Appendix A

Symbols and Units

Table A.1 gives many of the physical constants used in this text. The names of general variables are provided in Table A.2, along with their units. Table A.3 lists coefficients and parameters. Some more specific parameters and constants with acronyms, are provided in Table A.4. Most variables and parameters are defined locally in the chapters, sometimes a bit differently than in these tables when there is an overlap in the use of symbols. For example, in most of Chap. 8 the flow or vascular resistance is called R_{flow} (Table A.3) to avoid confusion with R used for radius (Table A.2). Elsewhere where there can be no confusion it is called R (and is locally defined as such).

<table>
<thead>
<tr>
<th>parameter (variable)</th>
<th>value (in SI units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avogadro’s number (N_A)</td>
<td>6.02×10^{23} (per mole)</td>
</tr>
<tr>
<td>Boltzmann constant (k_B)</td>
<td>1.381×10^{-23} J/K</td>
</tr>
<tr>
<td>Coulomb’s Law constant ($k = 1/4\pi\varepsilon_0$)</td>
<td>8.99×10^9 N-m²/C²</td>
</tr>
<tr>
<td>electric permittivity (ε_0)</td>
<td>8.854×10^{-12} F/m</td>
</tr>
<tr>
<td>elementary charge (e)</td>
<td>1.602×10^{-19} C</td>
</tr>
<tr>
<td>gas constant ($R = N_A k_B$)</td>
<td>8.315 J/mole-K</td>
</tr>
<tr>
<td>gravitation constant (g)</td>
<td>9.8 m/s² = 32.2 ft/s²</td>
</tr>
<tr>
<td>magnetic permeability (μ_0)</td>
<td>$4\pi \times 10^{-7}$ N/A²</td>
</tr>
<tr>
<td>Planck’s constant (h)</td>
<td>6.626×10^{-34} J·s</td>
</tr>
<tr>
<td>speed of light (c)</td>
<td>3.0×10^8 m/s</td>
</tr>
<tr>
<td>Stefan-Boltzmann constant (σ)</td>
<td>5.67×10^{-8} W/m²·K⁴</td>
</tr>
</tbody>
</table>
Table A.2. General variables and units. Also see Fig. D.1

<table>
<thead>
<tr>
<th>parameter (variable)</th>
<th>common units (Definition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>acceleration (a, $a_{decel} = -a$)</td>
<td>m/s^2</td>
</tr>
<tr>
<td>angular momentum (L)</td>
<td>kg-m2/s</td>
</tr>
<tr>
<td>area (A, in flow S)</td>
<td>m^2</td>
</tr>
<tr>
<td>body height (H or H_b)</td>
<td>m^a</td>
</tr>
<tr>
<td>body mass (m_b)</td>
<td>1 kg = 1,000 g</td>
</tr>
<tr>
<td>body weight (W_b)</td>
<td>Nb</td>
</tr>
<tr>
<td>charge (q)</td>
<td>coulombs (C)</td>
</tr>
<tr>
<td>charge, number of elementary charges (Z)</td>
<td>unitless, $q = Ze$</td>
</tr>
<tr>
<td>current (I_{elect}, I)</td>
<td>amps (A), 1 A = 1 C/s</td>
</tr>
<tr>
<td>current density (J_{elect}, J)</td>
<td>A/m2</td>
</tr>
<tr>
<td>density (mass) (ρ)</td>
<td>1,000 kg/m3 = 1 g/cm3</td>
</tr>
<tr>
<td>density (number) (n)</td>
<td>#/m3, #/cm3</td>
</tr>
<tr>
<td>diameter (d, D)</td>
<td>1 m = 100 cm = 3.28 ft</td>
</tr>
<tr>
<td>dipole moment (P)</td>
<td>1 Debye (D) = 3.336×10^{-30} C-m</td>
</tr>
<tr>
<td>distance (L), height (h, y)</td>
<td>m^a</td>
</tr>
<tr>
<td>electric field (E)</td>
<td>V/m</td>
</tr>
<tr>
<td>energy (E)</td>
<td>Jc</td>
</tr>
<tr>
<td>flux (particle) (J)</td>
<td>#/m2-s</td>
</tr>
<tr>
<td>focal length (f)</td>
<td>m</td>
</tr>
<tr>
<td>force (F, M (for muscle))</td>
<td>Nb</td>
</tr>
<tr>
<td>frequency (in space) (k)</td>
<td>1/m</td>
</tr>
<tr>
<td>frequency (in time) (f, F, ν)</td>
<td>Hz, cycles per second (cps)</td>
</tr>
<tr>
<td>frequency (in time) (radial) (ω)</td>
<td>radians per second, $\omega = 2\pi f$</td>
</tr>
<tr>
<td>heat flow, amount (Q)</td>
<td>kcal/h, Wd</td>
</tr>
<tr>
<td>heat flow, rate (dQ/dt)</td>
<td>W/m2</td>
</tr>
<tr>
<td>intensity (acoustic, optical) (I)</td>
<td>10^{-12} W/m2</td>
</tr>
<tr>
<td>Intensity (acoustic reference) (I_{ref})</td>
<td>Jc</td>
</tr>
<tr>
<td>kinetic energy (KE)</td>
<td>unitless</td>
</tr>
<tr>
<td>loudness (L_P, L_s)</td>
<td>phons, (10.64); sones, (10.65)</td>
</tr>
<tr>
<td>mass (m)</td>
<td>1 kg = 1,000 g</td>
</tr>
<tr>
<td>magnetic field (B)</td>
<td>1 T (T) = 10^9 gauss (G)</td>
</tr>
<tr>
<td>magnification (M)</td>
<td>unitless</td>
</tr>
<tr>
<td>mobility (μ)</td>
<td>m2/V-s</td>
</tr>
<tr>
<td>normal force (N)</td>
<td>Nb</td>
</tr>
<tr>
<td>osmotic pressure (Π)</td>
<td>Pae</td>
</tr>
<tr>
<td>potential energy (PE)</td>
<td>Jc</td>
</tr>
<tr>
<td>power (P_{power} or P, mechanical, metabolic)</td>
<td>Wd</td>
</tr>
<tr>
<td>pressure (P)</td>
<td>Pae</td>
</tr>
<tr>
<td>radiation flux (R)</td>
<td>W/m2</td>
</tr>
<tr>
<td>radius (radius of curvature) (r, R)</td>
<td>m^a</td>
</tr>
<tr>
<td>reaction force (R)</td>
<td>Nb</td>
</tr>
<tr>
<td>reflection coefficient (R_{refl}, R)</td>
<td>unitless</td>
</tr>
<tr>
<td>refractive power (P)</td>
<td>1/m = 1 D (Diopter)</td>
</tr>
<tr>
<td>speed, angular, rotational (Ω)</td>
<td>rad/s</td>
</tr>
</tbody>
</table>

(Cont.)
Table A.2. (Continued)

<table>
<thead>
<tr>
<th>parameter (variable)</th>
<th>common units (Definition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed, velocity (v), flow (u, v)</td>
<td>(\text{m/s}^f)</td>
</tr>
<tr>
<td>strain (\varepsilon)</td>
<td>unitless, (\text{mm/mm})</td>
</tr>
<tr>
<td>stress (\sigma)</td>
<td>(\text{Pa}^a)</td>
</tr>
<tr>
<td>temperature (T)</td>
<td>(T(\text{K}) = T(\text{°C}) + 273\°)</td>
</tr>
<tr>
<td>tension (T)</td>
<td>(\text{N}^b) (for force, as in Chap. 5)</td>
</tr>
<tr>
<td>tension (T) (surface tension)</td>
<td>(\text{N/m} (\text{force/length} (7.4)))</td>
</tr>
<tr>
<td>torque (\tau) or moment (M)</td>
<td>(\text{N-m})</td>
</tr>
<tr>
<td>transmission coefficient (T_{\text{trans}}, T)</td>
<td>unitless</td>
</tr>
<tr>
<td>volume (V) or (V_{\text{flow}})</td>
<td>(1 \text{ L} = 1,000 \text{ mL} = 1,000 \text{ cm}^3)</td>
</tr>
<tr>
<td>volume flow rate (Q)</td>
<td>(1 \text{ L/s} = 1,000 \text{ mL/s} = 1,000 \text{ cm}^3/\text{s})</td>
</tr>
<tr>
<td>voltage, potential difference (V_{\text{elect}}, V)</td>
<td>volts (V)</td>
</tr>
<tr>
<td>wavelength (\lambda)</td>
<td>(\text{m}, 1 \text{ nm} = 10^{-9} \text{ m})</td>
</tr>
<tr>
<td>work (W)</td>
<td>(\text{J}^c)</td>
</tr>
<tr>
<td>vergence (V)</td>
<td>(1/\text{m} = 1 \text{ D} (\text{Diopter}))</td>
</tr>
</tbody>
</table>

\(a\) 1 m = 100 cm = 3.28 ft, 1 mile = 5,280 ft.

\(b\) 1 N = 10^6 dynes = 0.225 lb, (Table 2.5).

\(c\) 1 J = 0.239 cal = 0.000948 BTU, 1 kcal = 4.184 J.

\(d\) 1 W = 0.86 kcal/h = 1/746 hp = 0.00134 hp (horsepower) (Table 6.1).

\(e\) 1 Pa = 1 N/m^2, 1 MPa = 1 N/mm^2 = 7,600 mmHg = 10,300 cmH_2O = 10 bar = 9.87 atm. Table 2.6.

\(f\) 1 m/s = 3.6 km/h = 3.28 fps (feet per second) = 2.24 mph (miles per hour, 1 mile = 5,280 ft).

Table A.3. General coefficients and parameters, and units. Also see Fig. D.1

<table>
<thead>
<tr>
<th>parameter (variable)</th>
<th>common units (definition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>absorption coefficient (sound, light) (\gamma)</td>
<td>(1/\text{m})</td>
</tr>
<tr>
<td>activity factor (f)</td>
<td>unitless</td>
</tr>
<tr>
<td>admittance ((Y = 1/Z = G + iB))</td>
<td>(1 \text{ mho} = 1/\text{ohm})</td>
</tr>
<tr>
<td>area moment of inertia (I_A)</td>
<td>(\text{m}^4, (4.38))</td>
</tr>
<tr>
<td>capacitance ((C_{\text{elect}} \text{ or } C)); per unit length</td>
<td>farads (F) = C/V; F/m</td>
</tr>
<tr>
<td>capacitance per area (c)</td>
<td>(\text{F/m}^2)</td>
</tr>
<tr>
<td>compliance ((C_{\text{flow}} \text{ or } C))</td>
<td>(\text{cm}^3/\text{bar}, \text{L/mmHg})</td>
</tr>
<tr>
<td>conductance (electrical, (G))</td>
<td>(\text{siemens}, 1 \text{ S} = 1/\text{ohm})</td>
</tr>
<tr>
<td>conductance per unit area (g)</td>
<td>(1/\text{ohm-m}^2)</td>
</tr>
<tr>
<td>conductivity (\sigma)</td>
<td>(1/(\text{ohm-m}), \sigma = 1/\rho)</td>
</tr>
<tr>
<td>dashpot constant (c)</td>
<td>(\text{N-s/m})</td>
</tr>
<tr>
<td>dielectric constant (\kappa)</td>
<td>unitless</td>
</tr>
<tr>
<td>diffusion coefficient (D_{\text{diff}})</td>
<td>(\text{m}^2/\text{s}, \text{cm}^2/\text{s})</td>
</tr>
<tr>
<td>distensibility (D_{\text{flow}})</td>
<td>(1/\text{Pa}, (8.20))</td>
</tr>
<tr>
<td>drag coefficient (C_D)</td>
<td>unitless</td>
</tr>
<tr>
<td>efficiency (\epsilon)</td>
<td>(0 \leq \epsilon \leq 1)</td>
</tr>
<tr>
<td>emissivity (\epsilon)</td>
<td>(0 \leq \epsilon \leq 1, 1 \text{ for a black body})</td>
</tr>
</tbody>
</table>

\(Cont.\)
Table A.3. (Continued)

<table>
<thead>
<tr>
<th>parameter (variable)</th>
<th>common units (definition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>friction coefficient (static, kinetic) (μ_s, μ_k)</td>
<td>unitless</td>
</tr>
<tr>
<td>heat capacity (C)</td>
<td>kcal/°C, 1 MJ/K = 239 kcal/K</td>
</tr>
<tr>
<td>heat transfer coefficient ($h = K/d = 1/I$)</td>
<td>W/m²·°C, kcal/m²·h⁻²°C</td>
</tr>
<tr>
<td>impedance ($Z = R + iX$)</td>
<td>ohm</td>
</tr>
<tr>
<td>index of refraction (n)</td>
<td>unitless</td>
</tr>
<tr>
<td>insulation ($I = 1/h = d/K$)</td>
<td>m²·°C/W, m²·h⁻²°C/kcal</td>
</tr>
<tr>
<td>lift coefficient (ρ_{ln})</td>
<td>unitless</td>
</tr>
<tr>
<td>moment of inertia (I)</td>
<td>kg·m², (3.23), (3.24)</td>
</tr>
<tr>
<td>Poisson’s ratio (ν)</td>
<td>unitless, (4.7)</td>
</tr>
<tr>
<td>radius of gyration (ρ)</td>
<td>m</td>
</tr>
<tr>
<td>reactance (X)</td>
<td>ohm</td>
</tr>
<tr>
<td>resistance (flow, vascular, R_{flow} or R)</td>
<td>mmHg·s/cm³ᵃ</td>
</tr>
<tr>
<td>resistance (electrical, R_{elect} or R)</td>
<td>ohm (Ω)</td>
</tr>
<tr>
<td>resistance (electrical; per unit length r)</td>
<td>ohm/m</td>
</tr>
<tr>
<td>resistivity (ρ)</td>
<td>ohm·m</td>
</tr>
<tr>
<td>scattering coefficient ($\alpha_{light scattering}$)</td>
<td>1/m</td>
</tr>
<tr>
<td>skin friction coefficient (C_{sf})</td>
<td>unitless</td>
</tr>
<tr>
<td>specific heat (c)</td>
<td>kcal/kg·°Cᵇ</td>
</tr>
<tr>
<td>specific heat ratio (γ)</td>
<td>unitless, = c_p/c_v</td>
</tr>
<tr>
<td>speed of sound (v_s)</td>
<td>m/s</td>
</tr>
<tr>
<td>spring constant (k)</td>
<td>N/m</td>
</tr>
<tr>
<td>stroke volume (V_{strok})</td>
<td>1 L = 1,000 mL = 1,000 cm³</td>
</tr>
<tr>
<td>surface tension (γ)</td>
<td>1 N/m = 1,000 dynes/cm</td>
</tr>
<tr>
<td>susceptance (B)</td>
<td>mho = 1/ohm</td>
</tr>
<tr>
<td>thermal conductivity (κ)</td>
<td>W/m·K</td>
</tr>
<tr>
<td>total volume flow rate (Q_t)</td>
<td>1 L/s = 1,000 mL/s = 1,000 cm³/s</td>
</tr>
<tr>
<td>viscosity coefficient (dynamic, absolute) (η)</td>
<td>Pa·sᵃ</td>
</tr>
<tr>
<td>viscosity coefficient (kinematic) ($\nu = \eta/\rho$)</td>
<td>Pa·s/(kg·m⁻³)</td>
</tr>
<tr>
<td>Young’s modulus (Y), elastic modulus (E)</td>
<td>Pa, 1 MPa = 1 N/mm²</td>
</tr>
</tbody>
</table>

ᵃ1 mmHg·s/cm³ = 1 mmHg·s/mL = 1 PRU.
ᵇper mass or volume, kcal/kg·°C, 1 MJ/m³·K = 239 kcal/m³·K.
ᶜ1 Pa·s (Poiseuille, PL) = 1 (N/m²)·s = 1 kg/m·s = 10 poise (P) = 1,000 cP.

Table A.4. Acronyms, including those of parameters, and units

<table>
<thead>
<tr>
<th>parameter (variable)</th>
<th>common units</th>
</tr>
</thead>
<tbody>
<tr>
<td>adenosine triphosphate, diphosphate (ATP, ADP)</td>
<td>Fig. 6.3</td>
</tr>
<tr>
<td>basal metabolic rate (BMR)</td>
<td>kcal/hᵃ</td>
</tr>
<tr>
<td>body mass index ($BMI = m_b/H^2$), Quêtelet’s index (Q)</td>
<td>kg/m²</td>
</tr>
<tr>
<td>center of mass (CM)</td>
<td></td>
</tr>
<tr>
<td>chromatic aberration (CA)</td>
<td></td>
</tr>
<tr>
<td>coefficient of restitution (COR)</td>
<td>unitless; (3.97)</td>
</tr>
<tr>
<td>electrocardiogram (EKG, ECG)</td>
<td>(Cont.)</td>
</tr>
</tbody>
</table>
Table A.4. (Continued)

<table>
<thead>
<tr>
<th>Parameter (variable)</th>
<th>Common units</th>
</tr>
</thead>
<tbody>
<tr>
<td>electron transfer system (ETS)</td>
<td></td>
</tr>
<tr>
<td>focal length, back, effective, front (BFL, EFL, FFL)</td>
<td>m</td>
</tr>
<tr>
<td>focal point, plane (first: F, F'; second: F'', F'')</td>
<td></td>
</tr>
<tr>
<td>forced expiratory volume (FEV)</td>
<td>L</td>
</tr>
<tr>
<td>functional residual capacity (FRC)</td>
<td>L</td>
</tr>
<tr>
<td>Gadd Severity Index (GSI)</td>
<td>s; (3.103)</td>
</tr>
<tr>
<td>Head Injury Criterion (HIC)</td>
<td>s; (3.105)</td>
</tr>
<tr>
<td>inspiratory, expiratory reserve volume (IRV, ERV)</td>
<td>L</td>
</tr>
<tr>
<td>intraocular pressure (IOP)</td>
<td>Pa, mmHg</td>
</tr>
<tr>
<td>left atrium, ventricle (LA, LV)</td>
<td></td>
</tr>
<tr>
<td>metabolic equivalent (MET)</td>
<td>unitless</td>
</tr>
<tr>
<td>metabolic rate (MR)</td>
<td>kcal/h</td>
</tr>
<tr>
<td>near point, far point (NP, FP)</td>
<td>m</td>
</tr>
<tr>
<td>nodal point (first: N; second: N')</td>
<td></td>
</tr>
<tr>
<td>peripheral resistance unit (PRU)</td>
<td>mmHg·s/cm³</td>
</tr>
<tr>
<td>phosphocreatine (PCr)</td>
<td></td>
</tr>
<tr>
<td>physiological cross-sectional area (PCA)</td>
<td>1 cm² = 0.155 in²</td>
</tr>
<tr>
<td>principal point, plane (first: P, P'; second: P'', P''')</td>
<td></td>
</tr>
<tr>
<td>residual volume (RV)</td>
<td>L</td>
</tr>
<tr>
<td>respiration exchange ratio (RER)</td>
<td>unitless; Table 6.2</td>
</tr>
<tr>
<td>Reynolds number (Re)</td>
<td>unitless; (7.11)</td>
</tr>
<tr>
<td>right atrium, ventricle (RA, RV)</td>
<td></td>
</tr>
<tr>
<td>specific stature (S = H/m₁³), Ponderal index</td>
<td>m/kg₁/³</td>
</tr>
<tr>
<td>spherical aberration (SA)</td>
<td></td>
</tr>
<tr>
<td>Strouhal frequency, number (St)</td>
<td>unitless; (7.47)</td>
</tr>
<tr>
<td>tidal volume (TV)</td>
<td>L</td>
</tr>
<tr>
<td>total lung capacity (TLC)</td>
<td>L</td>
</tr>
<tr>
<td>total peripheral vascular resistance (TPVR)</td>
<td>mmHg·s/cm³</td>
</tr>
<tr>
<td>transient ischemic attack (TIA)</td>
<td></td>
</tr>
<tr>
<td>ultimate bending stress (UBS)</td>
<td>Pa²</td>
</tr>
<tr>
<td>ultimate compression stress (UCS)</td>
<td>Pa²</td>
</tr>
<tr>
<td>ultimate strain, ultimate percent elongation (UPE)</td>
<td>unitless</td>
</tr>
<tr>
<td>ultimate tensile stress (UTS)</td>
<td>Pa²</td>
</tr>
<tr>
<td>visual acuity (VA)</td>
<td>unitless</td>
</tr>
<tr>
<td>vital capacity, forced vital capacity (VC, FVC)</td>
<td>L</td>
</tr>
</tbody>
</table>

\(^a\)1 kcal/h = 1.162 W, 1 W = 0.86 kcal/h = 1/746 hp = 0.00134 hp (horsepower) (Table 6.1).

\(^b\)1 MPa = 1 N/mm², 1 Pa = 1 N/m², 1 MPa = 1 N/mm² = 7.600 mmHg = 10,300 cmH₂O = 10 bar = 9.87 atm. Table 2.6.
Appendix B

Locator of Major Anatomical and Anthropometric Information

This appendix cites the figures (Table B.1) and tables (Table B.2) that describe the main features of human anatomical and anthropometric information, which are used throughout this text.

Table B.1. Figures describing human anatomy and anthropometry

<table>
<thead>
<tr>
<th>figure</th>
<th>content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Directions, orientations, and planes</td>
</tr>
<tr>
<td>1.2</td>
<td>Anatomy of the skeletal system</td>
</tr>
<tr>
<td>1.3</td>
<td>The knee synovial joint</td>
</tr>
<tr>
<td>1.8</td>
<td>Anterior and posterior view of several large skeletal muscles</td>
</tr>
<tr>
<td>1.9</td>
<td>Antagonistic motions allowed by synovial joints</td>
</tr>
<tr>
<td>1.10</td>
<td>More antagonistic motions allowed by synovial joints</td>
</tr>
<tr>
<td>1.14</td>
<td>Ocular muscles</td>
</tr>
<tr>
<td>1.15</td>
<td>Body segment lengths</td>
</tr>
<tr>
<td>1.16</td>
<td>Postures for opposing motions</td>
</tr>
<tr>
<td>2.7</td>
<td>Bones of the arm, anterior view</td>
</tr>
<tr>
<td>2.8</td>
<td>Bones of the arm, posterior view</td>
</tr>
<tr>
<td>2.14</td>
<td>Bones of the leg and hip, anterior view</td>
</tr>
<tr>
<td>2.15</td>
<td>Bones of the leg and hip, posterior view</td>
</tr>
<tr>
<td>2.33</td>
<td>The vertebral column (spine)</td>
</tr>
<tr>
<td>2.38</td>
<td>The intermediate layer of back muscles</td>
</tr>
<tr>
<td>2.49</td>
<td>Cross section of skin</td>
</tr>
<tr>
<td>3.2</td>
<td>Anterior and medial muscles of the thigh</td>
</tr>
<tr>
<td>3.3</td>
<td>Posterior thigh and gluteal region muscles</td>
</tr>
<tr>
<td>3.4</td>
<td>Lateral views of the right leg</td>
</tr>
<tr>
<td>5.26</td>
<td>Extensor muscles of the forearm</td>
</tr>
<tr>
<td>5.27</td>
<td>Flexor muscles of the forearm</td>
</tr>
<tr>
<td>8.1</td>
<td>Blood circulation system</td>
</tr>
<tr>
<td>8.2</td>
<td>Diagram of the heart</td>
</tr>
<tr>
<td>8.3</td>
<td>Major arteries in the body</td>
</tr>
</tbody>
</table>

(Cont.)
Table B.1. (Continued)

<table>
<thead>
<tr>
<th>figure</th>
<th>content</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4</td>
<td>Major veins in the body</td>
</tr>
<tr>
<td>9.1</td>
<td>Diagram of parts of the respiratory system</td>
</tr>
<tr>
<td>9.2</td>
<td>The relationship between the lung and heart</td>
</tr>
<tr>
<td>10.26</td>
<td>Diagram of the outer, middle, and inner ear</td>
</tr>
<tr>
<td>10.27</td>
<td>Diagram of the middle ear and uncoiled cochlea</td>
</tr>
<tr>
<td>11.1</td>
<td>Structure of the eye</td>
</tr>
<tr>
<td>12.7</td>
<td>Structure of a neuron</td>
</tr>
</tbody>
</table>

Table B.2. Tables describing human anatomy and anthropometry

<table>
<thead>
<tr>
<th>table</th>
<th>content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Anatomical terms in anterior regions</td>
</tr>
<tr>
<td>1.2</td>
<td>Anatomical terms in posterior regions</td>
</tr>
<tr>
<td>1.5</td>
<td>The “Standard Man”</td>
</tr>
<tr>
<td>1.6</td>
<td>Body segment lengths</td>
</tr>
<tr>
<td>1.8</td>
<td>Masses and mass densities of body segments</td>
</tr>
<tr>
<td>1.8</td>
<td>Distance of the center of mass from either segment end</td>
</tr>
<tr>
<td>1.9</td>
<td>Radius of gyration of a body segment</td>
</tr>
<tr>
<td>1.11</td>
<td>Mass and volume of the organs</td>
</tr>
<tr>
<td>1.13</td>
<td>Allometric parameters for mammals</td>
</tr>
<tr>
<td>1.15</td>
<td>Steven’s Law parameters</td>
</tr>
<tr>
<td>5.1</td>
<td>Percent PCA of muscles crossing the hip joint</td>
</tr>
<tr>
<td>5.2</td>
<td>Percent PCA of muscles crossing the knee joint</td>
</tr>
<tr>
<td>5.3</td>
<td>Percent PCA of muscles crossing the ankle joint</td>
</tr>
<tr>
<td>7.4</td>
<td>Approximate flow rates of the alimentary system</td>
</tr>
<tr>
<td>8.1</td>
<td>Normal resting values of blood pressures and volumes</td>
</tr>
<tr>
<td>8.2</td>
<td>Approximate quantification of individual vessels</td>
</tr>
<tr>
<td>8.3</td>
<td>Approximate quantification of total vessel systems</td>
</tr>
<tr>
<td>8.4</td>
<td>Tension in blood vessel walls</td>
</tr>
<tr>
<td>9.1</td>
<td>Approximate quantification of the bronchial system</td>
</tr>
</tbody>
</table>
Appendix C

Differential Equations

The same form of simple differential equations is used to model very different problems throughout this text. They are presented here along with their solutions. The solutions can be checked by substituting them in the differential equation and showing that the equation is satisfied. This appendix is not meant to serve as a primer on differential equations or their solutions.

Solutions to first- and second-order differential equations, respectively, have one and two free parameters that are satisfied by the conditions of the problem. When the independent variable is time, t, these conditions are called initial conditions, so for the dependent variable $q(t)$, q is specified at a given time, such as at $t = 0$ for a first-order differential equation. For a second-order equation, both q and $\frac{dq}{dt}$ at $t = 0$ can be given. The dependent variable q can be a coordinate, such as x and angle θ or something else, such as force F. When the independent variable is a spatial coordinate, such as x, these conditions are called boundary conditions.

Unless otherwise specified, F and G are constants.

C.1 Simple First- and Second-Order Differential Equations

In these differential equations the derivatives of the dependent variable, q, depend on the independent variable t.

First-Order, Constant Driving

A variable $q(t)$ obeying

$$\frac{dq}{dt} = F$$

(C.1)
has solution

$$q(t) = Ft + q(t = 0), \quad (C.2)$$

where $q(0) = q(t = 0)$ is the initial condition.

This type of equation is used to describe the temperature rise of the body with metabolic heating and no heat loss (6.36).

Second-Order, Constant Driving

A variable $q(t)$ obeying

$$\frac{d^2 q}{dt^2} = F \quad (C.3)$$

has solution

$$q(t) = Ft^2 + \frac{dq(0)}{dt} t + q(0), \quad (C.4)$$

where the initials conditions are q and dq/dt evaluated at $t = 0$.

This type of equation is used in the model of ball throwing (3.76).

Second-Order, Increasing Driving

A variable $q(t)$ obeying

$$\frac{d^2 q}{dt^2} = F + Gt \quad (C.5)$$

has solution

$$q(t) = Ft^2 + \frac{Gt^3}{6} + \frac{dq(0)}{dt} t + q(0), \quad (C.6)$$

where the initials conditions are q and dq/dt evaluated at $t = 0$.

This type of equation is used in the model for bending a cantilever (4.44) with the position x as the independent variable.

First- and Second-Order, Increasing Driving

A variable $q(t)$ obeying

$$\frac{d(t \frac{dq}{dt})}{dt} = Gt \quad (C.7)$$
or equivalently

\[t \frac{d^2q}{dt^2} + \frac{dq}{dt} = Gt \] \hspace{1cm} (C.8)

has solution

\[q(t) = q(0) + \frac{Gt^2}{4}, \] \hspace{1cm} (C.9)

where the initial condition for \(q \) is evaluated at \(t = 0 \), and \(q \) and \(\frac{dq}{dt} \) are finite at \(t = 0 \).

This type of equation is used in determining the viscous flow in a tube (7.31).

C.2 Exponential Decay and Drag

In these differential equations the first derivative of the dependent variable, \(q \), depends on \(q \) and in some cases on the dependent variable \(t \).

First-Order, Proportional Drag, No Driving

A variable \(q(t) \) obeying

\[\frac{dq}{dt} + \frac{q}{\tau} = 0 \] \hspace{1cm} (C.10)

decays in time \(t \) as

\[q(t) = q(0) \exp(-t/\tau), \] \hspace{1cm} (C.11)

where \(q(0) \) is the initial condition and \(\tau \) has units of time (s) and is called a time constant. The value of \(q \) decays exponentially in time with this characteristic time constant. This can be due to a “frictional force” or damping with a rate \(1/\tau \).

This type of equation is used in the mechanical models of non-Hookean materials ((4.22) with the strain \(\epsilon \) as the independent variable) to describe the speed when there is Stokes-type drag that is proportional to speed (7.59) and in describing pulsatile flow in (8.94), (8.105), and Problem 8.49. This equation is equivalent to the first two terms of (C.30) describing position.

This type of equation is used in the viscoelastic mechanical models of materials with constant driving terms, including the Maxwell (4.52), Voigt (4.57), and Kelvin/standard linear (4.68) models, a model of muscles (5.9), the arterial pulse (Problem 8.49), and temperature regulation (13.18).
Equation (C.10) can also be phrased as

$$\frac{dq}{dt} + \gamma q = 0,$$ \hspace{1cm} (C.12)

where the damping constant $\gamma = 1/\tau$ is defined. The solution (C.11) becomes

$$q(t) = q(0) \exp(-\gamma t).$$ \hspace{1cm} (C.13)

First-Order, Proportional Drag, Constant Driving

A variation of (C.10),

$$\frac{dq}{dt} + \frac{q}{\tau} = F$$ \hspace{1cm} (C.14)

with constant term F, has solution:

$$q(t) = (q(0) - F\tau) \exp(-t/\tau) + F\tau.$$ \hspace{1cm} (C.15)

This type of equation is used in the viscoelastic mechanical models of materials with constant driving terms, including the Maxwell (4.52), Voigt (4.57), and Kelvin/standard linear (4.68) models, a model of muscles (5.9), the arterial pulse (Problem 8.49), and temperature regulation (13.18).

First-Order, Proportional Drag, Increasing Driving

A variation of (C.14) includes a driving term that varies linearly with the independent variable

$$\frac{dq}{dt} + \frac{q}{\tau} = F + Gt.$$ \hspace{1cm} (C.16)

It has solution

$$q(t) = (F\tau - G\tau^2)(1 - \exp(-t/\tau)) + q(0) \exp(-t/\tau) + Gt\tau.$$ \hspace{1cm} (C.17)

This type of equation is used in the Kelvin/standard linear viscoelastic mechanical model with a linearly increasing driving term (4.72).

First-Order, Proportional Drag, Arbitrary Temporal Driving

A variation of (C.12) and (C.14) includes a driving term that varies arbitrarily on the independent variable

$$\frac{dq}{dt} + \frac{q}{\tau} = F(t).$$ \hspace{1cm} (C.18)
Substituting \(q(t) = s(t) \exp(-t/\tau) \) into this gives

\[
\frac{ds}{dt} = \exp(t/\tau) F(t),
\]

(C.19)

so

\[
s(t) = s(0) + \int_0^t \exp(t'/\tau) F(t') dt',
\]

(C.20)

and

\[
q(t) = \exp(-(t/\tau)) \left(q(0) + \int_0^t \exp(t'/\tau) F(t') dt' \right).
\]

(C.21)

This type of equation is used for pulsatile flow (8.103).

First-Order, Higher-Order Drag, No Driving

A variable \(q(t) \) obeying

\[
\frac{dq}{dt} + Aq^n = 0
\]

(C.22)

varies as

\[
q(t) = (q(0)^{1-n} + (n-1)At)^{1/(1-n)},
\]

(C.23)

for \(n \neq 1 \), where \(q(0) \) is the initial condition. For \(n = 1 \), see (C.10) and (C.11).

For \(n = -4 \) this describes flow with resistance and compliance (8.26).

For \(n = 2 \) this describes the equation of motion for hydrodynamic drag where \(q \) is speed (7.64). Then

\[
q(t) = \frac{q(0)}{1 + Aq(0)t},
\]

(C.24)

If \(q = dp/dt \), where \(p \) would be the position for this type of drag, then

\[
p(t) = p(0) + \frac{1}{A} \ln(1 + Aq(0)t).
\]

(C.25)

C.3 Harmonic Oscillator

In these differential equations, the second derivative of the dependent variable, \(q \), depends on \(q \) and in some cases on the dependent variable \(t \).
Harmonic Oscillator: Undamped, Not Driven

A variable $q(t)$ obeying

$$\frac{d^2 q}{dt^2} + \omega_0^2 q = 0 \quad (C.26)$$

oscillates as

$$q(t) = A \cos(\omega_0 t + \phi), \quad (C.27)$$

where A is the amplitude, ω_0 is the resonant frequency of this harmonic oscillator (with units rad/s), and ϕ is the phase. Alternatively, this solution can be expressed as

$$q(t) = B \cos(\omega_0 t) + C \sin(\omega_0 t), \quad (C.28)$$

where B and C are amplitudes. The frequency, f, is $\omega/2\pi$, and has units of Hz (Hertz) or cps (cycles per second), and so (C.27) would be

$$q(t) = A \cos(2\pi f_0 t + \phi). \quad (C.29)$$

This type of equation is used in the models of the harmonic motion of a mass on a spring (3.7), the simple (3.14) and complex pendulums (3.26), and Euler buckling (4.86).

Harmonic Oscillator: Damped, Not Driven

Adding damping to the harmonic oscillator equation (C.26) with damping constant $\gamma = 1/\tau$ gives

$$\frac{d^2 q}{dt^2} + \gamma \frac{dq}{dt} + \omega_0^2 q = 0, \quad (C.30)$$

with solution

$$q(t) = A \exp(-\gamma t/2) \cos(\omega_0 t + \phi), \quad (C.31)$$

where A is the amplitude, ω_0 is the resonant frequency of this harmonic oscillator (with units rad/s), and ϕ is the phase. This solution is not exact, but is valid for $\omega_0 \gg \gamma$. This harmonic oscillation damps in a time $\sim 1/\gamma$, which corresponds to about $\omega_0/(2\pi\gamma)$ cycles; ω_0/γ is often called the quality factor Q of the system, as is discussed in the Chap. 10 discussion of acoustic resonances and more generally in Appendix D.

This type of equation is used in the models of harmonic oscillators, and simple and complex pendulums.
Harmonic Oscillator: Undamped, Driven

The equation

\[
\frac{d^2q}{dt^2} + \omega_0^2 q = F \cos(\omega t)
\] \hspace{1cm} (C.32)

looks like the equation of motion for a simple harmonic oscillator of frequency \(\omega_0\) (C.26) with an extra term (the last one), which drives the oscillator with a “force” that oscillates at a frequency \(\omega\); \(\omega\) can differ from the resonant frequency \(\omega_0\). The particular solution to this equation is

\[
q(t) = \frac{F}{\omega_0^2 - \omega^2} \cos(\omega t),
\] \hspace{1cm} (C.33)

to which the solution (C.27), \(q(t) = A \cos(\omega_0 t + \phi)\) (of the homogeneous equation (C.26)) is added to set the initial conditions by the proper choice of \(A\) and \(\phi\). Without the driving term \((F = 0)\), the solution is the usual harmonic solution (C.27).

This type of equation is used in the models of pulsatile blood flow (8.51) and the general models in Appendix D (D.2).

Harmonic Oscillator: Damped, Driven

If \(\omega_0\) were to approach \(\omega\), the response for the undamped, driven harmonic oscillator, (C.33), would approach infinity because of this resonance. There is always some damping that adds a term \(\gamma \frac{dq}{dt}\) to (C.32) to give the new equation of motion

\[
\frac{d^2q}{dt^2} + \gamma \frac{dq}{dt} + \omega_0^2 q = F \cos(\omega t).
\] \hspace{1cm} (C.34)

This has a particular and steady-state solution

\[
q(t) = \frac{(\omega_0^2 - \omega^2) F}{(\omega_0^2 - \omega^2)^2 + (\gamma \omega)^2} \cos(\omega t).
\] \hspace{1cm} (C.35)

The homogeneous solution (C.31), \(q(t) = A \exp(-\gamma t/2) \cos(\omega_0 t + \phi)\) for \(\omega_0 \gg \gamma\), is added to this to set the initial conditions by the proper choice of \(A\) and \(\phi\). Without the driving term \((F = 0)\), the solution is the usual damped harmonic solution (C.31).

This type of equation is used in the models of pulsatile blood flow (8.53), acoustic impedance (10.21), and the general models in Appendix D (D.2).

C.4 Partial Differential Equations

Partial differential equations contain derivatives of more than one independent variable.
The Diffusion Equation

The diffusion equation (7.53) in one dimension \((x)\) has the form

\[D \frac{\partial^2 q}{\partial x^2} = \frac{\partial q}{\partial t}. \]

(C.36)

The formal solution gives \(q(x, t)\) from \(q(x', t = 0)\), the distribution for all \(x\) (called \(x'\)) at an earlier time (defined as \(t = 0\)). It is

\[q(x, t) = \frac{Q}{\sqrt{4\pi Dt}} \int_{-\infty}^{\infty} q(x', 0) \exp\left(-\frac{(x - x')^2}{4Dt}\right) dx', \]

(C.37)

where \(Q\) is the integral of \(q\) over all \(x\) at any time – which means that the total amount of the entity undergoing diffusion, such as the mass or number of particles, does not change during diffusion.

The importance of this diffusion is most simply seen when the initial distribution is gaussian and has an initial spread \(\sigma(0)\),

\[q(x, 0) = \frac{Q}{\sqrt{2\pi\sigma^2(0)}} \exp\left(-\frac{x^2}{2\sigma^2(0)}\right). \]

(C.38)

Then the solution becomes

\[q(x, t) = \frac{Q}{\sqrt{2\pi\sigma^2(t)}} \exp\left(-\frac{x^2}{2\sigma^2(t)}\right), \]

(C.39)

where

\[\sigma^2(t) = \sigma^2(0) + 2Dt. \]

(C.40)

If the initial spread is not gaussian, the solution is slightly different but approaches this for large \(x\) and/or large \(t\). (Sometimes \(\sigma\) is defined a bit differently than it is here, as in (7.55).)

This type of equation is used in diffusion (7.53).

The integral over a gaussian probability curve,

\[\text{erf}(x) = \frac{2}{\pi^{1/2}} \int_{0}^{x} \exp(-z^2) dz, \]

(C.41)

is known as the error function. It increases from 0 to 1 as \(x\) increases from 0 to \(\infty\). The error function is used in the statistics describing head injury as in Fig. 3.59.

The Poisson–Boltzmann Equation

The Poisson–Boltzmann Equation (12.44) is of the form

\[\nabla^2 q = \kappa^2 q. \]

(C.42)
where ∇^2 is the Laplacian. In one dimension $\nabla^2 q = \partial^2 q/\partial x^2$, while in Cartesian coordinates in three dimensions it is $\nabla^2 q = \partial^2 q/\partial x^2 + \partial^2 q/\partial y^2 + \partial^2 q/\partial z^2$. In three dimensions it can be expressed as $\nabla^2 q = (1/r)(d^2 (rq)/dr^2)$ when there is no angular dependence (spherical symmetry), where r is the radial coordinate. Using this in (C.42) gives

$$\frac{1}{r} \frac{d^2 (rq)}{dr^2} = \kappa^2 q.$$ \hspace{1cm} \text{(C.43)}$$

Replacing $rq(r)$ by $p(r)$, this reduces to

$$\frac{d^2 p}{dr^2} = \kappa^2 p.$$ \hspace{1cm} \text{(C.44)}$$

with solution $p(r) = p(0) \exp(-\kappa r)$ valid for all r, and so

$$q(r) = q(0) \frac{\exp(-\kappa r)}{r}.$$ \hspace{1cm} \text{(C.45)}$$

This is used to determine the potential of a charge in a neutral region with mobile charges, as in (12.44) and Problem 12.8.
Appendix D

Similar Model Systems

This appendix describes the models used throughout the text to describe mechanical, fluid flow, electrical, and acoustic systems. Figure D.1 shows the analog in the driving forces, currents, resistances, capacitance, and inductance in each of these models.

There are many examples of these models in the text. Chapter 4 covers the spring model of the elastic properties of materials (Fig. 4.3), the dashpot model of the viscous properties of materials (Fig. 4.48), the viscoelastic model of mechanical properties of materials, including the Maxwell (Fig. 4.52), Voigt (Fig. 4.57), and Kelvin/standard linear (Fig. 4.68) models. In Chap. 5, a mechanical model of muscles, with springs and dashpots (Fig. 5.9) is presented. Models of fluid flow are described in Chaps. 7 and 8. In fact, the Windkessel models of circulation in Chap. 8 are explicitly expressed in terms of electrical components (Fig. 8.57). The mechanical and flow model of breathing in Fig. 9.16b includes compliance, resistance, and inertance. Acoustic impedance (Fig. 10.19) and admittance (Fig. 10.20) are described in Chap. 10 (and in the problems in that chapter) in relation to mechanical analogs. In Chap. 10 there also are mechanical models of vibrations in the vocal tract (as vibrations in pipes and voice filtering theory) and vocal folds (vibrations in strings, (10.41), and mechanical model with mass, springs, and dashpots (Fig. 10.13) and the two-tube models of vowel formation (Fig. 10.25). In that chapter there is also a mechanical model of the outer and inner ears (Fig. 10.28), and the vibrations of the eardrum (Fig. 10.56), tapered, uncoiled cochlea (Fig. 10.38), and hair cells (Fig. 10.57). Axon nerve conduction in Chap. 12 involved a distributed model. (See Sect. D.1)

Equivalent mechanical, electrical, and acoustic models are shown in Fig. D.2 of a typical system. The electrical model is described by

\[V = L \frac{dI}{dt} + IR + \frac{q}{C}, \]

(D.1)

for a voltage \(V \) producing a current \(I \); \(I = \frac{dq}{dt} \) where \(q \) is the charge. (The subscripts specific for the electrical model are omitted for simplicity.)
Fig. D.1. Model symbols are shown for (a) mechanical, (b) fluid flow, (c) electrical, and (d) acoustic models, along with the parameters and common units for each. The mechanical model is for linear (rectilinear) motion. Analogous parameters exist for the rotational mechanical model, such as for a pendulum. Viscosity is also important in mechanical models. Also see Table D.1 below. (Based on [609] and [610])

The other models are described similarly, simply by changing the parameters. Equation D.1 also be written as the second-order differential equation

\[V = L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{q}{C}, \tag{D.2} \]

as in (C.30) and (C.34).

The general solution for an oscillating voltage \(V(t) = V_0 \exp(i\omega t) \) is

\[I(t) = \frac{V_0 \exp(i\omega t)}{R + i\omega L + 1/(i\omega C)} = \frac{V(t)}{Z}, \tag{D.3} \]

Fig. D.2. Equivalent (a) mechanical, (b) electrical, and (c) acoustic models. (Based on [609] and [610])
Appendix D Similar Model Systems

Fig. D.3. Resonant response

with complex impedance

\[Z = R + i\omega L + \frac{1}{i\omega C}. \] (D.4)

The resonant frequency is seen in Fig. D.3 given by

\[\omega_{\text{res}} = \frac{1}{\sqrt{LC}} \] (D.5)

in rad/s and \(f_{\text{res}} = 1/(2\pi\sqrt{LC}) \) in Hz or cps, and the quality factor \(Q \) is given

\[Q = \frac{\omega_{\text{res}}}{L} \] (D.6)

Using the notation of (C.30) and (C.34)

\[Q = \frac{\omega_{\text{res}}}{\gamma}. \] (D.7)

The full width of the resonance (between the points at half-maximum response) is \(\omega_{\text{res}}/Q \), as is illustrated in Fig. D.3. (This is actually the full width only for sharp resonances, for which \(\omega_{\text{res}} \gg \gamma \) and \(Q \gg 1 \).) This full width is sometimes called the bandwidth (when expressed as \(f \) in Hz), \(\Delta f \), and so an alternative definition of \(Q \) is \(Q = f/\Delta f \); this is an equivalent definition in the low-loss, high \(Q \) limit.

After the excitation is turned off ((C.34) becoming (C.30)), the energy in the system exponentially decays to \(1/e \) of the initial value in a time \(t = 1/\gamma = Q/\omega_{\text{res}} \), where \(\gamma \) is the damping rate (as in (C.30)), which is \(R/L \) is here. This decay occurs in \(Q/2\pi \) oscillation periods. This is consistent with the definition of \(Q \) as \(2\pi \) (energy stored)/(energy dissipated per cycle).
Appendix D Similar Model Systems

Table D.1. Analog of blood flow and electrical circuits (with units)

<table>
<thead>
<tr>
<th>Blood circulation parameter</th>
<th>Electrical parameter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>volume, V_{flow} (m3)</td>
<td>charge, q (C, coulomb)</td>
<td></td>
</tr>
<tr>
<td>blood flow rate, Q (m3/s)</td>
<td>current, I (A, ampere)</td>
<td></td>
</tr>
<tr>
<td>pressure, ΔP (N/m2)</td>
<td>voltage, V_{elect} (V, volt)</td>
<td></td>
</tr>
<tr>
<td>vascular resistance, R_{flow} (N-s/m3)</td>
<td>resistance, R_{elect} (Ω, ohm)</td>
<td></td>
</tr>
<tr>
<td>inductance, L_{flow} (kg/m4)</td>
<td>inductance, L_{elect} (H, henry)</td>
<td></td>
</tr>
<tr>
<td>compliance, C_{flow} (m5/N-s)</td>
<td>capacitance, C_{elect} (F, farad)</td>
<td></td>
</tr>
</tbody>
</table>

D.1 Distributed vs. Lumped Models: Electrical Analogs of Blood Flow (Advanced Topic)

So far we have discussed lumped parameter models in this appendix. In (8.2) and (8.11) flow was analyzed with the vessel as a “lumped” parameter. We have also examined cases in this text in which the parameters are distributed per unit length, such as flow resistance per unit length for volumetric flow along an artery in Chap. 8 ((8.14) and (8.25)) and electrical resistance per unit length for current flow along an axon in Chap. 12 ((12.60) and (12.67)). These are “distributed” or “transmission-line” models.

A discretized version of the distributed electrical model is shown in Fig. 12.17. Let us say that each repeated section has (very short) length Δx. The changes in electrical voltage (the driving force) and current (the response) (Table D.1) along this length of an electrical cable are described by

$$V_{elect}(x + \Delta x) - V_{elect}(x) = \frac{\partial V_{elect}}{\partial x} \Delta x = L_{elect} \frac{\partial I}{\partial t} + I R_{elect} \tag{D.8}$$

$$I(x + \Delta x) - I(x) = \frac{\partial I}{\partial x} \Delta x = C_{elect} \frac{\partial V_{elect}}{\partial t} + \frac{V_{elect}}{R_{elect}} \tag{D.9}$$

V_{elect} and I are functions of x and t. The resistance, inductance, and capacitance are those for this length Δx, and can also vary with x. These equations can be obtained using Kirchhoff’s Laws (the 2nd and 1st laws, respectively). They were derived and then combined in the discussion of electrical signals along nerves in Chapter 12 (Fig. 12.17) to give the telegraph equations. Part of the first equation is Ohm’s Law: $\Delta V_{elect} = (\partial V_{elect}/\partial x) \Delta x = I R_{elect}$.

The analogous equations for blood flow along a vessel of length Δx are:

$$P(x + \Delta x) - P(x) = \frac{\partial P}{\partial x} \Delta x = L_{flow} \frac{\partial Q}{\partial t} + Q R_{flow} \tag{D.10}$$

$$Q(x + \Delta x) - Q(x) = \frac{\partial Q}{\partial x} \Delta x = C_{flow} \frac{\partial P}{\partial t} + \frac{P}{R_{flow}} \tag{D.11}$$
where now the pressure is the driving force for the blood flow rate Q and R_{flow} is the vascular resistance. Without the inertance term, the first equation is just Poiseuille’s Law (7.25): $\Delta P = (\partial P/\partial x)\Delta x = Q R_{\text{elect}}$. The flow parameters are

$$R_{\text{flow}} = \frac{8\pi \eta L}{A^2} \quad \text{(D.12)}$$
$$C_{\text{flow}} = \frac{3LA(1 + r/w)^2}{Y(1 + 2r/w)} \quad \text{(D.13)}$$
$$L_{\text{flow}} = \frac{\rho L}{A} \quad \text{(D.14)}$$

where A is the cross-sectional area of the vessel, L is its length (which is Δx for the discretized model), r is its radius, w is its wall thickness, and ρ is the blood mass density. These equations are useful for tracking blood flow within vessels with both resistive and compliant properties.

All models of materials (and systems and processes) can be improved mathematically by adding more terms, such as in the mechanical model in Fig. 5.13. The bigger issues are whether the elements in such simple or more complex models correspond to the physical components of the material. Even if they do not, it is still important to learn if the model can be used to predict operation correctly when conditions are changed.
Appendix E

Biophysics of the Human Body

This appendix places the contents of this text within the field of biophysics.

Biophysics is hard to define well, as is illustrated by the many definitive, yet different definitions of biophysics provided in [611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622]. Broadly speaking, biophysics is the applications of physics and physical principles to biology. In this context, virtually everything presented in this book is biophysics. However, this term is often used in the more restricted sense of the use of physics at a more molecular and cellular level. We will use this narrower context for the rest of this appendix, and in this restricted sense many topics covered here are still biophysics, but many areas in biophysics have not been covered. Yet another definition of biophysics is the study of biology using physical methods. This is distinguished from biological physics, which is the study of the physical properties of biology.

One topic in biophysics is the molecular structure of biological systems. This includes the electrostatics of ions in solutions (Chap. 12), the structure of biomacromolecules, such as proteins and areas such as protein folding, structure, and properties of interfaces between biological media such as cell membranes (surface tension in Chaps. 7 and 9, nerve cell membranes in Chap. 12), and ion channels in membranes (which is very briefly touched in nerve conduction in Chap. 12).

Statistical mechanics is the examination of systems composed of many similar objects or systems, each of which is well characterized. The whole ensemble of systems often is in thermal equilibrium and, after statistical mechanical analysis, can be treated by using thermodynamics. The treatment of ions in solution in Chap. 12 is the result of statistical mechanics. As stated in Chap. 5, the Hill force–velocity curve of muscles can be derived from statistical mechanical analysis of the many actin–myosin cross bridges (which was not done here). Many aspects of cell membranes and protein structure – such as folding – can be examined by using statistical mechanical methods.

Biophysics includes the bioenergetics of the photosynthesis process and the synthesis of ATP and its use. In Chap. 6 we examined the biophysics of energy usage in the human body. The movement of organisms, such as bacteria
motion and muscular movement, are part of molecular and cellular biophysics; the microscopic basis of muscle operation was explored in Chap. 5. The electrochemical properties of cell membranes and nerve signals, as discussed in Chap. 12, have always been central topics in biophysics. Some include within biophysics the higher-level integration and combinations of molecular and cellular systems, such as memory, control of movement, visual integration, and consciousness and thinking.

The use of physical characterization to biological problems plays a central role in biophysics, such as the use of X-ray diffraction (XRD) to determine molecular structure, nuclear magnetic resonance (NMR) to study molecules in more natural environments than X-ray diffraction can be used, scanning tunneling microscopy (STM) to examine the atomic structure of surfaces, atomic force microscopy (AFM) to examine surfaces and to measure forces, and optical tweezers to manipulate molecules. Both AFM and optical tweezers have been instrumental in studying the fundamental interactions in muscles, such as individual actin–myosin cross bridges (Chap. 5).
Solutions to Selected Problems

Problems of Chapter 1

1.3 Medial.

1.13 Head.

1.25 (a) (partial answer) For lower legs 3.72–9.30 kg and 5.53–9.55 kg.

1.30 (b) 0.25 m and 0.50 m.

1.31 (partial answer) Surface area is 20.1 sq ft.

1.44 (a) 92.6 kg (204.2 lb) for Man A and 84.3 kg (185.9 lb) for Man B; (b) 0.4 kg (0.9 lb) for Man A and 8.7 kg (19.2 lb) for Man B.

1.49 (b) 21.1 and 27.0.

1.57 Bigger in cold climate.

Problems of Chapter 2

2.1 Third class lever.

2.2 Triceps brachii, second class lever.

2.3 (a) First; (b) second; (c) third class levers.

2.11 (b) $m_{\text{leg}}(x_{\text{extended leg}} + x_{\text{balancing leg}}) = (m_{\text{torso+head}} + 2m_{\text{arm}})x_{\text{upper body}}$.

2.13 (a) $-m_b x$.

2.14 $T_1 = W_1 = 223.6$ N, $T_2 = W_2 = 282.8$ N, $\alpha = 26.6^\circ$.

2.17 (b) 310.6 N.

2.21 (b) $T = 131$ lb, $F = 208$ lb, angle of F is 29.8°.
2.33 (partial answer) \(-6\) N-m for 20 cm deep.
2.34 (partial answer) \(-6.9\) N-m for upright, \(-19.25\) N-m for bent.
2.35 (partial answer) \(-21.25\) N-m for bent over, with bent knees and the object far from her body.

Problems of Chapter 3

3.6 0.27, easy to achieve with cleated running shoes.
3.10 1.7127 kg-m2.
3.26 2/3.
3.35 Yes, by \(-0.07\) m, yes.
3.36 For (a) 0.254H; (b) 0.150H; (c) 0.077H; (d) 0.150H; (e) 0.254H; 14 cm.
3.40 Yes, because how fast the body can take off at a given angle depends on the construction of the body’s feet and legs.
3.64 44.0°, 31.1 m/s.
3.72 (partial answer) Elastic collisions are likely fatal for collision times <120 ms.
3.78 (a) 150 ft/s2, 4.7g; (b) 1,150 lb.
3.80 1.44, 1.06, 1.01, and 0.18 m.
3.81 0.50, 0.53, and 0.55.
3.88 48.0 mph before, 24.7 mph after.
3.89 40.5 oz and about 80 mph.

Problems of Chapter 4

4.2 (c) 480 MPa.
4.5 (a) 30 Pa, (b) 67 mm2, (c) 1%.
4.6 (partial answer) 1.6 MPa for nails.
4.7 (partial answer) 0.0031 for nails.
4.8 (partial answer) 8,000 N/m3 for nails.
4.9 (partial answer) 780 N/m3 for nails.
4.15 (a) Tension.
4.20 (a) $\lambda = 2$, $\epsilon_{\text{small}} = 1$, $\epsilon_{\text{general}} = 3/2$.
4.21 (a) $\lambda = 2$, $\epsilon_{\text{small}} = 1$, $e = 3/8$.

4.22 (a) $\lambda = 2$, $\epsilon_{\text{small}} = 1$, $\ln \lambda = 0.69$.

4.23 (a) Yes, because the dashpot resistive force increases with speed;
(b) Yes, because the spring supplies the needed restoring force to return it to its equilibrium position.

4.24 Length is 3.1 cm, dx/dt is 0.05 cm/s.

4.28 (a) $2\theta(t + 1) - 2\theta(t - 3)$, with all times in seconds.

4.33 It becomes the Voigt model, the Maxwell model, and a dashpot, respectively.

4.42 (a) 6,900 N.

Problems of Chapter 5

5.8 (a) 0.11, it is larger than the 0.09 listed in the table—but in linear theory it would be expected to be $UTS/Y = 0.22$, (b) $f_Y = 135$ N/cm2, (c) the diameter of the tendons is 0.073 times that of the muscle, (d) 2,800 N/cm$^2 = 28$ MPa, which is less than the 54 MPa UTS listed in Table 4.2, so it is less than it, even with linear theory.

5.10 (a) (partial answer) 2,770 W.

5.15 The muscles are fairly near their optimal lengths. However, there are significant changes in the lengths during bicycling, but less than the maximum expected for muscles are shown for several reasons: (a) The decreases in contracted muscle length are actually greater than those shown because tendon extension will lessen the decrease in the (plotted) total muscle/tendon length, (b) the bicycle is set to use muscles in their optimal state, both in muscle length and speed, so the muscles will not be much longer or shorter than their optimal length.

5.18 (a) (partial answer) $\sqrt{3}NF_{\text{fiber}}/2$.

5.23 (a) 40 s.

Problems of Chapter 6

6.1 (partial answer) 0.3°C.

6.4 (b) 144 BTU.

6.6 (a) (partial answer) 7.1 kcal/g.

6.14 (a) 261 g, compared to 260 g and 280 g; (b) 45%; (c) 18%.
6.17 90% of the fruit and 40% of the dried fruit is water plus non-metabolizable matter.

6.24 2,200 kcal.

6.36 (a) 139 kg; (b) This is much more than the body mass of 60 kg; (c) 1,400 cycles/day, 0.95 cycles/min.

6.30 (a) −12.6 kcal/mol; (b) −14.0 kcal/mol.

6.31 66–70%.

6.41 147 moles of ATP.

6.47 6.9.

6.56 (partial answer) 580 kcal/h for 50 kg college-age women, using 40 mL/kg-min and a calorific equivalent of 4.83 kcal/L O₂.

6.57 (a) 89.9 m/min, 1.50 m/s, 3.35 mph, very good agreement; (b) 259 kcal/hr.

6.61 (partial answer) (a) 1048 kcal/h and 3.6 L O₂/min for Stage VIII, (b) 35 kcal for Stage VIII.

6.64 (a) 305 J, (b) 36 kcal, (c) no, but it excludes the pushing for 5–10 s during each play, which obviously accounts for most of the energy expenditure (although relatively little of the work done).

6.67 12.2 kJ, 11.7 kcal.

6.74 Activity factor is 1.48 (assuming “self-care” walking and also cycling at 5.5 mph), MR is 1920 kcal/day (using 1300 kcal/day BMR).

6.75 (a) 4.9, (b) 4.2.

6.80 15 kg, 33 lb.

6.88 2.2 L/h.

6.95 (a) 70 kcal/h.

6.100 \[T_{we} = 35.74 + 0.6215T - 35.75u^{0.16} + 0.4275T u^{0.16}. \]

6.101 (a) A and B; (b) C; (c) A.

6.106 The first term is 40 kcal/day, second term in 220 kcal/day. The second term is very significant.

Problems of Chapter 7

7.3 2,240 cm³, 2.49 kg, 24.4 N; using a mass density of 1.11 g/cm³.

7.7 No, his density is then 1.01 g/cm³, which is above that of water, using a fat density of 0.8 g/cm³.
7.18 (a) Q/N; (b) The diameter of the small tubes would then be $N^{1/4}D$, which is not possible because the diameter of the small tubes would then exceed that of the larger tubes.

7.25 (partial answer) 0.32 cm in a gas.

7.38 $Re = 0.001$, viscous/laminar.

Problems of Chapter 8

8.5 You should be concerned, but not about your blood pressure (which is really $120 \text{mmHg}/80 \text{mmHg}$), but about the person who told you your blood pressure in absolute pressure instead of the standard gauge pressure.

8.12 (a) 121 mmHg, which is 32% higher than the 92 mmHg base case, (b) 115 mmHg, which is 25% higher.

8.15 (a),(b) They change by a factor of 1/8.

8.19 $1 \text{N-s/m}^5 = 10^6 (\text{N/m}^2)/(\text{cm}^3/\text{s}) = 10^5 \text{dyne-s/cm}^5 = 1.32 \times 10^8 \text{PRU}.$

8.27 $u_1/4$.

8.34 98.6 mmHg, using a blood density of 1060 kg/m3.

8.39 Type I skeletal muscle, because very fast response is not needed and endurance is essential.

8.43 0.128 L = 128 cm3.

8.45 (partial answer) 3.6 cm inner radius.

8.53 Heart beat rate: 83/min for the man, 91/min for the woman, 161/min for the infant.

Problems of Chapter 9

9.6 (partial answer) 4,720 for $z = 0$ (turbulent), 0.18 for $z = 20$ (laminar).

9.16 0.0078 cmH$_2$O/(L/s), which is much smaller than the total resistance of ~ 2 cmH$_2$O/(L/s).

9.20 2.7 cmH$_2$O-s/L.

9.26 Larger in a mouse (0.005 L/kg-cm-H$_2$O) than in man (0.003 L/kg-cm-H$_2$O).

9.33 (partial answer) 570 L of O$_2$ (at 1 atmosphere oxygen pressure) are consumed per day.

9.37 (partial answer) 225 mmHg total, 42 mmHg oxygen.
Problems of Chapter 10

10.4 Respectively at 0, 20, and 25°C, \(\nu_{\text{air}} \) is 331, 343, and 346 m/s; \(\rho_{\text{air}} \) is 1.292, 1.204, and 1.184 kg/m\(^3\); and \(Z_{\text{air}} \) is 428, 413, and 410 kg/m\(^2\)-s.

10.6 0.00002–2000 dyne/cm\(^2\).

10.11 70 dB SPL.

10.14 (a) 100 dB SPL, 40 dB SPL.

10.20 (a) 0.27.

10.33 \(\sim 1,000 \) Hz, which makes sense since the voices of children are higher pitched than those of adults.

10.38 160 Hz, assuming a mass with the mass of the vocal folds is attached to a massless spring with the force constant of the vocal folds. This really requires the analysis of a freely oscillating massive spring, which shows that oscillation frequency is \(\pi/2 \times \) this value [458].

10.40 Lower, because they have higher fundamental buzzing frequencies.

10.47 \(3 \times 10^{-13} \) m.

10.49 It is \(9 \times 10^6 \) larger at 3,000 Hz than that at 1 Hz.

10.55 (a) Radii of 0.4 \(\mu \)m for 20 Hz to 400 \(\mu \)m for 20 kHz.

10.60 17,000 Hz would be best because the auditory sensitivity of older people is very low at this frequency relative to that of younger people, at 250 Hz and 1,000 Hz the auditory sensitivity is not that different for older and younger people, at 30,000 Hz humans have no auditory sensitivity.

10.61 About 200/s.

10.66 100–8,000 Hz, over 40 dB.

10.67 40–14,000 Hz, over 70 dB.

10.72 The former (60 dB SPL) is a bit louder than the latter (59 dB SPL).

Problems of Chapter 11

11.7 (a) (partial answer) 2.5% for the first surface, (b) no.

11.14 7.51 mm, −7.51 mm.

11.15 6.04 mm.

11.17 The retina.
11.22 More damage is done if you look in the direction of the beam because it will focus on the fovea. Damage to the fovea can hurt sharp vision, leaving you with fuzzy vision.

11.23 8.8 cm.

11.34 (partial answer) Refractive index is larger at 630 nm by 0.0008 (if everything else is the same).

11.42 58.62 D (smaller than before), 22.8 mm (longer), mostly due to the smaller refractive index of the crystalline lens.

11.48 $-1.71 \, \text{D}$, $-1.67 \, \text{D}$.

11.53 (c) Myopia. A correction of $-2 \, \text{D}$ would lead to good vision. (The patient has 4 D of accommodation, which is sufficient with this correction.)

11.59 (b) 7.55 mm = 0.00755 m.

11.68 250 lux assuming 500 lumens/W (Fig. 11.49). It is consistent with the levels given in Table 11.5.

Problems of Chapter 12

12.2 110,000 ohms.

12.4 (a) 240 mA, (b) shock and possible ventricular fibrillation would result.

12.11 The large net diffusion of K^+ outside, the impermeability of the membrane to the proteins, which are negatively charged, and the Na^+ pump contribute to the cell being negative relative to the extracellular fluid for a resting axon. The small net diffusion of Na^+ into the cell adds slightly to the positivity inside the cell.

12.19 (partial answer) $6.20 \times 10^{-4} \, \text{s}$ for unmyelinated axons.

12.28 $\sim 80/\text{min}$.

12.30 The dipole usually rotates also. A(c); B(a); C(d); D(b).

Problems of Chapter 13

13.2 Every 17 min.

13.3 (partial answer) 1.6/s for a 1 s delay.
References

Preface

Chapter 1

37. J.R. Cameron, J.G Skofronick, R. Grant: *Physics of the Body*, 2nd edn (Medical Physics, Madison, WI 1999)
42. R.A. Freitas Jr.: *Nanomedicine, Volume I: Basic Capabilities* (Landes Bioscience, Austin 1999)
51. F.A. Parker, D.A. Ekberg, D.J. Withey et al.: Atmospheric Selection and Control for Manned Space Stations (General Electric Co., Missile and Space Division, Valley Forge, PA), Presented at the International Symposium for Manned Space Stations, Munich, September 1965
Chapter 2

66. B.H. Brown, R.H. Smallwood, D.C. Barber, P.V. Lawford, D.R. Hose: Medical Physics and Biomedical Engineering (Institute of Physics, Philadelphia 1999)
67. J.R. Cameron, J.G Skofronick, R. Grant: Physics of the Body, 2nd edn (Medical Physics, Madison, WI 1999)
75. B. Le Veau: Williams and Lissner: Biomechanics of Human Motion, 2nd edn (Saunders, Philadelphia 1977)
81. R. Nanda (ed.): Biomechanics in Clinical Orthodontics, (Saunders, Philadelphia 1997)
82. M. Nordin, V.H. Frankel (eds.): Basic Biomechanics of the Musculoskeletal System, 3rd edn (Lippincott Williams & Wilkins, Philadelphia 2001)
94. M. Williams, H.B. Lissner: Biomechanics of Human Motion (Saunders, Philadelphia 1962)
96. H. Yamada: Strength of Biological Materials (Williams & Wilkins, Baltimore 1970)

Chapter 3

101. R. McNeill Alexander: Storage and release of elastic energy in the locomotor systems and the stretch-shortening cycle. In Biomechanics and Biology of Movement, B.M. Nigg, B.R. MacIntosh, J. Mester, eds. (Human Kinetics, Champaign, IL 2000), Ch. 2
References

106. Braininjury.com
111. P.R. Cavanagh (ed.): *Biomechanics of Distance Running* (Human Kinetics, Champaign, IL 1990)
120. C.W. Gadd: Use of a weighted impulse criterion for estimating injury hazard. Tenth Stapp Car Crash Conference (Society of Automotive Engineers 1966), pp. 95–100

128. R.N. Hinrichs: Upper extremity function in distance running. In *Biomechanics of Distance Running*, P.R. Cavanagh, ed. (Human Kinetics, Champaign, IL 1990), Ch. 4, pp. 107–133

145. I.S. McClay, M.J. Lake, P.R. Cavanagh: Muscle activity in running. In *Biomechanics of Distance Running*, P.R. Cavanagh, ed. (Human Kinetics, Champaign, IL 1990), Ch. 6, pp. 165–186

150. M.J. Milliron, P.R. Cavanagh: Sagittal plane kinematics of the lower extremity during distance running. In *Biomechanics of Distance Running*, P.R. Cavanagh, ed. (Human Kinetics, Champaign, IL 1990), Ch. 3, pp. 65–105

159. B.M. Nigg, B.R. MacIntosh, J. Mester (eds.): *Biomechanics and Biology of Movement* (Human Kinetics, Champaign, IL 2000)

160. M. Nordin, V.H. Frankel (eds.): *Basic Biomechanics of the Musculoskeletal System*, 3rd edn (Lippincott Williams & Wilkins, Philadelphia 2001)

172. J. Versace: A review of the severity index. Fifteenth Stapp Car Crash Conference (Society of Automotive Engineers 1971)

Chapter 4

186. J.R. Cameron, J.G Skofronick, R. Grant: Physics of the Body, 2nd edn (Medical Physics, Madison, WI 1999)

213. Merck Manual of Diagnosis and Therapy, on-line version

221. B.M. Nigg, B.R. MacIntosh, J. Mester (eds.): *Biomechanics and Biology of Movement* (Human Kinetics, Champaign, IL 2000)

222. M. Nordin, T. Lorenz, M. Campello: Biomechanics of tendons and ligaments. In *Basic Biomechanics of the Musculoskeletal System*, 3rd edn, M. Nordin, V.H. Frankel, eds. (Lippincott Williams & Wilkins, Philadelphia 2001), Ch. 4, pp. 102–120

223. M. Nordin, V.H. Frankel (eds.): *Basic Biomechanics of the Musculoskeletal System*, 3rd edn (Lippincott Williams & Wilkins, Philadelphia 2001)

236. H. Yamada: Strength of Biological Materials (Williams & Wilkins, Baltimore 1970)

Chapter 5

252. R.A. Freitas Jr.: Nanomedicine, Volume I: Basic Capabilities (Landes Biology, Austin 1999)
References

270. B.R. MacIntosh, R.J. Holash: Power output and force–velocity properties of muscle. In Biomechanics and Biology of Movement, B.M. Nigg, B.R. MacIntosh, J. Mester, eds. (Human Kinetics, Champaign, IL 2000), Ch. 11
277. M. Nordin, V.H. Frankel (eds.): Basic Biomechanics of the Musculoskeletal System, 3rd edn (Lippincott Williams & Wilkins, Philadelphia 2001)
283. J.M. Squire (ed.): Molecular Mechanisms in Muscular Contraction (CRC, Boca Raton, FL 1990)
References 829

Chapter 6

300. J.R. Cameron, J.G Skofronick, R. Grant: *Physics of the Body*, 2nd edn (Medical Physics, Madison, WI 1999)

308. R.A. Freitas Jr.: *Nanomedicine, Volume I: Basic Capabilities* (Landes Bioscience, Austin 1999)

References

Chapter 7

345. J.R. Cameron, J.G. Skofronick, R. Grant: Physics of the Body, 2nd edn (Medical Physics, Madison, WI 1999)
351. R.A. Freitas Jr.: Nanomedicine, Volume I: Basic Capabilities (Landes Bioscience, Austin 1999)
832 References

Chapter 8

368. R.M. Berne, M.N. Levy: **Cardiovascular Physiology**, 8th edn (Mosby, St. Louis 2001)
369. B.H. Brown, R.H. Smallwood, D.C. Barber, P.V. Lawford, D.R. Hose: **Medical Physics and Biomedical Engineering** (Institute of Physics, Philadelphia 1999)
371. J.R. Cameron, J.G Skofronick, R. Grant: **Physics of the Body**, 2nd edn (Medical Physics, Madison, WI 1999)
373. E. Carson, C. Cobelli: **Modelling Methodology for Physiology and Medicine** (Academic, San Diego 2001)
374. Y.-B. Chen, R.R. Libethson, M.D. Freed: Congenital heart disease. In **Pathophysiology of Heart Disease: A Collaborative Project of Medical Students and Faculty**, 3rd edn, L.S. Lilly, ed. (Lippincott Williams & Wilkins, Philadelphia 2003), Ch. 16, pp. 347–370
376. U. Dinnar: Cardiovascular Fluid Dynamics (CRC, Boca Raton, FL 1981)
379. D. Dubin: Rapid Interpretation of EKG’s, 6th edn (COVER, Tampa, FL 2000)
380. G.S.M. Dyer, M.A. Fifer: Heart failure. In Pathophysiology of Heart Disease: A Collaborative Project of Medical Students and Faculty, 3rd edn, L.S. Lilly, ed. (Lippincott Williams & Wilkins, Philadelphia 2003), Ch. 9, pp. 211–236
382. R.A. Freitas Jr.: Nanomedicine, Volume I: Basic Capabilities (Landes Bioscience, Austin 1999)
References

Annals of the New York Academy of Science (Grune & Stratton, New York 1982)

399. H.L. Klawans: Toscanini’s Fumble and Other Tales of Clinical Neurology (Contemporary Books, Chicago 1988)

401. L.S. Lilly: The electrocardiogram. In Pathophysiology of Heart Disease: A Collaborative Project of Medical Students and Faculty, 3rd edn, L.S. Lilly, ed. (Lippincott Williams & Wilkins, Philadelphia 2003), Ch. 4, pp. 75–110

402. L.S. Lilly (ed.): Pathophysiology of Heart Disease: A Collaborative Project of Medical Students and Faculty, 3rd edn (Lippincott Williams & Wilkins, Philadelphia 2003)

403. R. Malhotra, G.H. Williams, L.S. Lilly: Hypertension. In Pathophysiology of Heart Disease: A Collaborative Project of Medical Students and Faculty, 3rd edn, L.S. Lilly, ed. (Lippincott Williams & Wilkins, Philadelphia 2003), Ch. 13, pp. 289–310

412. R. Rushmer: Cardiovascular Dynamics (Saunder, Philadelphia 1970), p. 196

References

Chapter 9

422. J.R. Cameron, J.G Skofronick, R. Grant: *Physics of the Body*, 2nd edn (Medical Physics, Madison, WI 1999)

References

443. J.B. West: Respiratory Physiology: The Essentials, 7th edn (Lippincott Williams & Wilkins, Philadelphia 2005)

Chapter 10

454. Bell Labs. Record 12(6), 314 (1934)
455. J.R. Cameron, J.G Skofronick, R. Grant: *Physics of the Body*, 2nd edn (Medical Physics, Madison, WI 1999)
467. R.A. Freitas Jr.: *Nanomedicine, Volume I: Basic Capabilities* (Landes Bioscience, Austin 1999)
475. J. Gruber: Basic multifrequency tympanometry: the physical background, www.lymenet.de/symptoms/tympanom/basictym.htm

484. L.S. Lilly: Heart sounds and murmurs. In Pathophysiology of Heart Disease: A Collaborative Project of Medical Students and Faculty, 3rd edn, L.S. Lilly, ed. (Lippincott Williams & Wilkins, Philadelphia 2003), Ch. 2, pp. 29–43

492. H.F. Olson: Music, Physics, and Engineering, 2nd edn (Dover, New York 1967)

Chapter 11

506. S. Webb (ed.): The Physics of Medical Imaging (Adam Hilger, Bristol 1988)

527. W.M. Hart Jr. (ed.): *Adler’s Physiology of the Eye: Clinical Application*, 9th edn (Mosby, St. Louis 1992)

528. J. Hartstein: *Questions and Answers on Contact Lens Practice*, 2nd edn (Mosby, St. Louis 1973)

529. E. Hecht: *Optics*, 4th edn (Addison Wesley, Reading, MA 2001)

References

Chapter 12

References

568. J.R. Cameron, J.G. Skofronick, R. Grant: Physics of the Body, 2nd edn (Medical Physics, Madison, WI 1999)
570. P. Davidovits: Physics in Biology and Medicine, 2nd edn (Elsevier/Academic, San Diego 2001)
571. T.A. Delcha: Physics in Medical Diagnosis (Chapman & Hall, New York 1997)
572. D. Dubin: Rapid Interpretation of EKG’s, 6th edn (COVER, Tampa, FL 2000)
578. N. Gimbel, C. Fox: “Killing Me Softly (With His Song)”, written by Norman Gimbel and Charles Fox, published by Fox-Gimbel (BMI) and Rodali Music (BMI)
584. L.S. Lilly: The Electrocardiogram. In Pathophysiology of Heart Disease: A Collaborative Project of Medical Students and Faculty, 3rd edn, L.S. Lilly, ed. (Lippincott Williams & Wilkins, Philadelphia 2003), Ch. 4, pp. 75–110
585. R. Malhotra, E.R. Edelman, L.S. Lilly: Basic cardiac structure and function. In Pathophysiology of Heart Disease: A Collaborative Project of Medical Students and Faculty, 3rd edn, L.S. Lilly, ed. (Lippincott Williams & Wilkins, Philadelphia 2003), Ch. 1, pp. 1–27
References

597. J.B. West (ed.): *Best and Taylor’s Physiological Basis of Medical Practice*, 12th edn (Williams & Wilkins, Baltimore 1991)

Chapter 13

Appendix D

Appendix E

Index

Abbreviated Injury Scale, AIS 159
Aberrations in optical imaging 660, 663, 665–669, 671, 677, 698
Absolute pressure 406
Absorption or attenuation of light 594, 629, 635, 651, 652, 687, 692, 693, 759, 760
Absorption or attenuation of sound 562, 563
Acceleration 39, 109, 154
Achilles tendon 11, 43, 64, 97, 128, 207, 246, 258, 284
Acoustic admittance 563, 564, 603–606
Acoustic buzzer 575, 576, 578, 583, 590
Acoustic immittance 563, 603
Acoustic impedance 559, 563–567, 586, 587, 589, 595, 603, 604, 606
Acoustic resistance 563–565, 603
Acoustics 555, 562–564
Actin 279, 280, 293, 306–309
Activity factor, f 344, 351, 352, 354, 355, 773
Adiabatic conditions 605
ADP 306, 323, 329, 330, 332, 388
Aerobic metabolism 330–333, 335, 351, 357, 475
Aerobic respiration 330
Airway resistance 539, 541–545, 547, 548
Alcohol 323–326

Allometric rules 22, 340, 433
Alveoli 410, 526–529, 531–534, 536–543, 545, 548
Anabolism 319, 329
Anaerobic glycolysis 330–335, 337, 338
Anatomical directions 1
Anatomical planes 3
Anatomical regional terms 3
Aneurysms 470, 487–491, 494–497
Angular frequency 40
Angular momentum 40, 124, 152
Anisotropy 213–215
 Ankles 17, 62, 94, 103, 122, 146, 152, 272, 273
Antagonist muscles 10, 11, 13, 14, 275, 292, 295
Anterior cruciate ligament, ACL 7, 215–217, 258
Anthropometric data 17
Antinodes 568, 570
Aorta 382, 444, 446, 449, 453, 456–458, 460, 463, 465, 467, 469, 470, 474, 488, 508
Aqueous humor 406, 562, 629–632, 636, 650–654, 656, 668, 687, 706
Archimedes’ Principle 18, 409
Area moment of inertia 224
Arms 17, 19, 43, 45, 299, 300
Arrhythmias, cardiac 451, 752, 753, 756, 771
Arterial pulse 458, 495, 498, 504–508, 617
Arterial wall 497
Articular joints 19, 40
Articulation 571, 572, 575, 581
Astigmatism 676, 678, 683–685
ATP hydrolysis 307, 309, 310, 329
Audiogram 593, 594, 606–611
Audiology 564, 604
Auditory nerve 592, 599
Auricle, pinna 591, 594
Auscultation 80, 407, 555, 617
Axons 159, 713, 717, 720–722, 730–743, 757
Back 258
Ballistic model of walking 112, 118
Ballistocardiography 446
Balls 156
Basal metabolic rate, BMR 16, 23, 271, 338–343, 347, 348, 361, 486, 547, 773
Baseball 138, 141, 166, 336, 337, 354
Basilar membrane 592, 599–602
Basketball 185, 337, 345
Beam bending 221
Beer’s Law 562, 563, 652, 759
Bending of back 69
Bending of beam 224
Bending of bones 247
Bernoulli’s equation 413–415, 483, 491, 494, 576
Biarticulate muscles 152, 272, 274
Biceps brachii 3, 11, 43, 44, 48, 139, 142, 275, 282
Bifurcated flow 422, 465, 466, 487–489, 491–494, 517, 519, 526, 529
Binocular vision 14, 660, 676
Biophysics 805
Biot-Savart Law 757
Biting 65
Black body or thermal radiation 320, 361, 364–369, 379, 380, 476, 773
Bladder 21, 406, 430
Blind spot 27, 632, 633
Blood flow rate 428
Blood plasma 411, 417, 418, 719
Blood vessels 21
Body density 18
Body fat 24
Body mass index, BMI 24, 343, 344
Body organs 21
Body segment lengths 17
Body surface area 366
Bolus flow 472
Bones 69
Bone bending 227
Bone conduction for hearing 608–611
Bones 4, 40, 45, 50, 52, 196, 197, 211–214, 231, 232, 242, 244, 245, 258, 362, 376, 477, 559, 562, 567, 719
Boundary conditions 252, 565, 568–570, 741, 742, 763, 789
Boundary layers 108, 185, 322, 374, 422, 424, 425, 713
Boxing 163
Brachialis 48, 275
Brachioradialis 48, 275, 280
Brain disease 483, 484, 487–489
Breathing 25, 561, 617
Breathing rate 16, 23, 525, 540, 546, 547
Bronchi, bronchioles 526, 528, 537, 539, 543
BTU 385
Bulging disc 72
Bulk modulus 262, 557
Buoyancy 431

Cable, Telegrapher’s equation 738
Calcaneus 64, 97, 128
Calcium hydroxyapatite 197
Caloric content or value 323, 325–327, 359
Caloric intake 330, 358–360
Calorific equivalent 323, 324, 345, 351
Calorimetry 322, 323, 345, 346
Cantilever beam 227
Capillaries 443, 444, 446, 449, 455, 457, 458, 463–465, 469–474, 480, 487, 501, 507, 508, 527, 528
Carbohydrate 322–329, 333, 335, 345, 351, 360, 361
Cardiac dipole 746–749, 752–754
Cardiac flow 477
Cardiac muscle, myocardium 10, 214, 271, 272, 443, 446, 449, 452, 480, 731, 732, 747, 748, 753, 756
Cardiac output 334, 460, 472–475, 477–482, 501, 509, 525, 767, 778
Cardinal points 645, 646, 649, 654, 655, 658
Cardiovascular system 443
Cartilage 10, 107, 108, 196, 197, 199, 200, 212–214, 217, 231, 234, 258
Catabolism 319, 327, 329, 338
Cataract 631, 686, 687
Cells 21, 22, 196, 329, 334, 348, 722
Center of gravity 96
Center of mass 18, 19, 95, 96, 111, 119, 126, 133, 137
Centripetal force 423, 424, 470
Cerebrospinal fluid 406, 411, 418, 719, 745
Chewing 65
Chromatic aberration 665, 667–669, 677
Circulatory system 443, 444, 501, 502
Climbing stairs 345
Clogged arteries 465, 482, 483, 488, 495
Closed loop, cycle regulation 775, 777, 778
Clothing 322, 361, 366, 371, 374–376, 383, 774, 775
Cochlea 592, 595–603, 607, 744, 745
Coefficient of friction 6, 107, 110, 170
Coefficient of restitution, COR 156
Coefficient of viscosity 195, 229, 411, 415, 417, 418
Collagen 196–198, 200, 213, 217, 219, 457, 631
Collision time 157, 158, 160, 165
Collisions 153, 157
Color blindness 677
Color perception 692–697
Compact, cortical, dense bone 197, 205, 212, 216, 255, 362
Compliance 415, 462, 463, 467, 468, 474, 499–504, 507–509, 539, 542–545, 547, 550, 603, 802
Compliance vessel 462, 463, 465–467, 497, 499, 504, 541, 543, 618
Composite materials 195, 265
Compound fractures 259
Compressible flow 412
Compression 201, 203
Compressional waves 555, 556, 592
Concave, diverging, negative lens 637, 638, 642, 666, 667, 674, 681, 686
Concentric muscle contraction 275, 349, 354
Concussions 160, 163, 256
Conductance 717–719, 794, 737
Cone photoreceptors 629, 632–635, 661–664, 677, 687–689, 692–697, 721
Connective tissue 196
Constitutive relationship 202
Contact lenses 638, 642, 643, 645, 677–686
Continuity equation 413, 414, 474, 483, 491, 492, 576, 579
Control theory 770
Core body temperature 373, 374, 377–383, 771, 774, 776, 777
<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrective lenses</td>
<td>638, 642–645, 650, 659, 674, 677–686, 698</td>
</tr>
<tr>
<td>Countercurrent heat exchange</td>
<td>373–375, 776</td>
</tr>
<tr>
<td>Crack propagation</td>
<td>247, 254</td>
</tr>
<tr>
<td>Creteine, Cr</td>
<td>332</td>
</tr>
<tr>
<td>Creep</td>
<td>230, 231, 238, 240, 242, 244</td>
</tr>
<tr>
<td>Crossbridges</td>
<td>291, 293, 304, 306–310, 348</td>
</tr>
<tr>
<td>Crouching</td>
<td>62</td>
</tr>
<tr>
<td>Current</td>
<td>416, 713, 716, 718, 726, 731, 735–739, 756, 757</td>
</tr>
<tr>
<td>Curved arteries</td>
<td>423, 424, 470, 494</td>
</tr>
<tr>
<td>Cyclic loading</td>
<td>230, 252</td>
</tr>
<tr>
<td>Cycling</td>
<td>151, 285, 345, 353, 356</td>
</tr>
<tr>
<td>Cylindrical lenses</td>
<td>683, 684</td>
</tr>
<tr>
<td>Dashpots</td>
<td>229, 235, 284</td>
</tr>
<tr>
<td>dB scales</td>
<td>560, 561, 606, 608, 612</td>
</tr>
<tr>
<td>Debye–Huckel length</td>
<td>730</td>
</tr>
<tr>
<td>Deceleration</td>
<td>109, 154</td>
</tr>
<tr>
<td>Deformation</td>
<td>201, 233</td>
</tr>
<tr>
<td>Degrees of freedom</td>
<td>3, 94</td>
</tr>
<tr>
<td>Deltoids</td>
<td>59, 139, 285</td>
</tr>
<tr>
<td>Depolarization</td>
<td>450, 599, 713, 722, 723, 731, 732, 743–749, 753</td>
</tr>
<tr>
<td>Depth of field</td>
<td>671, 672</td>
</tr>
<tr>
<td>Depth of focus</td>
<td>671</td>
</tr>
<tr>
<td>Diastole</td>
<td>446, 450, 453, 456, 458, 477, 478, 498, 500, 501, 509, 510, 619</td>
</tr>
<tr>
<td>Diastolic pressure</td>
<td>16, 406, 408, 446, 458, 460, 479, 481, 486, 496, 504, 506, 516</td>
</tr>
<tr>
<td>Dielectric constant, function</td>
<td>714, 718, 734</td>
</tr>
<tr>
<td>Diffraction of light, optical diffraction</td>
<td>638, 663, 664, 669, 671, 687</td>
</tr>
<tr>
<td>Diffraction of sound</td>
<td>563</td>
</tr>
<tr>
<td>Diffusion</td>
<td>306, 405, 426–429, 444, 470, 538, 723, 724, 743</td>
</tr>
<tr>
<td>Diffusion coefficient</td>
<td>306, 426, 427, 723, 726, 743</td>
</tr>
<tr>
<td>Diffusion equation</td>
<td>427, 743</td>
</tr>
<tr>
<td>Diopters, D</td>
<td>638, 640</td>
</tr>
<tr>
<td>Dirac delta function</td>
<td>235, 238</td>
</tr>
<tr>
<td>Dispersion in refractive index</td>
<td>667, 668</td>
</tr>
<tr>
<td>Diving</td>
<td>85, 152, 336, 337</td>
</tr>
<tr>
<td>Donnan equilibrium, ratio</td>
<td>727, 728</td>
</tr>
<tr>
<td>Doppler ultrasonography</td>
<td></td>
</tr>
<tr>
<td>Doppler ultrasonography echocardiography</td>
<td>446, 555</td>
</tr>
<tr>
<td>Drag</td>
<td>351, 416, 419, 424, 425, 431–433, 435</td>
</tr>
<tr>
<td>Ductility</td>
<td>211</td>
</tr>
<tr>
<td>Dynamic viscosity</td>
<td>411</td>
</tr>
<tr>
<td>Ear canal tube, meatus</td>
<td>591, 592, 595, 598, 604–606, 609</td>
</tr>
<tr>
<td>Eardrum</td>
<td>592, 594–598, 603, 604, 606</td>
</tr>
<tr>
<td>Ears</td>
<td>406, 555, 744, 745</td>
</tr>
<tr>
<td>Eccentric muscle contraction</td>
<td>275, 304, 349, 354</td>
</tr>
<tr>
<td>Effectivity, optical</td>
<td>642, 643, 649, 682</td>
</tr>
<tr>
<td>Efficiency, energy</td>
<td>16, 271, 322, 328, 330, 331, 333, 334, 349–351, 354, 356, 486, 547, 591</td>
</tr>
<tr>
<td>Einhoven's triangle</td>
<td>752</td>
</tr>
<tr>
<td>Elastic behavior</td>
<td>194, 201</td>
</tr>
<tr>
<td>Elastic collisions</td>
<td>156, 164</td>
</tr>
<tr>
<td>Elastic limit</td>
<td>208</td>
</tr>
<tr>
<td>Elastin</td>
<td>196, 198, 457</td>
</tr>
<tr>
<td>Elbows</td>
<td>8, 9, 11, 20, 43, 49, 139, 142, 146, 257, 275, 297</td>
</tr>
<tr>
<td>Electric dipoles</td>
<td>715, 746–749, 752–754, 759</td>
</tr>
<tr>
<td>Electric fields</td>
<td>713–715</td>
</tr>
<tr>
<td>Electric shock</td>
<td>25, 756, 757</td>
</tr>
<tr>
<td>Electrical capacitance</td>
<td>717, 731, 734</td>
</tr>
<tr>
<td>Electrical resistance</td>
<td>416, 561, 563, 716–718, 731, 734, 735, 737, 741, 747, 756, 757</td>
</tr>
<tr>
<td>Electrocardiogram, EKG, ECG</td>
<td>350, 450, 451, 713, 714, 746–755</td>
</tr>
<tr>
<td>Electroencephalogram, EEG</td>
<td>714, 755</td>
</tr>
<tr>
<td>Electromagnetic waves</td>
<td>713, 759, 760</td>
</tr>
<tr>
<td>Electromyogram, EMG</td>
<td>107, 125, 714</td>
</tr>
<tr>
<td>Embolus</td>
<td>488, 494, 495</td>
</tr>
<tr>
<td>Emissivity</td>
<td>365–367</td>
</tr>
<tr>
<td>Emphysema</td>
<td>543–546</td>
</tr>
<tr>
<td>Energetics</td>
<td>109, 126</td>
</tr>
<tr>
<td>Energy</td>
<td>23, 319</td>
</tr>
<tr>
<td>Energy storage</td>
<td>205</td>
</tr>
<tr>
<td>Entropy</td>
<td>428, 607</td>
</tr>
</tbody>
</table>
Index 849

Epithelial tissue 196
Equilibrium 37, 219
Erector spinae 69–72
Error function 161, 796
Euler buckling 251
Evaporation 320, 361, 362, 364, 376
Expiration, exhalation 431, 525, 534, 535, 537, 538, 540, 541, 544, 545, 547, 548, 618
Expiratory muscles 534, 540
Expiratory reserve volume, ERV 537
Extensive property 195, 202, 321
Extensor muscles 10, 11, 14, 97, 104, 124, 139, 145, 273–276, 292–294, 297–299, 301
Eye disease, damage 636, 676, 684–687
Eyeglasses, spectacles 638, 642, 643, 645, 677, 681–686, 688
Eyes 12, 21, 406, 629, 714
Fast twitch (FT) muscle fibers 283, 284, 292, 303
Fatigue of materials 252
Feedback and control 14, 80, 373, 377, 461, 474, 478, 498, 629, 631, 658, 663, 767
Feet 17, 19, 97, 100, 258
Femur 6, 51, 95, 96, 197, 205, 207, 244–246, 249, 256
Fibula 96
Fick’s Laws of Diffusion 426, 427, 723, 726, 743
Fingers 7
Flow of blood 423
Flow of fluids 405
Flying 23
Flying, human flight 434, 435
Focal points, F, F' 638, 645, 647, 649, 653, 654
Football 189, 191, 336, 337
Force vital capacity, FVC 544
Forced breathing, expiration 544, 545, 547, 548
Forced expiratory volume, FEV 545
Forces 37, 80, 100, 202, 596
Forearm 17, 19, 43, 44, 296
Formants 573, 574, 580, 583–587, 589, 590, 800
Fourier analysis 580, 581, 586, 587, 615, 616, 670
Fovea 630, 632–635, 638, 660, 664, 665, 674, 687, 695
Fracture toughness 254
Fractures 160, 194, 210, 244–250, 259
Frank–Starling mechanism 478, 479, 509
Friction 105
Functional residual capacity, FRC 537, 538, 543, 547
Fundamental frequency 568–570, 577–581, 583, 584, 586, 587, 590, 594, 597, 598, 614–616
Fusiform aneurysms 487, 488, 491, 495
Fusiform or parallel muscles 276, 277, 279, 295, 298, 488
Gadd Severity Index, GSI 159, 163
Gastrocnemius 97, 125, 128, 152, 273, 274, 278, 280, 282, 284, 285, 292, 295, 302
Gauge pressure 406, 408, 446, 460, 462, 498, 525, 534, 559, 588, 590, 604
Index

Gaussian profile 21, 160, 306, 427, 428, 796
Glaucoma 406, 636, 687
Glottis 571, 576–579, 580, 581, 584, 586, 588, 590, 614–616
Goldman Voltage equation 728
Gymnastics 85, 86, 152, 337, 354

Hair 21, 79, 80, 214, 217, 603, 743, 744
Hair cells 592, 594, 599, 601, 603, 721, 743–745
Hammer throwing 186
Hamstrings 60, 96, 257, 274
Hands 17, 19, 43, 44, 296
Harmonic behavior 194
Harmonic frequencies 568–570, 578, 580, 581, 584, 586, 587, 590, 614–616
Harmonic oscillator 113, 194, 564
Harris–Benedict equations 24, 342, 358
Head 17, 19, 42, 157, 158, 256
Head Injury Criterion, HIC 160
Hearing 25, 555, 567, 591
Hearing loss 595, 596, 606–611
Heart (electrical) nodes 449, 451
Heart attack, myocardial infarction 482, 487, 509, 747, 752–754
Heart disease 451, 452, 482, 509, 510, 618, 619, 752–754
Heart murmurs 616, 619
Heart rate, beat 16, 23, 461, 467, 477–480, 501, 752, 769
Heart sounds 450, 454, 618
Heart valves 444, 446, 450, 452–454, 498, 500, 509, 510, 617–619
Heat capacity 321, 361–363, 773
Heat index 371, 377
Heat transfer coefficient 322, 368, 370–372, 374, 383
Hearliness 25
Helmets 259
Hemoglobin 472, 473
Hemorrhage 158, 482, 487, 488
High jump 178
Hill force–velocity curve 298, 299, 301–304, 307
Hip 6, 8, 17, 20, 49, 50, 52, 77, 94, 95, 103, 108, 122, 146, 152, 257, 272
Hip abductor muscles 50
Hip replacement 59
Hitting balls 166
Hollow bones 197, 226
Homeostasis 767
Hooke’s Law 201, 208
Hookean behavior 194
Hopping 132
Humerus 6, 249
Hyperopia, far-sightedness 645, 675, 680, 682, 683, 685, 686
Hyperpolarization 599, 722, 723, 731, 743, 745
Hypoxia 487, 546
Hysteresis 230–233, 261, 537, 547

Ideal gas law 409, 471, 546, 552, 558, 605, 726
Idiopathic respiratory distress syndrome, RDS 544, 545
Image formation 631, 636–650
Imaging 638
Imaging, multiple lenses 643–645, 647–650
Impedance matching, mismatch 559, 567, 596
Implants 193
Incompressible flow 412, 413, 507
Inelastic collisions 156, 164
Infarction 482, 487, 509, 747, 752–754
Initial conditions 142, 143, 238, 240, 242, 466, 774, 789–791, 793, 795
Inner ear 565, 591, 592, 595, 598–603, 607, 609, 611
Inspiration, inhalation 406, 525, 526, 534–545, 547, 548, 578, 590, 618
Inspiratory muscles 534–536, 540–542, 537
Inspiratory reserve volume, IRV 537
Insulation 372, 375, 376, 383, 384
Intensive properties 225
Intensive property 195, 202, 321
Internal force 220
Internal torque 220
Interstitial fluid 418
Intervertebral disc 66, 72, 214, 258
Intrapleural, pleural pressure 534, 541, 542, 548
Inverted pendulum model 120
Ion concentrations 718, 719, 722–729, 767
Irrotational flow 412–414
Ischemia 483, 484, 487, 488, 494
Isometric conditions for muscles 275, 283, 286, 293, 299, 302, 304
Jaw 65
Joints 3, 77, 122, 152, 272
Jumping 62, 133, 170, 336
K reading or number 679
Kelvin or standard linear model 236, 241, 243, 286
Keratoconus 676, 678, 684, 685, 687
Keratometry, keratometer 679
Kinematic viscosity 412
Kinematics 93
Kinetic energy 109, 114, 115, 126, 131, 134, 137, 156, 157
Kirchhoff’s Laws 716, 718, 736, 752, 802
Kleiber’s Law 23, 340–342, 358
Kneecap 8, 60, 63, 97
Knees 6–9, 20, 60, 77, 94, 96, 103, 108, 122, 146, 152, 258, 272, 273, 297, 302, 617
Korotkoff or K sounds 407, 408
Krebs cycle 330, 333, 334
Laminar, streamline, steady flow 411–414, 421–423, 425, 472, 474, 483, 488, 491, 493, 495, 541, 555, 572, 575, 617, 619
Larynx 526, 571, 572, 575, 579, 580, 590
Law of Laplace 409–411, 430, 431, 466, 469, 490, 491, 494–496, 498, 499, 531–533, 675
Legs 17, 19, 52, 96, 97, 100, 257, 460
Levers 40, 63, 65, 596
Lifeline 23, 25
Lift 424–426, 431, 433–435
Lifting 70, 74
Ligaments 10, 96, 196, 198, 200, 212–214, 219, 231, 233, 658, 659
Line spread function 669–671
Linear momentum 39
Localisation in hearing 594, 611, 616
Long jump 179
Loudness 25, 590, 594, 611–615
Lower back 66
Lower back pain 66
LSK cornea surgery 680
Luminosity curve 688–690
Lung compliance 539, 541–545, 547, 550
Lung dead space 16
Lung disease 533, 543–545
Lung surfactant 411
Lying 74
Magnetic fields 713, 757, 758
Magnification, optical 637, 641, 667, 686
Magnus force 149, 150
Maintenance (metabolic) 327, 328
Mass 39
Mass densities 17
Masses of body segments 17
Maxwell model 236, 237, 286
Maxwell–Boltzmann distribution 727, 729
Mechanical properties 193
Mechanical work 273, 320, 322, 354, 361, 485, 547, 591
Membrane capacitance 731, 734–737, 741, 742
Membranes, cell 713, 714, 722–725, 727, 728, 730–737, 739–745, 747, 758
Meniere's disease 611, 613
Metabolic equivalent, MET 344, 351–354
Metabolic rate, MR 338, 343, 345, 349–352, 773
Metabolism 319
Microstrain 205, 253
Middle ear 406, 565, 591–593, 595–597, 603, 604, 607, 609
Mobility 724, 726
Modulation transfer function 669, 670
Moment arm 49, 58, 63, 69, 141, 142, 273, 274
Moment of inertia 40, 116, 117, 120, 140, 152
Momentum 39, 156
Mouth 429, 525, 526, 537, 539, 570, 571, 581, 582, 584, 585, 588, 589, 591
Multisegment modeling 77, 139, 151, 168
Muscle coordination 292
Muscle fatigue 291, 333
Muscle fibers 276
Muscle length 125, 272, 294, 296
Muscle twitches 331–334
Myofilaments 279, 280, 292, 305–307
Myopia, near-sightedness 645, 674, 675, 680–683, 685, 686
Myosin 279, 280, 285, 293, 305–310
Neck 17, 19
Negative feedback 769, 770
Negative work 153, 354
Nernst equation 727, 728
Nernst potential 728
Nernst-Planck equation 726
Nerves 72, 159, 196, 214, 562, 592, 598, 599, 629, 632, 634, 635, 664, 680, 687, 713, 720–722, 731, 734, 740, 769
Neurons 348, 719–721, 731, 770
Newtonian flow, fluid 416, 420–423, 455
Nodal points, N, N' 645–647, 650, 653, 658
Nodes 568, 570, 588, 589
Nodes of Ranvier 720, 721, 740
Non-Hookean behavior 217, 265, 266, 281
Non-Newtonian flow, fluid 420, 421, 454, 466
Nonviscous flow 412–415, 420
Nose, nasal passages 526, 537, 541, 547, 571, 572, 581, 617, 746
Obstructive lung disorders 543–545
Ocular muscles 14, 15, 629, 631, 658–660, 675, 698
Ohm's Law 716, 735, 736, 756
One-segment model 139
Open loop, cycle regulation 775
Optic nerve 629, 630, 632, 664, 686, 687
Osmotic pressure 470, 471
Ossicles, hammer/malleus, anvil/incus, stirrup/stapes 592, 595–597, 603
Outer ear 567, 591–595, 603, 607, 609
Oxidation 322, 323, 325, 333, 334
Padding 129, 157, 158, 163, 165, 259, 260
Pain 79
Palpation 80
Pendulum model of walking 112, 118
Pendulum 114
Percussion 80
Parabolic flow 420–423, 455, 466, 492, 494
Paraxial rays 638, 647, 650, 653, 665, 666
Pascal's Principle 409
Patella 8, 60, 63, 97
Patellar tendon, ligament 60, 77, 97
Pelvis 49
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index 853</td>
<td></td>
</tr>
<tr>
<td>Peristalsis</td>
<td>271, 429, 430, 458</td>
</tr>
<tr>
<td>Pharynx</td>
<td>526, 541, 571, 572, 575, 577, 581,</td>
</tr>
<tr>
<td>Phonemes</td>
<td>572</td>
</tr>
<tr>
<td>Phonocardiogram</td>
<td>450, 454, 618</td>
</tr>
<tr>
<td>Phosphagen system</td>
<td>331–336, 339</td>
</tr>
<tr>
<td>Phosphate groups</td>
<td>323, 329, 330, 332</td>
</tr>
<tr>
<td>Phosphocreatine, PCr</td>
<td>332</td>
</tr>
<tr>
<td>Photometric units, optics</td>
<td>689–691</td>
</tr>
<tr>
<td>Photopic, diurnal, light-adapted vision</td>
<td>661, 688–690, 692</td>
</tr>
<tr>
<td>Physiological cross-sectional area of</td>
<td></td>
</tr>
<tr>
<td>muscle, PCA</td>
<td>141, 272–274, 278, 281, 285, 290,</td>
</tr>
<tr>
<td>Pinnate muscles</td>
<td>272, 276, 278, 295, 298, 308</td>
</tr>
<tr>
<td>Pitch, tone</td>
<td>577, 590, 593, 606, 611–616, 619</td>
</tr>
<tr>
<td>Pitching</td>
<td>138, 145, 146</td>
</tr>
<tr>
<td>Planck black body distribution</td>
<td>365</td>
</tr>
<tr>
<td>Plastic deformation</td>
<td>194, 210, 211</td>
</tr>
<tr>
<td>Pleura</td>
<td>534–536</td>
</tr>
<tr>
<td>Point spread function</td>
<td>669</td>
</tr>
<tr>
<td>Points of insertion</td>
<td>10, 11, 79, 95–97, 141, 272, 273,</td>
</tr>
<tr>
<td>Points of origin</td>
<td>3, 10, 11, 79, 95–97, 272, 273, 276</td>
</tr>
<tr>
<td>Poiseuille’s Law</td>
<td>416, 417, 419, 420, 463, 465, 469,</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>204</td>
</tr>
<tr>
<td>Poisson–Boltzmann equation</td>
<td>729</td>
</tr>
<tr>
<td>Polarization</td>
<td>713, 722, 723, 725, 732, 747</td>
</tr>
<tr>
<td>Pole vault</td>
<td>137</td>
</tr>
<tr>
<td>Ponderal index</td>
<td>24</td>
</tr>
<tr>
<td>Porosity</td>
<td>214</td>
</tr>
<tr>
<td>Positive feedback</td>
<td>769</td>
</tr>
<tr>
<td>Positive work</td>
<td>153, 354</td>
</tr>
<tr>
<td>Potential energy</td>
<td>111, 114, 115, 126, 131, 134, 137,</td>
</tr>
<tr>
<td>Power</td>
<td>150, 321, 357</td>
</tr>
<tr>
<td>Presbycusis</td>
<td>27, 607, 609, 613</td>
</tr>
<tr>
<td>Presbyopia</td>
<td>27, 659, 684, 685</td>
</tr>
<tr>
<td>Pressure</td>
<td>25, 81, 405, 406, 428, 636</td>
</tr>
<tr>
<td>Principal points, P, P’, planes</td>
<td>645–650, 653, 657, 658, 706</td>
</tr>
<tr>
<td>PRK, RK cornea surgery</td>
<td>680</td>
</tr>
<tr>
<td>Protein</td>
<td>323–329, 334, 359–361</td>
</tr>
<tr>
<td>Pulmonary circulation system</td>
<td>443–449, 458, 470, 474, 480, 498,</td>
</tr>
<tr>
<td>Pulmonary fibrosis</td>
<td>544</td>
</tr>
<tr>
<td>Pulsatile flow</td>
<td>412, 495–497, 504–506, 570, 619</td>
</tr>
<tr>
<td>Pupil</td>
<td>629, 631, 661, 663, 664, 669, 671,</td>
</tr>
<tr>
<td>Purkinje images</td>
<td>652, 679</td>
</tr>
<tr>
<td>Purkinje shift</td>
<td>689</td>
</tr>
<tr>
<td>Quételet’s index</td>
<td>24, 343, 344</td>
</tr>
<tr>
<td>Quadriceps</td>
<td>60, 77, 96–98, 272–275, 278</td>
</tr>
<tr>
<td>Quadriceps tendon</td>
<td>60</td>
</tr>
<tr>
<td>Quality factor, Q</td>
<td>497, 570, 571, 582, 595, 794, 801</td>
</tr>
<tr>
<td>Quasistatics</td>
<td>37</td>
</tr>
<tr>
<td>Race walking</td>
<td>121</td>
</tr>
<tr>
<td>Radiometric units, optics</td>
<td>689, 690</td>
</tr>
<tr>
<td>Radius</td>
<td>7, 8, 11, 43, 44, 249</td>
</tr>
<tr>
<td>Radius of curvature, in eardrum</td>
<td>597</td>
</tr>
<tr>
<td>Radius of curvature, in flow in curved</td>
<td>423, 424, 470</td>
</tr>
<tr>
<td>tubes</td>
<td></td>
</tr>
<tr>
<td>Radius of curvature, in Law of Laplace</td>
<td>409–411, 469, 531–533, 675</td>
</tr>
<tr>
<td>Radius of curvature, in loaded beam</td>
<td>223–228, 250, 251</td>
</tr>
<tr>
<td>Radius of curvature, in optical refraction</td>
<td>639–641, 666</td>
</tr>
<tr>
<td>Radius of curvature, in spine</td>
<td>68, 74, 258</td>
</tr>
<tr>
<td>Radius of gyration</td>
<td>18, 118</td>
</tr>
<tr>
<td>Rayleigh criterion</td>
<td>664, 703</td>
</tr>
<tr>
<td>Reaction force</td>
<td>55, 59–62, 64, 69, 72, 77, 105, 127</td>
</tr>
<tr>
<td>Real images</td>
<td>637, 638, 640</td>
</tr>
<tr>
<td>Recovery processes in eyes</td>
<td>661, 662</td>
</tr>
<tr>
<td>Red blood cells</td>
<td>197</td>
</tr>
<tr>
<td>Reduced eye</td>
<td>653–655, 672, 683</td>
</tr>
<tr>
<td>Reflection of light</td>
<td>650–652, 673, 679, 692, 693, 697</td>
</tr>
<tr>
<td>Reflection of sound</td>
<td>555, 559, 563, 565–567, 586, 587,</td>
</tr>
</tbody>
</table>

Repolarization 450, 723, 731, 732, 746–749, 753

Residual volume, RV 537, 538, 543

Resistance vessel 462, 463, 465, 497

Resistivity 716–720, 731, 732, 734

Resonances, resonant cavities, in acoustics 567–571, 578, 581–584, 588, 594, 598, 601, 603

Respiration 324, 376, 406, 767, 768, 778, 779

Respiratory exchange ratio, RER 323, 324, 346

Respiratory quotient ratio, RQ 324

Restrictive lung disorders 544, 545

Retina, disease 686, 687

Retinal molecule 635, 636, 661

Retinol 661

Reynolds number, \(Re \) 371, 411, 412, 425, 474, 495, 541

Rhodopsin 635, 661, 662, 692

Rod photoreceptors 629, 632–635, 661–664, 687–689, 692, 696, 697, 721

Rotation 150, 151

Saccular, berry aneurysms 487–491, 494, 495

Sandy Koufax 145, 146

Sarcomeres 276, 279, 280, 290, 293, 296, 297, 306–308

Scaling 22

Scaling relationships 22, 25, 340

Schematic eye 646, 653–655, 657, 658, 668, 706

Scotopic, twilight, dark-adapted vision 661, 688–690, 692

Semicircular canals 592, 745

Senses 25, 79, 721

Set point 769–771, 777

Shear deformation 203

Shivering 358, 380, 772, 776, 777

Shot putting 186

Shoulders 17, 20, 59, 139, 146, 257, 297

Shoveling 90

Simple harmonic oscillator 113

Sitting 74

Skating 180, 336, 337

Skeletal mass 23

Skeletal muscles 10, 11, 94, 214, 271, 272, 340, 342, 350, 475, 719, 756

Skeletal system 4

Skeleton 21

Skipping 120, 132

Skull vibrations 607, 609, 610

Sliding 170

Sliding filament model 304, 305, 307

Slow twitch (ST) muscle fibers 283, 284, 292

Smell 25, 26, 721, 746

Smooth muscles 10, 233, 271, 272, 457

Snell’s Law 638–640, 647, 665

Snellen eye chart 673, 677

Soccer 188, 191, 336, 337

Soleus 97, 125, 128, 274, 278, 280, 282, 284, 292, 302

Somersaulting 152

Sound, acoustic speed 556–559, 565

Sound, acoustic wavelength 558, 565, 568–570, 594, 603

Sound, acoustic waves 555–562, 592

Sounds, human 571
Index

Speaking 525, 555, 561, 567, 571, 575, 594, 617
Specific heat 321, 361, 373, 377, 385, 557, 773
Specific stature 24
Speed, propagation or conduction, in axon 721, 738, 740
Spherical aberration 665–667, 669, 671, 698
Spherocylindrical lenses 676, 684
Sphygmomanometer 407
Spinal cord 42, 66, 258, 382, 721
Spinning ball 148
Spirometer 537, 538, 540, 544
Sports injuries 256
Springs 194, 201, 205, 229, 233, 284
ST4 muscle fibers 283
Stability 95
Stairs 59, 62, 74, 76
Standard eye 638, 642, 659, 664, 672, 677, 681, 682
Standard human 16
Standing 50, 54, 56, 73, 74, 95, 96, 100, 345, 347, 352, 355, 406
Statics 37
Step or Heaviside step function 230, 238
Steven’s Law 25, 26, 80, 612, 688, 756
Stokes Law, friction 424, 425, 432
Stomach 214, 348, 382, 429, 430, 477, 616
Strain 202
Strain rates 231, 242
Streamlines 411, 414, 472, 493
Strength 197, 209, 245
Stress 194, 202
Stress fractures 252, 258
Stress relaxation 230, 231, 233, 239, 240, 242
Stress–strain relation 194, 201, 203, 208–211, 213, 215, 216, 231, 259, 281, 579
String, vibrations 556, 567–570, 578, 597, 599, 603
Stroke volume 461, 473, 477–481, 486, 501, 506, 509, 769
Strokes 482, 487, 488, 494
Strohal frequency, number, St 425
Summit metabolism 380, 776
Surface area 23
Surface tension 411, 531–533, 545, 679
Surfactant 532, 533, 545
Sustained accelerations 170
Sweating 361, 364, 376, 379, 772, 776
Synergistic muscles 275, 292–294
Synovial fluid 6, 21, 108, 418, 422
Synovial joints 6, 8, 10, 13, 59, 96, 108, 195, 231
Systolic pressure 16, 406, 408, 446, 458, 467, 481, 486, 496, 498, 499, 504, 506, 513, 516
Tactile receptors 79
Taste 25, 26, 721, 745
Tears 418, 631, 678, 679, 685, 687
Teeth 21, 65, 211, 214, 217, 572, 589
Tendons 10, 97, 100, 196, 198, 199, 207, 208, 212–214, 217, 231, 233, 276, 277
Tension 201, 203
Tetanized muscles 281, 282, 289, 292, 294, 298
Thermal conduction 320, 361, 364, 369, 373, 374
Thermal conductivity 321, 362, 363, 374, 376
Thick lenses 643, 650
Thigh 17, 95, 96, 98
Thin lenses 641, 643
Throwing 138
Tibia 60, 96, 157, 249, 250
Tidal volume, TV 16, 537, 538, 543, 547
Timbre 590, 611, 615
Time constant 791
Time response of eyes 693
Toe region in stress–strain relation 211, 218
Tonometer 636
Torques 37, 95, 140, 151, 220, 273, 596
Torsion 204
Total lung capacity, TLC 537, 538
Total peripheral vascular resistance, TPVR 474, 480, 481
Touch 79, 80, 721, 745
Toughness 209, 245, 254
Trabecular, cancellous, spongy bone 197, 212, 362
Trachea 526–528, 537, 541, 571, 575, 577
Traction 85
Transient ischemic attack, TIA 483, 484, 487
Transmission of light 650–652, 661, 666, 671, 686, 697, 698
Transpulmonary pressure 534, 537
Treadmill 123, 350
Triceps brachii 3, 11, 43, 139, 282
Trunk 17, 19
Tube, vibrations 568–571, 581, 582, 584–589, 594, 598, 603, 605, 606
Turbulent, unsteady flow 411, 412, 421, 423, 425, 474, 483, 488, 491, 495, 541, 555, 572, 573, 617, 619
Twitches in muscles 281–283, 288
Two-segment model 139
Typanic membrane 592, 594–598, 603, 604, 606
Typanograms 604
Ulna 7, 8, 11, 43, 249
Ultimate bending stress, UBS 245, 246, 249
Ultimate compressive stress, UCS 24, 158, 197, 205, 212, 214, 246
Ultimate strain or percent elongation, UPE 210–212
Ultimate tensile stress, UTS 207, 210, 212, 214, 245, 246, 457
Ultrasonography, ultrasonic mapping 555
Ultrasonography echocardiography, Doppler 446, 555
Vena cava 2, 214, 382, 443, 449
Venturi flow, tube 414, 576
Vergence 640, 641, 683
Vertebra 66
Vertical jump 133
Virtual images 638, 640, 652
Viscoelastic models 236
Viscoelasticity 195, 200, 207, 228, 230, 284, 582
Viscosity 194, 229, 235, 285, 411, 412, 415, 424, 455, 494, 582, 679
Viscous behavior 194, 229, 231, 285, 564
Visual acuity, VA 633–635, 663–665, 669, 670, 673, 674, 676, 696
Visual efficiency, VE 676, 677
Visual perception 688
Vital capacity, VC 16, 537, 538, 544
Vocal folds, cords 570–572, 575–580, 583, 584, 586–590
Vocal tract 571, 572, 576, 580–584, 588
Voice 525, 555
Voice-filtering theory 575, 579–589
Voigt model 236, 240
Walls of arteries 410, 449, 455–457, 467, 469, 470, 482, 488, 490–492, 494–497, 508
Walls of capillaries 470, 471
<table>
<thead>
<tr>
<th>Index</th>
<th>857</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walls of veins</td>
<td>449, 455–457, 461, 467, 469</td>
</tr>
<tr>
<td>Weight gain and loss</td>
<td>357–360</td>
</tr>
<tr>
<td>Weight lifting, training</td>
<td>280, 284, 285, 290, 304, 336</td>
</tr>
<tr>
<td>Wind chill factor</td>
<td>371, 372</td>
</tr>
<tr>
<td>Windkessel Model</td>
<td>507, 508</td>
</tr>
<tr>
<td>Work</td>
<td>153, 275, 320, 354</td>
</tr>
<tr>
<td>Work of fracture</td>
<td>244</td>
</tr>
<tr>
<td>Wrist</td>
<td>8, 146</td>
</tr>
<tr>
<td>Yield Point</td>
<td>210</td>
</tr>
<tr>
<td>Young’s or elastic modulus</td>
<td>202, 212, 214, 457, 468, 488, 557</td>
</tr>
</tbody>
</table>