no EURISOL)...

 Upgraded characteristics of the PS2 beam wrt the PS (energy and flux)
 Potential for a higher proton flux from the SPS
Stage 2’: SPL

Upgrade the LPSPL into an SPL (multi-MW beam power at 2-5 GeV):

• 50 Hz rate with upgraded infrastructure (electricity, water, cryo-plants, …)

• 40 mA beam current by doubling the number of klystrons in the superconducting part)

Possible users

• EURISOL (2nd generation ISOL-type RIB facility)
 => special deflection system(s) out of the SPL into a transfer line
 => new experimental facility with capability to receive 5 MW beam power
 => potential of supplying b-unstable isotopes to a b-beam facility…

• Neutrino factory
 => energy upgrade to 5 GeV (+70 m of sc accelerating structures)
 => 2 fixed energy rings for protons (accumulator & compressor)
 => accelerator complex with target, m capture-cooling-acceleration (20-50 GeV) and storage
Peak luminosity...

- **Collimation phase 2**
- **New injectors + IR upgrade phase 2**
- **Linac4 + IR upgrade phase 1**

The graph shows the progression of peak luminosity from 2009 to 2025 with key milestones indicated.
Integrated luminosity...

- Collimation phase 2
- Linac4 + IR upgrade phase 1
- New injectors + IR upgrade phase 2

Graph showing integrated luminosity from 2009 to 2025 with different phases of upgrade and operation.