Index

Absolute shielding constant, 236
Ab initio methods
 shielding constant, 236
AD, 188
\(a_e \), 42, 115
 experimental value, 18
 theoretical prediction, 18
\(\alpha \), see Fine structure constant
\(a_\mu \), 50
 analytic results, 16, 19
 QED prediction, 19
 theoretical prediction, 28
Anomalous magnetic moment, 10, 11
 of electron, see \(a_e \)
 of muon, see \(a_\mu \)
Antiproton-to-electron mass ratio, 187
Antiprotonic helium atom, see \(\bar{p} \)He
Antiproton decelerator, see AD
ASACUSA, 188
Bohr magneton, 10
Born-Oppenheimer approximation, 3
 215
Bound-state QED, 262
CERN, 188
Charge-coupled devices, 175
Charge screening, 17
Chiral perturbation theory, 166
CODATA, 55, 36, 187, 188
Contribution to \(a_\mu \)
 hadronic, 22
 leading, 23
 subleading, 24
 universal, 16
 weak
 leading, 20
 subleading, 21
Contribution to \(a_\mu \)
 weak, 22
Corrections
 mass dependent, 17
 universal, 17
Coupled cluster methods, 244
CPT symmetry, 30
CPT theorem, 13, 187
Crystal spectrometer, 174
Current
 axial, 21
 electromagnetic, 10
Cyclotron trap, 174
ECRIT, 177
Decoupling of heavy states, 12
Deser formula, 169
Determination of fundamental constants via rovibrational spectroscopy of MHIs
 \(m_e/m_p \), 206
 \(m_p/m_d \), 206
Dirac–Hartree–Fock calculations, 246
Dispersion integral, 22
Dispersion relations, 103
Doppler-free spectroscopy, 208, 214, 217
Effective field theory, 21, 25
Electro-optic modulator, 119
Electron-positron annihilation, see e^+e^--annihilation
Electron anomaly, see a_e
Electron $g - 2$, see a_e
Electron scattering, 111
e^+e^--annihilation, 22
e^+e^--data, 22, 31
Exotic atoms, 2, 187
Exotic atom cascade, 171
 Coulomb de-excitation, 172, 178
 molecular formation, 172
 muonic hydrogen, 178
 pionic hydrogen, 172
 Stark mixing, 172
Fabry Perot etalon, 113
Femtosecond frequency comb, see Optical frequency comb
Fermion loops, 17
 triangle loop, 20
Fine structure, 111
Fine structure constant, 15, 17, 31, 38, 41–43, 112
Form factor, 26
 dipole, 80
 G_{EM}, 88
 G_{EN}, 85, 88
 G_{EP}, 82, 84, 88
 G_{MN}, 85
Fundamental constants, 3, 35–52
 adjustment of, 36, 38
 auxiliary data, 38
 CODATA recommended values, 39, 92
g-factor, 10
Goldstone bosons, 21, 25
Gravitation constant, 14, 45
Gyromagnetic ratio, 10

H-like ions, 2, 157, 162
H_2^+ ions, 211
H_2^+ ions, 215
 intensities of HFS lines, 215
 ion trap, 219
 laser system, 220
 photodissociation, 216
Hadrons, 17
Halo nuclei, 2, 131, 152

He, 133
 atomic spectroscopy, 141, 144
Li, 131, 133
 atomic spectroscopy, 144
Harmonic Double Sided Microtron, 87
HD$^+$ ions, 211, 225
HD$^+$ ions
 Doppler broadening, 228
 effective spin Hamiltonian, 227
 Lamb-Dicke regime, 228
 photodissociation, 224
 population of ro-vibrational states, 224
 sympathetic cooling, 222
HDSM, see Harmonic Double Sided Microtron
Helium, 2
HFS, see Hyperfine splitting
Hydrogen atoms, 1, 2
Hydrogen molecular ions, see also H_2^+ and HD$^+$, 3, 206
 hyperfine structure, 211, 227
 intensities of transition lines, 213, 215
 level structure, 215
 ro-vibrational spectroscopy, 206
 theory, 207
Hylleraas Variational method, 111, 133, 136
Hyperfine splitting
 in hydrogen, 93
 polarizability correction, 98
 recoil corrections, 96
 in muonic hydrogen, 103
Hyperfine structure, 111

Isotope shift, 111, 138
Isotopic shift, 111, 138
Isotopic shift, 111
Isotope shift, 111, 138

KEK, 189

Lagrangian
 effective, 24
 Wess-Zumino-Witten, 24
Lamb shift, 59, 66, 69, 80, 105, 112
Larmor precession, 13
Laser atomic beam measurement, 124
Laser heterodyne, 115
Laser spectroscopy, 111
LEAR, 191
Leptons, \[20\; 21\]
Level crossing spectroscopy, \[124\]
Light-by-light scattering, \[13\]
electron, \[18\]
hadronic, \[16\; 24\]
Lithium, \[2\; 111\]

Magic energy, \[12\; 13\]
Magnetic moment, \[10\]
anomalous, \textit{see} Anomalous magnetic moment of lepton, \[9\]
Mainz accelerator
energy compressing system, \[81\]
LINAC, \[81\]
Mainz Microtron MAMI A/B, \[83\]
Mainz Microtron MAMI C, \[87\]
Mainexperiments
Anklin et al., \[85\]
Becker et al., \[85\]
Bermuth et al., \[85\]
Bernauer et al., \[88\]
Borkowski et al., \[82\]
Glazier et al., \[86\]
Herberg et al., \[86\]
Kubon et al., \[85\]
Ostrick et al., \[86\]
Pospischil et al., \[84\]
Rohe et al., \[84\; 88\]
Simon et al., \[83\]
Mass radii, \[126\]
MHIs, \textit{see} Hydrogen molecular ions
Micromotion of ions in an ion crystal, \[228\]
Microwave, \[115\]
Muon
decay, \[11\]
life time, \[14\]
magnetic moment, \[50\]
mass, \[50\]
polarization, \[13\]
storage ring, \[13\]
Muon \(g - 2\), \textit{see} \(a_{\mu}\)
Muon anomaly, \textit{see} \(a_{\mu}\)

Natural linewidth, \[119\]
NEPOMUC positron source, \[276\]
New physics scale, \[31\]
New physics search, \[11\]

NMR
absolute shielding, \[236\]
ab initio shielding constant, \[236\]
chemical shift, \[238\]
effective spin Hamiltonian, \[234\]
gas phase experiment, \[240\]
Non-perturbative effects, \[21\; 20\]
NRM spectroscopy, \[3\]
Nuclear magnetic dipole moment, \[249\]

Optical double resonance, \[124\]
Optical frequency comb, \[113\; 194\]
Optical theorem, \[22\]

Parity violation, \[12\; 20\]
\(p\)He\(^+\), \[187\; 200\]
Penning trap, \[187\]
Perturbation theory
chiral, \[25\]
extended, \[25\]
Pion, \[21\; 25\; 26\]
Pion–nucleon interaction, \[167\]
chiral perturbation theory, \[168\]
coupling constant, \[167\; 181\]
scattering length, \[167\; 181\]
Pionic atoms, \[167\]
pionic deuterium, \[169\]
pionic hydrogen, \[169\]
Planck constant, \[43\; 44\]
Poly-logarithms, \[16\]
Polyelectrons, \[261\]
Positronium
decay rate, \[264\]
production of a beam, \[277\]
Positronium ion, \[3\]
binding energy, \[263\]
decay rate, \[261\; 279\]
angular correlation, \[265\]
branching, \[264\; 278\]
measurement, \[269\; 276\]
one-gamma decay, \[265\; 278\]
doubly excited states, \[266\; 268\]
meta-stable state, \[268\]
observation, \[269\]
photodetachment
cross section, \[267\]
experiments, \[277\]
production, \[268\]
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>size.</td>
<td>263</td>
</tr>
<tr>
<td>Positronium molecular ion, see Positronium ion</td>
<td></td>
</tr>
<tr>
<td>Proton-to-electron magnetic moment ratio,</td>
<td>50</td>
</tr>
<tr>
<td>Proton-to-electron mass ratio,</td>
<td>187</td>
</tr>
<tr>
<td>Proton structure.</td>
<td>2</td>
</tr>
<tr>
<td>Pseudo-scalars, exchange.</td>
<td>26</td>
</tr>
<tr>
<td>QCD.</td>
<td>24, 23</td>
</tr>
<tr>
<td>QED.</td>
<td>1–3, 9, 19, 111, 137, 262, 264, scalar, 25</td>
</tr>
<tr>
<td>Quantum chemistry ab initio methods.</td>
<td>237</td>
</tr>
<tr>
<td>Quantum chromodynamics, see QCD</td>
<td></td>
</tr>
<tr>
<td>Quantum electrodynamics, see QED</td>
<td></td>
</tr>
<tr>
<td>Quantum fluctuations.</td>
<td>11</td>
</tr>
<tr>
<td>Quark–hadron duality.</td>
<td>24, 25</td>
</tr>
<tr>
<td>Quarks.</td>
<td>17, 20, 21</td>
</tr>
<tr>
<td>Racetrack Microtron.</td>
<td>84</td>
</tr>
<tr>
<td>Radiative corrections.</td>
<td>10</td>
</tr>
<tr>
<td>Radioactive lithium isotopes.</td>
<td>126</td>
</tr>
<tr>
<td>Radiofrequency quadrupole decelerator, see RFQD</td>
<td></td>
</tr>
<tr>
<td>Relativistic correction.</td>
<td>112, 136, 137</td>
</tr>
<tr>
<td>REMPD, see Resonance enhanced multiphoton dissociation method</td>
<td></td>
</tr>
<tr>
<td>Renormalization group.</td>
<td>17</td>
</tr>
<tr>
<td>Resonances.</td>
<td>23</td>
</tr>
<tr>
<td>Resonance enhanced multiphoton dissociation method, see RFQD</td>
<td></td>
</tr>
<tr>
<td>RFQD.</td>
<td>192</td>
</tr>
<tr>
<td>ρ-meson.</td>
<td>23, 25</td>
</tr>
<tr>
<td>RMS radii</td>
<td></td>
</tr>
<tr>
<td>of neutron,</td>
<td>79, 80</td>
</tr>
<tr>
<td>of proton,</td>
<td>48, 50, 57, 65, 79, 84</td>
</tr>
<tr>
<td>of deuteron,</td>
<td>69, 71</td>
</tr>
<tr>
<td>$A = 3$ nuclei.</td>
<td>71</td>
</tr>
<tr>
<td>$A = 4$,</td>
<td>72</td>
</tr>
<tr>
<td>$A > 4$,</td>
<td>73</td>
</tr>
<tr>
<td>of 6He,</td>
<td>134</td>
</tr>
<tr>
<td>of 6Li,</td>
<td>151</td>
</tr>
<tr>
<td>of 7Li,</td>
<td>111</td>
</tr>
<tr>
<td>of 8,9,11Li,</td>
<td>151</td>
</tr>
<tr>
<td>RTM, see Racetrack Microtron</td>
<td>124</td>
</tr>
<tr>
<td>Scaling relation.</td>
<td>83</td>
</tr>
<tr>
<td>Short distance constraints.</td>
<td>26</td>
</tr>
<tr>
<td>Simple atoms.</td>
<td>1–3</td>
</tr>
<tr>
<td>Spin-rotation constant.</td>
<td>239</td>
</tr>
<tr>
<td>Standard Model.</td>
<td>11, 19</td>
</tr>
<tr>
<td>Stark collisions.</td>
<td>190</td>
</tr>
<tr>
<td>Strong interactions.</td>
<td>22</td>
</tr>
<tr>
<td>Super-symmetric SM.</td>
<td>30</td>
</tr>
<tr>
<td>Super symmetry.</td>
<td>30</td>
</tr>
<tr>
<td>Symmetry breaking chiral.</td>
<td>21</td>
</tr>
<tr>
<td>Systematic shifts.</td>
<td>207, 229</td>
</tr>
<tr>
<td>τ-data.</td>
<td>24</td>
</tr>
<tr>
<td>τ spectral-functions.</td>
<td>24</td>
</tr>
<tr>
<td>Three-body systems.</td>
<td>202</td>
</tr>
<tr>
<td>Time dilatation.</td>
<td>11</td>
</tr>
<tr>
<td>Triangle anomaly.</td>
<td>21, 21, 27</td>
</tr>
<tr>
<td>Two photon exchange</td>
<td></td>
</tr>
<tr>
<td>in e-d scattering,</td>
<td>70</td>
</tr>
<tr>
<td>in e-p scattering,</td>
<td>68</td>
</tr>
<tr>
<td>in HFS,</td>
<td>67</td>
</tr>
<tr>
<td>Vacuum polarization.</td>
<td>17, 16, 22</td>
</tr>
<tr>
<td>hadronic.</td>
<td></td>
</tr>
<tr>
<td>Vector-meson, dominance.</td>
<td>25</td>
</tr>
<tr>
<td>Weak gauge bosons.</td>
<td>20</td>
</tr>
<tr>
<td>Weak interactions.</td>
<td>11, 20</td>
</tr>
<tr>
<td>Yang–Mills structure.</td>
<td>20</td>
</tr>
<tr>
<td>Zemach moment</td>
<td></td>
</tr>
<tr>
<td>of deuteron,</td>
<td>71</td>
</tr>
<tr>
<td>of proton,</td>
<td>66, 68, 94, 96</td>
</tr>
<tr>
<td>third,</td>
<td>69</td>
</tr>
<tr>
<td>Zemach radius, see Zemach moment</td>
<td></td>
</tr>
</tbody>
</table>