BINDING OF A DOMAIN WALL IN THE PLANAR
ISING FERROMAGNET

D.B. Abraham
CERN — Geneva

ABSTRACT

A line of weakened bonds in the interior of a planar Ising ferromagnetic lattice always binds a domain wall. Thus there is no roughening transition in this case, in contrast to the situation with weakened bonds in the surface of a half-planar lattice.
Consider a planar Ising ferromagnet which is characterized by spins \( \sigma(i) = \pm 1 \) placed at all points \((i_1, i_2)\) of a subset \( \Lambda \) of \( \mathbb{Z}^2 \), the infinite square lattice with unit side. The energy of a spin configuration \( \{\sigma\} \) on \( \Lambda \) is given by

\[
E_\Lambda(\{\sigma\}) = - \sum_{\langle i,j \rangle \in \Lambda} J(i,j) \sigma(i) \sigma(j) - \sum_{i \in \Lambda} h(i) \sigma(i)
\]

(1)

where the \( J(x) \) are non-negative couplings and the \( h(i) \) are magnetic fields. We shall denote \( J((0,1)) = J_2, \; J((1,0)) = J_1. \)

The probability of the configuration \( \{\sigma\} \) is given by

\[
P_\Lambda(\{\sigma\}) = \frac{1}{Z_\Lambda} \exp \left( - \beta E_\Lambda(\{\sigma\}) \right)
\]

(2)

for equilibrium with a heat bath at absolute temperature \( T \) with \( \beta = 1/k_B T \), \( k_B \) being the Boltzmann constant. It will be convenient to use the notation \( K_j = \beta J_j, \; j = 1, 2 \) hereafter.

It is known that, if \( \langle \cdot \rangle_{A(h,T)} \) denotes expectation with respect to (2), then provided \( T < T_c \), where \( T_c \) solves \( \sinh 2K_1 \sinh 2K_2 = 1 \), and \( H(1) = h \), then [Pfefferl (1936), Dobrushin (1964), Griffiths (1964), Martin-Löf (1972); Yang (1952), Bennett et al. (1973), Abraham and Martin-Löf (1973)]]

\[
\lim_{A \rightarrow \infty} \lim_{h \rightarrow 0} \langle \sigma(0,0) \rangle_{A(h,T)} = m^*
\]

(3)

where

\[
m^* = \left[\left(1 - \frac{1}{\sinh 2K_1 \sinh 2K_2}\right)^{-1}\right]^{1/4}
\]

(4)

This is, of course, the phenomenon of spontaneous magnetization. The same limiting result is obtained by taking all \( h(i) = 0 \), except on the boundary \( \partial A \) where \( h(i) = \infty \), and thus only configurations with \( \sigma(i) = +1 \) on \( \partial A \) are significant in (2). In both cases, \( A \rightarrow \infty \) means \((0,0)\) becomes infinitely far from the boundary. The notion of regulating the state of a system by controlling its periphery in the infinite volume limit is perhaps surprising. It is clarified by considering the low-temperature expansion: evidently configurations with neighbouring antiparallel spin pairs are disfavoured. To keep track of such pairs, on the lattice \( A^* = \{i(\pm 1, \pm 1) : i \in \Lambda, \; i \in \mathbb{Z}^2\} \) draw a unit line segment symmetrically, but perpendicular to the vector separating any antiparallel pair of neighbours on \( A \). Then, with \( \sigma(i) = +1 \) on \( \partial A \) there is a \( 1:1 \) correspondence between spin and contour configurations,
with the proviso that 0, 2 or 4 contour elements meet at any vertex of \( A^* \).

Let a typical contour configuration on \( A^* \) have \( \Gamma_x \) (respectively \( \Gamma_y \))
contour elements in the \((1,0)\) (respectively \((0,1)\)) direction; then the
Boltzmann weight is \( \exp(-2(K_1 \Gamma_x + K_2 \Gamma_y)) \). At low temperatures the contours
behave somewhat like a dilute gas. The probability of at least one contour
going round the point \((0,0)\) can be bounded below \( \frac{1}{2} \) (Dobrushin (1968),
Griffiths (1964), Gallavotti (1972)\]), verifying (3) provided \( T \) is small
enough.

In order to study the separation of phases, boundary conditions \( B^+ \)
on the lattice \( \Lambda = \{(i_1, i_2); -N \leq i_1 \leq N-1, -M \leq i_2 \leq M-1\} \) are specified so
that \( \sigma(i) = +1 \) (respectively \(-1\)) for \( i \in \partial \Lambda \) whenever \( i_2 \geq 0 \) (respectively
\( < 0 \)). As \( \Lambda \to \infty \), we anticipate a phase of magnetization \( +m^* \) (respectively
\(-m^* \)) far above (respectively below) the line \( i_2 = 0 \). From symmetry consid-
nerations, the incremental free energy for the associated domain wall should be
defined as

\[
\tau = -\lim_{N \to \infty} \lim_{M \to \infty} \frac{1}{2N+1} \log \left( \frac{Z(\mathcal{B}^+_\Lambda)}{Z(\mathcal{B}^+)} \right)
\]

(5)

where \( \mathcal{B}^+ \) denotes all boundary spins up.

The profile, or domain wall structure, can be investigated in terms of
the function

\[
F(y, N) = \lim_{M \to \infty} \left< \sigma(o, y) \right>^+_{N, M} \left( o, T \right)
\]

(6)

and its limiting behaviour. The following results have been obtained (Abraham
and Reed (1974), (1976)):

\[
\tau = 2K_1 + \log \tanh \kappa,
\]

(7)

and

\[
\lim_{N \to \infty} F(\alpha N^\delta, N) = \begin{cases} 
0 & \text{for all } 0 \leq \delta < \frac{1}{2} \\
m^* \text{sgn } \alpha & \text{for } \delta > \frac{1}{2}
\end{cases}
\]

(8)

with

\[
\lim_{N \to \infty} F(\alpha N^{\nu_1}, N) = m^* \text{sgn } \alpha \Phi(b N^{1-1})
\]

(9)
where

\[ b = \left( \frac{\sinh \tau \cosh 2k_i}{\sinh 2k_L} \right)^{1/2} \]  

(10)

and

\[ \Phi(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-u^2} du \]  

(11)

Evidently, the domain wall undergoes large fluctuations. Some insight is obtained by taking the solid-on-solid (SOS) limit \( K_2 \to \infty \) [Temperley (1952)]; then every vertical line \((n+1/2,y)\) drawn on \( A^* \) is intersected by one and only one contour element, which therefore belongs to a long contour with ends at \((N+1,1)\) and \((N+1,1)\) on \( A \). This long contour may be identified uniquely with the domain wall. The probability of shapes of \( \gamma \) is an elementary matter using Markovian methods. Equations (8), (9) and (11) are regained with \( m^* = 1 \), but (10) is replaced by \( b_{SOS} = 2 \sinh k_2 \).

The SOS limit renders the structure of a pure phase trivial. However, there is some evidence that the interface profile has a local structure varying on the scale of the correlation length, the centroid of which fluctuates [Abraham (1981)]. If we assume the change from \( m^* \) to \(-m^* \) is infinitely sharp at the domain wall, then the profile function for the SOS model should be

\[ F_{SOS}(y, N) = m^* \left( P_N(z < y) - P_N(z > y) \right) \]  

(12)

where \( z \) is the unique intercept \( \gamma \) makes with the line \( x = 0 \). This gives (8) and (9) with the correct \( m^* \) for a bulk phase. But \( b_{SOS} \) only agrees to first order in \( e^{-2K} \) with \( b \). Consequently deductions about the domain wall fluctuations based on the SOS model should be made with some caution.

A question of some theoretical importance is the role played by imperfections in reducing domain wall fluctuations. Experimentally, this might correspond to the pinning of domain walls by dislocations, for instance. This letter gives the exact results for the incremental free energy and boundary profile which obtain when the vertical bond strengths between lines \( y = -1 \) and \( y = 0 \) are reduced from \( K_2 \) to \( K_0 \) (in units of \( k_B T \)). With boundary condition \( B^L \), configurations will be favoured with the largest number of horizontal contour segments lying on the line \( y = 0 \) of \( A^* \). This obviously damps fluctuations and must be balanced against the concomitant reduction in
entropy. In the SOS limit, with \( K_o = K_1 - \epsilon, \ K_1 - \infty, \ \epsilon > 0 \) (fixed) the domain wall always has bounded fluctuations, which diverge as \( \epsilon \to 0 \) [Burkhardt (1981), Chalker (1981), Chiu and Weeks (1981), Hilhorst and van Leeuwen (1981)]. Even though the possibilities for the associated Ising model are considerably more subtle the same type of result is obtained. Define \( \gamma \) as the unique real solution of

\[
\cosh 2k_1^* \left( \cosh 2k_1 e^\gamma - \cosh 2k_1^* \right) = -e^{-b} \left( \sinh 2k_1^* + e^\gamma (\cosh 2k_1^* \cosh 2k_2) \right)
\]

(13)

where \( \cosh 2k_1^* = \coth k \) and

\[
e^{-b} = \cosh 2k_1 / \cosh 2k_0
\]

(14)

Note that (13) and (14) reduce to (21) of Chiu and Weeks (1981) in the SOS limit. Further, notice that \( \gamma(b) \sim b^2 \) as \( b \to 0 \) and that \( \gamma(b) = \tau \) when \( K_0 = 0 \) [recall (7)]. The surface tension is given by \( \tau = \gamma \), but the profile is

\[
\Gamma(\gamma, \infty) = \sinh \gamma \left\{ m^* (1 - \lambda(y, b)) + m \lambda(y, b) \right\}
\]

(15)

where \( m \) is the magnetization associated with an identical bond perturbation, but \( m(i) = \pm 1 \) on the boundary. The function \( \lambda(y, b) \) is given in terms of a linear Fredholm problem as is usual in this type of problem [Abraham (1981)]. Its asymptotic behaviour is \( \lambda(y, b) \sim \exp(-\gamma |y|) \) as \( y \to \infty \). Thus domain wall binding always occurs for \( b \neq 0 \).

These results should be compared with the fluctuation damping of a domain wall near the surface of a half-planar lattice. In that case there is a phase transition at a temperature \( T_{\gamma}(K_0) \) \(< T_\infty \) whenever \( K_0 < K_1 \) involving unbinding of the domain wall [Abraham (1980)]. This effect persists in the SOS limit, in its modification to exclude contour height jumps larger than one [Chiu and Weeks (1981)] and even in a continuous height model which can be related, through its transfer operator, to a one-particle, one-dimensional Schrödinger problem with an attractive local potential. On the full line, corresponding to the full plane SOS problem, there is always a bound state, but on a half-line only if the potential well is deep enough, which corresponds
to low enough temperature. Thus the phenomenon described is remarkably robust. Another worthwhile observation is that "sheet" models give a rather satisfactory qualitative account of the binding-unbinding transition.

The author would like to thank the Theoretical Physics Division of CERN very much for their hospitality while this work was done, and in particular, to thank V. Glaser for explaining recent advances on the bound state problem for the Schrödinger equation for one particle. He would like to thank J. Chalker, S.T. Chiu and J.D. Weeks, and T.W. Burkhardt for communicating their results before publication.
REFERENCES


Abraham, D.B. 1981 to be published.


Chalker, J. 1981, to be published.


