Cellular and Porous Materials

Thermal Properties Simulation and Prediction

Edited by
Andreas Öchsner, Graeme E. Murch,
and Marcelº J. S. de Lemos
Contents

Preface XIII

List of Contributors XV

1 Interfacial Heat Transport in Highly Permeable Media: A Finite Volume Approach 1
Marcel() J.S. de Lemos and Marcelo B. Saito
1.1 Introduction 1
1.2 Governing Equations 3
1.2.1 Microscopic Transport Equations 3
1.2.2 Decomposition of Flow Variables in Space and Time 4
1.2.3 Macroscopic Flow and Energy Equations 5
1.2.4 Macroscopic Two-Energy Equation Modeling 8
1.2.5 Interfacial Heat Transfer Coefficient 10
1.3 Numerical Determination of h_i 12
1.3.1 Physical Model 12
1.3.2 Periodic Flow 14
1.3.3 Film Coefficient h_i 15
1.4 Results and Discussion 16
1.4.1 Array of Square Rods 16
1.4.2 Array of Elliptic Rods 16
1.4.3 Correlations for Laminar and Turbulent Flows 20
1.5 Conclusions 27
References 27

2 Effective Thermal Properties of Hollow-Sphere-Structures: A Finite Element Approach 31
Andreas Öchsner and Thomas Fiedler
2.1 Introduction 31
2.1.1 Finite Element Method and Heat Transfer Problems 31
2.1.2 Hollow-Sphere Structures in the Context of Cellular Metals 33
2.2 Finite Element Method 37
2.2.1 Basics of Heat Transfer 37
2.2.2 Weighted Residual Method 38
2.2.3 Discretization and Principal Finite Element Equation 39
2.2.4 Four-Node Planar Bilinear Quadrilateral (Quad4) 42
2.2.4.1 General Rectangular Quad4 Element 48
2.2.4.2 Postprocessing 51
2.2.5 Nonlinearities 53
2.3 Modelling of Hollow-Sphere Structures 56
2.3.1 Geometry, Mesh and Boundary Conditions 56
2.3.2 Material Properties 58
2.4 Determination of the Effective Thermal Conductivities 59
2.4.1 Influence of the Morphology and Joining Technique 60
2.4.2 Influence of the Topology 62
2.4.3 Temperature-Dependent Material Properties 65
2.4.3.1 Low Temperature Gradient 65
2.4.3.2 High Temperature Gradient 66
2.4.4 Application Example: Sandwich Structure 67
2.5 Conclusions 68
References 69

3 Thermal Properties of Composite Materials and Porous Media: Lattice-Based Monte Carlo Approaches 73
Irina V. Belova and Graeme E. Murch
3.1 Introduction 73
3.2 Monte Carlo Methods of Calculation of the Effective Thermal Conductivity 73
3.2.1 The Einstein Equation 74
3.2.2 Fick's First Law (Fourier Equation) 80
3.3 Monte Carlo Calculations of the Effective Thermal Conductivity 81
3.3.1 Effective Diffusion in Two-Component Composites/Porous Media 81
3.3.2 Effective Diffusion in Three-Component Composites 90
3.4 Determination of Temperature Profiles 91
References 94

4 Fluid Dynamics in Porous Media: A Boundary Element Approach 97
Leopold .Icerget, Renata Jecl, and Janja Kramer
4.1 Introduction 97
4.1.1 Transport Phenomena in Porous Media 97
4.1.2 Boundary Element Method for Fluid Dynamics in Porous Media 98
4.2 Governing Equations 99
4.3 Boundary Element Method 101
4.3.1 Velocity—Vorticity Formulation 102
4.3.2 Boundary Domain Integral Equations 102
4.3.3 Discretized Boundary Domain Integral Equations 105
4.3.4 Solution Procedure 106
4.4 Numerical Examples 107
4.4.1 Double-Diffusive Natural Convection in Vertical Cavity 107
4.4.2 Double-Diffusive Natural Convection in a Horizontal Porous Layer 113
4.5 Conclusion 117
References 117

5 Analytical Methods for Heat Conduction in Composites and Porous Media 121
Vladimir V. Mityushev, Ekaterina Pesetskaya, and Sergei V. Rogosin
5.1 Introduction 121
5.2 Mathematical Models for Heat Conduction 122
5.2.1 General 122
5.2.2 Boundary Value Problems 127
5.2.3 Conjugation Problem 128
5.2.4 Complex Potentials 129
5.2.5 Periodic Problems 132
5.3 Effective Conductivity Tensor 134
5.4 Review of Known Formulas 137
5.4.1 Laminates 137
5.4.2 Clausius—Mossotti Approximation (CMA) 137
5.4.3 Effective Medium Theory (EMT) 141
5.4.4 Duality Theory for 2D Media 144
5.5 Network Approximations 146
5.6 Doubly Periodic Problems 149
5.6.1 Introduction to Elliptic Function Theory 149
5.6.2 Method of Functional Equations 154
5.7 Representative Cell 156
5.8 Nonlinear Heat Conduction 159
References 160

6 Modeling of Composite Heat Transfer in Open-Cellular Porous Materials at High Temperatures 165
Kouichi Kamiuto
6.1 Introduction 165
6.2 Governing Equations 166
6.3 Transport Properties and Heat Transfer Correlation 168
6.3.1 Effective Thermal Conductivities 168
6.3.2 Thermal Dispersion Conductivities 171
6.3.3 Radiative Properties 173
6.3.4 Fluid Mechanical Properties 174
6.3.5 Volumetric Heat Transfer Coefficient 178
6.4 Radiative Transfer 179
VIII I Contents

6.5 Combined Conductive and Radiative Heat Transfer 183
6.6 Combined Forced-convective and Radiative Heat Transfer 186
6.6.1 Analysis of Gas Enthalpy-Radiation Conversion System 187
6.6.2 Analysis of Transpiration Cooling System in a Radialive Environment 189
6.7 Conclusions and Recommendations 194
References 197

7 Thermal Conduction Through Porous Systems 199
Ramvir Singh
7.1 Introduction 199
7.2 Theoretical Models 201
7.2.1 Models for Thermal Conductivity 201
7.2.2 Discussion 219
7.3 Experimental Techniques 221
7.3.1 Thermal Conductivity Probe 221
7.3.1.1 Theory 223
7.3.2 Differential Temperature Sensor Technique 224
7.3.2.1 Mathematical Analysis 225
7.3.3 Probe-Controlled Transient Technique 227
7.3.3.1 Mathematical Analysis 227
7.3.4 Plane Heat Source 230
7.3.4.1 Theory 230
7.3.5 Transient Plane Source (TPS) 234
7.3.5.1 Theory 234
7.3.6 Discussion 236
References 237

8 Thermal Property of Lotus-Type Porous Copper and Application to Heat Sinks 239
Tetsuro Ogushi, Hiroshi Chiba, Masakazu Tane, and Hideo Nakajima
8.1 Introduction 239
8.2 Effective Thermal Conductivity of Lotus-Type Porous Copper 241
8.2.1 Measurement 241
8.2.1.1 Definition of Effective Thermal Conductivity 241
8.2.1.2 Experimental Method 242
8.2.1.3 Specimen Preparation 243
8.2.2 Thermal Conductivity Parallel to Pores 244
8.2.3 Thermal Conductivity Perpendicular to Pores 245
8.2.4 Effect of Pore Shape on Thermal Conductivity 248
8.2.5 Effect of Pore Orientation on Thermal Conductivity 251
8.2.5.1 Introduction 251
8.2.5.2 EMF Theory 251
8.2.5.3 Application of Extended EMF Theory to Lotus Metals 252
8.3 Application of Lotus-Type Porous Copper to Heat Sinks 255
8.3.1 Analysis of Fin Efficiency 255
8.3.1.1 Straight Fin Model 255
8.3.1.2 Numerical Analysis 256
8.3.2 Experiments of Heat Transfer Characteristics 258
8.3.2.1 Experimental Method 258
8.3.2.2 Investigated Heat Sinks 259
8.3.3 Predictions of Heat Transfer Characteristics 260
8.3.3.1 Conventional Groove Fins and Microchannels 260
8.3.3.2 Lotus-Type Porous Copper Fins 260
8.3.4 Comparison of Experiments with Predictions 261
8.4 Conclusions 264
References 265

9 Thermal Characterization of Open-Celled Metal Foams by Direct Simulation 267
Shankar Krishnan, Suresh V. Garimella, and Jayathi Y. Murthy
9.1 Introduction 267
9.2 Foam Geometry 269
9.3 Mathematical Modeling 271
9.3.1 Effective Thermal Conductivity 271
9.3.2 Computation of Flow and Heat Transfer Through Foam 272
9.3.2.1 Flow and Temperature Periodicity 272
9.3.2.2 Governing Equations 273
9.3.2.3 Computational Details 274
9.4 Results and Discussion 274
9.4.1 Direct Simulations of Foams: BCC Model 275
9.4.1.1 Effective Thermal Conductivity 276
9.4.1.2 Pressure Drop and Heat Transfer Coefficient 278
9.4.2 Direct Simulations of Foams: Effect of Unit Cell Structure 283
9.4.2.1 Effective Thermal Conductivity 284
9.4.2.2 Pressure Drop and Nusselt Number 285
9.5 Conclusion 286
References 288

10 Heat Transfer in Open-Cell Metal Foams Subjected to Oscillating Flow 291
Kai Choong Leong and Liwenjin
10.1 Introduction 291
10.1.1 Fluid Flow and Heat Transfer in Open-Cell Foams 292
10.1.2 Oscillating Flow Through Porous Media 295
10.2 Fluid Behavior of Oscillatory Flow in Open-Cell Metal Foams 296
10.2.1 Critical Properties of Open-Cell Foams 297
10.2.2 Analysis of Similarity Parameters 299
10.2.3 Oscillatory Flow Through a Channel Filled with Open-Cell Foams 302
10.2.3.1 Effects of Kinetic Reynolds Number and Dimensionless Flow Amplitude 303
10.2.3.2 Friction Factor in Metal Foam 306
10.3 Heat Transfer Characteristics of Oscillatory Flow in Open-Cell Foams 309
10.3.1 Theoretical Analysis of Forced Convection in Oscillating Flow 309
10.3.2 Oscillatory Heat Transfer in Open-Cell Metal Foams 313
10.3.3 Effects of Oscillation Frequency and Flow Amplitude 315
10.3.4 Heat Transfer Rate in Metal Foams 318
10.4 Thermal Management Using Highly Conductive Metal Foams 323
10.4.1 Steady and Oscillating Flows in Open-Cell Metal Foams 323
10.4.1.1 Thermal Performance of Open-Cell Metal Foams 323
10.4.1.2 Comparison of Steady and Oscillating Flows 326
10.4.2 Pumping Power of Oscillatory Cooling System 331
10.5 Conclusions 333

References 337

11 Radiative and Conductive Thermal Properties of Foams 343

Dominique Baillis and Rami Coquard

11.1 Introduction 343
11.2 Description of Cellular Foam Structure 344
11.2.1 Open-Cell Foams 344
11.2.2 Closed-Cell Foams 344
11.3 Modeling of Foam Structure 346
11.3.1 Cell Modeling 346
11.3.2 Particle Modeling 347
11.4 Determination of Foam Conductive Properties 347
11.4.1 Analytical/Semi-analytical Models 348
11.4.1.1 Polymer Foams 348
11.4.1.2 Ceramic, Metallic and Carbon Foams 350
11.4.2 Numerical Models 352
11.4.2.1 Polymer Foams 352
11.4.2.2 Ceramic, Metallic and Carbon Foams 353
11.5 Determination of Cellular Foam Radiative Properties 355
11.5.1 Theoretical Prediction of Radiative Properties of Particulate Media 356
11.5.1.1 Single-Particle Properties 356
11.5.1.2 Dispersion Properties 357
11.5.2 Parameter Identification Method 357
11.5.3 Application to Open-Cell and Closed-Cell Foams 359
11.5.3.1 Open-Cell Carbon Foam 359
11.5.3.2 Metallic Foam 361
11.5.3.3 Closed-Cell Foam: Case of Low-Density EPS Foams 362
11.5.3.4 Closed-Cell Foam: Case of XPS and PUR Foams 367
11.6 Combined Conductive and Radiative Heat Transfer in Foam 369
11.6.1 Heat Transfer Equations for Cellular Foam Insulation 369
11.6.2 Resolution of the Heat Transfer Equations 370
11.6.2.1 Resolution of the Radiative Transfer Equation/Rosseland Approximation 370
11.6.2.2 Resolution of the Radiative Transfer Equation/Discrete Ordinates Method 371
11.6.2.3 Resolution of the Energy Equation 372
11.6.3 Equivalent Thermal Conductivity Results 372
11.6.3.1 Closed-Cell EPS Foams 372
11.6.3.2 Closed-Cell XPS and PUR Foams 375
11.6.3.3 Metallic Open-Cell Foams 376
11.6.3.4 Open-Cell Carbon Foams 380
11.7 Conclusions 381
References 382

12 On the Application of Optimization Techniques to Heat Transfer in Cellular Materials 385
Pablo A. Muñoz-Rojas, Emilio C. Nelli Silva, Eduardo L. Cardoso, and Miguel Vazjunior
12.1 Introduction 385
12.2 Optimization Approaches 386
12.2.1 Evolutionary Algorithms (EAs) 387
12.2.1.1 Basic Concepts in Evolutionary Algorithms 387
12.2.2 Mathematical Programming using Gradient-Based Procedures 389
12.3 Periodic Composite Materials 389
12.3.1 Homogenization of Heat Properties in Periodic Composite Materials 390
12.3.2 Functionally Graded Materials 394
12.3.3 Numerical Implementation of Homogenization 395
12.3.4 Material Design: Shape and Topology Optimization of a Unit Cell 397
12.3.4.1 Shape Optimization 398
12.3.4.2 Topology Optimization 401
12.4 General Applications Review 403
12.5 Results Obtained with the FGM Approach in this Work 410
12.6 Conclusions 413
References 414

Index 419