Search for New Physics with a Mono-Jet and Missing Transverse Energy in pp Collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration

Abstract

A study of events with missing transverse energy and an energetic jet is performed using pp collision data at a centre-of-mass energy of 7 TeV. The data were collected by the CMS detector at the LHC, and correspond to an integrated luminosity of 36 pb^{-1}. An excess of these events over standard model contributions is a signature of new physics such as large extra dimensions and unparticles. The number of observed events is in good agreement with the prediction of the standard model, and significant extension of the current limits on parameters of new physics benchmark models is achieved.

Submitted to Physical Review Letters

*See Appendix A for the list of collaboration members
This Letter describes a search for new physics in the missing transverse energy (E_T^{miss}) and jet final state using data collected with the Compact Muon Solenoid (CMS) experiment in pp collisions at a centre-of-mass energy of 7 TeV provided by the Large Hadron Collider (LHC). Events containing a single energetic jet (mono-jet) are selected, although a second less energetic jet is allowed. This event signature is predicted in models such as large extra dimensions, based on the scenario by Arkani-Hamed, Dimopoulos, and Dvali (ADD) [1–4], or unparticles [5]. The data used in this search were collected in 2010 and correspond to an integrated luminosity of 36 pb$^{-1}$. This study focuses on the search for direct production of a graviton (or unparticle U) balanced by a hadronic jet via the processes $q\bar{q} \rightarrow gG (gU)$, $qg \rightarrow qG (qU)$ and $gg \rightarrow gG (gU)$. The primary backgrounds for this search are from Z+jet and W+jet production, and are estimated from the data.

The ADD model aims at explaining the large difference between the electroweak and Planck scales by introducing a number δ of extra spatial dimensions which in the simplest scenario are compactified over a torus of common radius R. The fundamental scale M_D is related to the effective four-dimensional Planck scale M_{Pl} according to the formula $M_{\text{Pl}}^2 \approx M_D^{\delta+2} R^\delta$. Gravitons are assumed to propagate in the extra dimensions with nonzero momentum. Graviton production is expected to be greatly enhanced due to the kinematically available phase space in the extra dimensions. Once produced, the gravitons are very weakly coupled and their presence can only be inferred from E_T^{miss}. Searches in both the jet plus E_T^{miss} and the γ plus E_T^{miss} channels were performed previously [6–11], without any evidence of new physics observed. The current lower limits on M_D range from 1.6 TeV/c2 for $\delta = 2$ [6–9] to 0.95 TeV/c2 for $\delta = 6$ [10].

More recently, interest in unparticle models has increased. These models relate to physics originating from a new scale-invariant (conformal) sector, which is coupled to the standard model (SM) through a connector sector at a high mass scale. An operator with a general non-integer scale dimension d_U in a conformal sector induces a spectrum of invisible, massless, and weakly interacting particles. If the mass scale Λ_U is assumed to be roughly 1 TeV/c2, then by using an effective field theory below that scale one should be able to study the effects of unparticles at the LHC. While there have been no direct searches for unparticles, a recent interpretation of CDF results suggests lower limits on Λ_U between 2.11 and 9.19 TeV/c2 for $1.05 < d_U < 1.35$ [12,13].

The CMS apparatus has pixel and silicon-strip detectors for pseudorapidity of $|\eta| < 2.5$, where $\eta = -\ln[\tan(\theta/2)]$ and θ is the polar angle relative to the beam direction. Contained in a 3.8 T magnetic solenoid, the tracking detectors provide momentum reconstruction down to about 100 MeV/c with a resolution of about 1% at 100 GeV/c. A highly granular crystal electromagnetic calorimeter (ECAL) extends to $|\eta| < 3.0$, and has an energy resolution of better than 0.5% for photons with a transverse energy above 100 GeV. A hermetic hadronic calorimeter (HCAL) extends to $|\eta| < 5.0$ with a transverse hadronic energy resolution of about 100%/$\sqrt{E_T}$ GeV \oplus 5%. A muon detector system reconstructs and identifies muons to $|\eta| < 2.4$. A full description of the CMS detector can be found in Ref. [14].

Both ADD and unparticle signal events are generated with the PYTHIA 8.130 Monte Carlo generator [15,16] with Tune 1 and passed through the CMS full simulation via the GEANT4 package [17]. The CTEQ 6.6M parton distribution functions (PDFs) [18] are used throughout. In order to scan the sensitivity in the relevant ADD parameter space, different samples with $M_D = 1, 2, 3$ TeV/c2 and $\delta = 2, 3, 4, 5, 6$ are produced. The models are effective theories and hold only for energies well below $M_D (\Lambda_U)$, we therefore follow the convention to suppress the simulated cross section of the graviton (unparticle) by a factor $M_D^2/\delta (\Lambda_U^2/\delta)$ above M_D.
(Λ_U). A transverse momentum \((p_T)\) cutoff on the parton recoiling against the graviton (unparticle) is introduced by requiring \(\hat{p}_T > 50\) GeV/c at parton level, where \(\hat{p}_T\) is the transverse momentum of the outgoing parton (gluon or quark) from the initial hard scatter. In this analysis, unparticles are assumed sufficiently long-lived that they do not decay in the detector. The next-to-leading-order (NLO) QCD corrections to the direct graviton plus jet production in ADD are sizable and dependent on the \(p_T\) of the recoiling parton [19]. \(K\) factors \(\sigma_{\text{NLO}}/\sigma_{\text{LO}}\) are chosen for a graviton transverse momentum of several hundred GeV/c, corresponding to 1.5 for \(\delta = 2, 3\) and 1.4 for \(\delta = 4, 5, 6\). The background samples of vector boson plus jets and top quark pairs are produced with MADGRAPH [20] and simulated using PYTHIA (v6.420) [21] with tune D6T [22] for showering, based on a leading-order (LO) calculation of the matrix element with the shower matching prescription [23], and interfaced with TAUOLA [24]. The QCD multijet background sample is generated with MADGRAPH and also interfaced to PYTHIA with tune D6T for showering [21, 22].

Several jet and \(E_{\text{T}}^{\text{miss}}\) triggers are used for data collection, and all trigger paths are fully efficient for events with a value of \(E_{\text{T}}^{\text{miss}} > 120\) GeV reconstructed offline. Events are required to have at least one primary vertex, where the vertex is reconstructed within a 24 cm window along the beam axis, has a transverse distance from the beam spot no more than 2 cm, and be of good quality [25]. Beam halo and other beam-induced background events are rejected by requiring at least 25% of the tracks in events with ten or more tracks to be well reconstructed [26].

Jets and \(E_{\text{T}}^{\text{miss}}\) are reconstructed using a particle flow technique [27]. The algorithm produces a unique list of particles in each event, using the combined information from all CMS subdetectors. This list is then used as input to the jet clustering, which reconstructs jets using the anti-\(k_T\) algorithm [28] with a distance parameter of 0.5. The missing transverse energy vector is computed as the negative vector sum of the transverse momenta of all particles reconstructed in the event, and has a magnitude denoted by \(E_{\text{T}}^{\text{miss}}\).

Jet energies are corrected to establish a uniform calorimeter response in \(\eta\) and an absolute response in \(p_T\) calibrated at the particle level. Jet-energy-scale corrections are derived from Monte Carlo simulation (MC), and a residual correction is derived by measuring the \(p_T\) balance in dijet events [29]. Jets are required to have \(p_T > 30\) GeV/c. To remove any artificial signals in the calorimeter, criteria based on energy sharing between neighbouring channels are applied [30]. Signals in HCAL or ECAL towers identified to be unphysical are removed from the reconstruction. Beam halo and cosmic muons are removed, but some of these events leave energy in both the ECAL and HCAL with no charged track associated with the energy cluster in the calorimeter. The fraction of jet energy carried by charged hadrons is therefore required to be above 15%. To reject high-\(p_T\) photons and electrons misidentified as hadronic jets, the energies assigned to neutral hadrons in the HCAL and neutral and charged hadrons in the ECAL must sum to less than 80% of the total jet energy. The combined effect of all data cleanup is to reject 1.5% of the events in the signal sample defined below.

In order to reduce the background from W-boson decays, events with isolated leptons are rejected. A separate W boson enriched sample is also created by requiring isolated leptons, and is used to estimate the size of the primary background. Lepton candidates (electron and muon) are required to have \(p_T > 20\) GeV/c, to originate within 2 mm of the beam axis in the transverse plane, and to be spatially separated from jets by at least \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.5\) in order to avoid rejecting events where there are leptons from jets. Here \(\Delta \eta\) and \(\Delta \phi\) are the pseudorapidity and azimuthal angle (in radians) differences, respectively. Muon candidates within \(|\eta| < 2.1\) are reconstructed by requiring both that compatible tracks in the silicon tracking detectors are found, and that these signals are consistent with a global fit to both silicon
tracker and muon detector hit locations [31]. Electron candidates are reconstructed starting from a cluster of energy deposits in the ECAL, which is then matched to hits in the silicon tracker. Electron candidates are required to have $|\eta| < 1.44$ or $1.56 < |\eta| < 2.5$ to avoid poorly-instrumented regions, and candidates with significant mismeasurement in the ECAL or consistent with a photon conversion are rejected [32]. For lepton candidates a cone of $\Delta R < 0.3$ is constructed around the track direction. An isolation parameter is defined as the scalar sum of the transverse momenta of tracks and transverse energies in the ECAL and HCAL in the cone, excluding the contribution from the muon (electron) candidate, divided by the muon p_T (electron E_T). Candidates with isolation values below 0.15 for muons or 0.09 (0.04) for electrons in the central (forward) regions are considered isolated.

The signal sample is selected by requiring $E_{\text{miss}} > 150$ GeV, the most energetic jet (j_1) to have $p_T(j_1) > 110$ GeV/c and $|\eta(j_1)| < 2.4$. Events with more than two jets ($N_{\text{jets}} > 2$) with p_T above 30 GeV/c are discarded. To increase the signal efficiency a second jet (j_2) is allowed provided that the angular separation with the highest-p_T jet satisfies $\Delta \phi(j_1, j_2) < 2.0$ radians, a selection that suppresses QCD dijet events. The $p_T(j_1)$ distribution of the signal sample is shown in Fig. 1. Remaining events with an isolated track are eliminated, as they come primarily from τ decays. A hollow cone $0.02 < \Delta R < 0.3$ is defined around each track with $p_T > 10$ GeV/c. The scalar sum of the p_T of all tracks with $p_T > 1$ GeV/c inside the cone is calculated and the event is vetoed if this sum is smaller than 10% of the p_T of the original track.

The E_{miss} distribution from data and the expected backgrounds after all selection criteria are shown in Fig. 2 together with a distribution of the integrated number of E_{miss} events above a given threshold. The only significant remaining backgrounds after all requirements stem from electroweak processes with genuine missing transverse energy in the final state. Table 1 lists the number of events selected at each step of the analysis from data and simulation.

Rather than using the background estimates from MC shown in Table 1 the $Z+$jets with $Z \rightarrow \nu\nu$ (denoted $Z(\nu\nu)+$jets) and $W+$jets backgrounds are estimated from $\mu+$jet events derived from the data sample. The selection defining this control sample has the same initial requirements as for the signal region, except that one or more muons are explicitly required. Well-reconstructed

Figure 1: Distribution of $p_T(j_1)$, requiring $E_{\text{miss}} > 150$ GeV, $N_{\text{jets}} \leq 2$, $|\eta(j_1)| < 2.4$, and $\Delta \phi(j_1, j_2) < 2$. A representative ADD signal (with $M_D = 2$ TeV/c2, $\delta = 2$) is shown as a dashed red line. The background is normalised to the measured rate in data.
Figure 2: Missing transverse energy E_{miss}^T after all selection cuts for data, SM background, and an example of ADD signal ($M_D=2\text{ TeV}/c^2$, $\delta=2$). The figure at right shows the integrated number of events above a given threshold. The background is normalised to the measured rate in data.

Table 1: Mono-jet data sample and analysis cuts, with luminosity-normalised leading-order MC. Lepton removal eliminates isolated muons or tracks for $p_T(e, \mu) > 10\text{ GeV}/c$.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>W+jets</th>
<th>$Z(\nu\nu)$+jets</th>
<th>$Z(\ell\ell)$+jets</th>
<th>$t\bar{t}$</th>
<th>QCD</th>
<th>Total MC</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{\text{miss}}^T > 150\text{ GeV}$, jet cleaning</td>
<td>622</td>
<td>259</td>
<td>46.7</td>
<td>90.4</td>
<td>202</td>
<td>1220</td>
<td>1298</td>
</tr>
<tr>
<td>$p_T(j_1) > 110\text{ GeV}/c$, $</td>
<td>\eta(j_1)</td>
<td>< 2.4$</td>
<td>583</td>
<td>245</td>
<td>43.4</td>
<td>76.9</td>
<td>201</td>
</tr>
<tr>
<td>$N_{\text{jets}} \leq 2$</td>
<td>446</td>
<td>201</td>
<td>34.3</td>
<td>11.3</td>
<td>74.3</td>
<td>767</td>
<td>778</td>
</tr>
<tr>
<td>$\Delta\phi(j_1, j_2) < 2$</td>
<td>370</td>
<td>182</td>
<td>29.5</td>
<td>9.1</td>
<td>6.3</td>
<td>597</td>
<td>596</td>
</tr>
<tr>
<td>Lepton Removal</td>
<td>107</td>
<td>173</td>
<td>0.8</td>
<td>1.7</td>
<td>1.4</td>
<td>284</td>
<td>275</td>
</tr>
</tbody>
</table>
and isolated muons are selected following the criteria outlined above. To ensure a pure W+jets sample, a single isolated muon is required to form, with the E_T^{miss}, a transverse mass M_T between 50 and 100 GeV/c^2. The transverse mass is defined as $M_T = \sqrt{2p_T E_T^{\text{miss}} (1 - \cos(\Delta \phi))}$, where $\Delta \phi$ is the angle in the transverse plane between the p_T the E_T^{miss} vectors. Within the M_T window there are 113 single-muon events in the data, compared to 103 estimated from MC (95.3 W+jets, 2.9 W(\tau\nu)+jets, 2.4 Z+jets, 2.4 $t\bar{t}$, and 0.08 from QCD multijets). The shape and yield of the muon distributions observed in the data are consistent with the expectation from SM sources. We estimate the number of W+jets background events to be 117 \pm 16. This estimate is obtained by scaling the surviving W+jets MC events in the signal sample by the ratio of observed and predicted W+jets events in the muon sample.

To estimate the number of Z(\nu\nu)+jets background events, the number of muon events in the M_T window is rescaled by several factors, including: (i) the ratio between the W(\mu\nu)+jets and Z(\nu\nu)+jets production cross sections, obtained by combining the branching fractions of the decays \[33\] (0.553 \pm 0.021), (ii) the reciprocal of the kinematic and geometric acceptance of the simulated sample (2.40 \pm 0.12), (iii) the efficiency of the lepton veto in the signal region taken from simulation (0.95 \pm 0.02), (iv) the spectral shape differences in W+jets and Z+jets for $p_T(W,Z) > 150$ GeV/c (1.33 \pm 0.03), and (v) the correction for contributions other than W(\mu\nu)+jets, extracted from LO MC (0.923 \pm 0.071). All uncertainties include both statistical and systematic effects. The number of Z(\nu\nu)+jets events in the signal region predicted from W+jets events is 176 \pm 30, which agrees with the MC. A crosscheck is made using two opposite-sign muons from Z(\nu\nu)+jets, where the 13 events with an invariant mass consistent with that of a Z boson gives a prediction of 162 \pm 45 background events. The estimated number of events from all background sources is 297 \pm 45. The uncertainty includes both statistical and systematic sources, with correlations taken into account.

The most important uncertainties related to theoretical signal modeling and experimental mis-measurement are (i) the jet energy scale, simulated by shifting the jet four-vectors by an η- and p_T-dependent factor related to the response, yielding a variation of 3–7% (7.5–11.5%) for the ADD (unparticle) signal efficiency \[29\], (ii) the jet energy resolution, estimated from a γ+jet sample and resulting in a 0.3–2.2% (0.6–2.9%) uncertainty on the ADD (unparticle) signal acceptance \[34\], (iii) uncertainties on the PDFs, evaluated using a reweighting technique with the CTEQ6M parameterisation \[18\] and resulting in a systematic uncertainty of 1–2% (3–7%) for the ADD (unparticle) signal, and (iv) a 4% uncertainty on the luminosity measurement \[35\]. The total systematic uncertainties range from 6% to 13%, with the jet energy scale uncertainty being the dominant one.

To interpret the consistency of the observed number of events with the background expectation in the context of a model, and also to facilitate comparison with previous results, we set exclusion limits for both the ADD model and the unparticle scenario. The upper limit on the number of non-SM events consistent with the measurements is set using a Bayesian method \[33, 36\] with a flat signal prior. A log-normal density function is assigned to the background estimate with the uncertainty derived from data. The total uncertainty incorporates the individual uncertainties on each background process and takes correlations into account.

Exclusion limits for the ADD model are given in Table 2 and significantly improve the previous limits for this model. For unparticles with spin = 0, production cross sections above 54 pb are excluded at 95% confidence level (CL) for $d_U = \Lam_U = 1$ TeV/c^2. The limits for other d_U and \Lam_U are comparable and are shown in Fig. 3 for $d_U = \Lam_U = (1.35, 1.40, 1.45, 1.50, 1.60, 1.70)$, unparticles are excluded at 95% CL for $\Lam_U < (18.9, 8.07, 4.57, 2.90, 1.62, 1.07)$ TeV/c^2, compared to the expected limits of $(13.4, 6.43, 3.75, 2.38, 1.46, 1.00)$ TeV/c^2. From the ADD model with
Figure 3: Observed and expected 95% CL lower limits on the allowed region of unparticle model parameters d_U and Λ_U, compared to those derived from CDF results [12, 13].

Table 2: Observed and expected 95% CL lower limits on the ADD model parameter M_D (in TeV/c^2) as functions of δ, with and without NLO K factors applied.

<table>
<thead>
<tr>
<th>δ</th>
<th>K factor</th>
<th>LO Exp.</th>
<th>LO Obs.</th>
<th>NLO Exp.</th>
<th>NLO Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.5</td>
<td>2.17</td>
<td>2.29</td>
<td>2.41</td>
<td>2.56</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>1.82</td>
<td>1.92</td>
<td>1.99</td>
<td>2.07</td>
</tr>
<tr>
<td>4</td>
<td>1.4</td>
<td>1.67</td>
<td>1.74</td>
<td>1.78</td>
<td>1.86</td>
</tr>
<tr>
<td>5</td>
<td>1.4</td>
<td>1.59</td>
<td>1.65</td>
<td>1.68</td>
<td>1.74</td>
</tr>
<tr>
<td>6</td>
<td>1.4</td>
<td>1.54</td>
<td>1.59</td>
<td>1.62</td>
<td>1.68</td>
</tr>
</tbody>
</table>
\(M_D = 3 \text{ TeV/c}^2 \) and \(\delta = 3 \), which gives the largest signal acceptance of 9.9%, we evaluate a cross-section upper limit for our selection of 18.7 pb and exclude new processes at 95% CL above this value that result in mono-jet events.

In summary, a search is performed for signatures from the ADD and unparticle models in events collected by the CMS experiment from \(pp \) collisions at \(\sqrt{s} = 7 \text{ TeV} \). A final state with an energetic jet and a significant amount of missing transverse energy is analyzed with the first CMS data, corresponding to an integrated luminosity of 36 pb\(^{-1}\). The QCD multijet background is reduced by several orders of magnitude to a negligible level using topological cuts. A measurement of the electroweak background from \(W(\mu\nu) \)-enriched data is used to derive a background estimate for the \(W + \text{jets} \) and \(Z(\nu\nu)+\text{jets} \) remaining in the signal region. The data are found to be in agreement with the expected contributions from SM processes. Limits on model parameters are derived and constitute a significant improvement of those set by previous experiments for ADD and unparticles.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RCNP (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

References

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium
O. Charaf, B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, G.H. Hammad, T. Hreus, P.E. Marage, L. Thomas, C. Vander Velde, P. Vanlaer

Ghent University, Ghent, Belgium
V. Adler, A. Cimmino, S. Costantini, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, D. Ryckbosch, F. Thyssen, M. Tytgat, L. Vanelderen, P. Verwilligen, S. Walsh, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy, T. Caebargs, E. Daubie

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, L. Brito, D. De Jesus Damiao, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
C.A. Bernardes², F.A. Dias, T.R. Fernandez Perez Tomei, E. M. Gregores², C. Lagana, F. Marinho, P.G. Mercadante², S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
N. Darmenov¹, V. Genchev¹, P. Iaydjiev¹, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov
University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, A. Karadzhinova, V. Kozhuharov, L. Litov, M. Mateev, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China
Y. Ban, S. Guo, Y. Guo, W. Li, Y. Mao, S.J. Qian, H. Teng, B. Zhu, W. Zou

Universidad de Los Andes, Bogota, Colombia

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, K. Lelas, R. Plestina, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Dzelalija

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, S. Morovic

University of Cyprus, Nicosia, Cyprus
A. Attikis, M. Galanti, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A. Awad, S. Khalil, A. Radi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
A. Hektor, M. Kadastik, M. Muntel, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
V. Azzolini, P. Eerola, G. Fedi

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Karjalainen, A. Korpela, T. Tuuva

Laboratoire d'Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
D. Sillou

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS-IN2P3, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France
F. Fassi, D. Mercier

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
D. Lomidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany
C. Autermann, V. Blobel, S. Bobrovskyi, J. Draeger, H. Enderle, U. Gebbert, M. Görner,

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece

University of Athens, Athens, Greece
L. Gouskos, T.J. Mertzimekis, A. Panagiotou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras, F.A. Triantis

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, J. Molnar, J. Palinkas, Z. Szillasi, V. Veszpremi

University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India

University of Delhi, Delhi, India

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, S. Dutta, B. Gomber, R. Khurana, S. Sarkar

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research - EHEP, Mumbai, India

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad, N.K. Mondal

Institute for Research and Fundamental Sciences (IPM), Tehran, Iran
H. Arfaei, H. Bakhshiansohi, S.M. Etesami, A. Fahim, M. Hashemi, A. Jafari, M. Khakzad,
A. Mohammadi, M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh, M. Zeinali

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy

INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Albergo, G. Cappello, M. Chiorboli, S. Costa, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbaglio, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, S. Frosali, E. Gallo, S. Gonzi, P. Lenzi, M. Meschini, S. Paololetti, G. Sguazzoni, A. Tropiano

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, S. Colafranceschi, F. Fabbri, D. Piccolo

INFN Sezione di Genova, Genova, Italy
P. Fabbricatore, R. Musenich

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy

INFN Sezione di Napoli, Università di Napoli “Federico II”, Napoli, Italy

INFN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
M. Biasini, G.M. Bilei, B. Caponeri, L. Fanò, P. Lariccia, A. Lucaroni, G. Mantovani, M. Menichelli, N. Nappi, F. Romeo, A. Sartocchia, B. Taroni, M. Valdata
Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand
D. Krofcheck, J. Tam

University of Canterbury, Christchurch, New Zealand
P.H. Butler, R. Doesburg, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, I. Ahmed, M.I. Asghar, H.R. Hooran, W.A. Khan, T. Khurshid, S. Qazi

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Soltan Institute for Nuclear Studies, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, V. Kaftanov¹, M. Kossov¹, A. Krokhotin, N. Lyakhovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, S.V. Rusakov, A. Vinogradov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic²³, M. Djordjevic, D. Krpic²³, J. Milosevic
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland
E. Aguilo, C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Mejias, P. Otiougova, C. Regenfus, P. Robmann, A. Schmidt, H. Snoek
National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Istanbul, Turkey
M. Deliomeroglu, D. Demir37, E. G¨ulmez, B. Isildak, M. Kaya38, O. Kaya38, M. ¨Ozbek, S. Ozkorucuklu89, N. Sonmez40

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom
M. Barrett, M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, W. Martin, I.D. Reid, L. Teodorescu

Baylor University, Waco, USA
K. Hatakeyama, H. Liu

The University of Alabama, Tuscaloosa, USA
C. Henderson
Boston University, Boston, USA

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA

Fairfield University, Fairfield, USA
A. Biselli, G. Cirino, D. Winn
Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida International University, Miami, USA
C. Ceron, V. Gaultney, L. Kramer, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, D. Mesa, J.L. Rodriguez

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, S. Guragain, M. Hohlmann, H. Kalakhety, R. Ralich, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA
Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, University, USA
L.M. Cremaldi, R. Godang, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders, D. Summers

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA
B. Bylsma, L.S. Durkin, J. Gu, C. Hill, P. Killewald, K. Kotov, T.Y. Ling, M. Rodenburg, G. Williams

Princeton University, Princeton, USA
University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

Purdue University Calumet, Hammond, USA
P. Jindal, N. Parashar

Rice University, Houston, USA

University of Rochester, Rochester, USA

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian, M. Yan

Rutgers, the State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA
M.W. Arenton, M. Balazs, S. Boutle, B. Cox, B. Francis, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, R. Yohay

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, P. Lamichhane, M. Mattson, C. Milstène, A. Sakharov

University of Wisconsin, Madison, USA
A: The CMS Collaboration

†: Deceased
1: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
2: Also at Universidade Federal do ABC, Santo Andre, Brazil
3: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
4: Also at British University, Cairo, Egypt
5: Also at Ain Shams University, Cairo, Egypt
6: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland
7: Also at Massachusetts Institute of Technology, Cambridge, USA
8: Also at Université de Haute-Alsace, Mulhouse, France
9: Also at Brandenburg University of Technology, Cottbus, Germany
10: Also at Moscow State University, Moscow, Russia
11: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
12: Also at Eötvös Loránd University, Budapest, Hungary
13: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
14: Also at University of Visva-Bharati, Santiniketan, India
15: Also at Sharif University of Technology, Tehran, Iran
16: Also at Shiraz University, Shiraz, Iran
17: Also at Isfahan University of Technology, Isfahan, Iran
18: Also at Facoltà Ingegneria Università di Roma “La Sapienza”, Roma, Italy
19: Also at Università della Basilicata, Potenza, Italy
20: Also at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy
21: Also at Università degli studi di Siena, Siena, Italy
22: Also at California Institute of Technology, Pasadena, USA
23: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
24: Also at University of California, Los Angeles, Los Angeles, USA
25: Also at University of Florida, Gainesville, USA
26: Also at Université de Genève, Geneva, Switzerland
27: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
28: Also at University of Athens, Athens, Greece
29: Also at The University of Kansas, Lawrence, USA
30: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
31: Also at Paul Scherrer Institut, Villigen, Switzerland
32: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
33: Also at Gaziosmanpasa University, Tokat, Turkey
34: Also at Adiyaman University, Adiyaman, Turkey
35: Also at The University of Iowa, Iowa City, USA
36: Also at Mersin University, Mersin, Turkey
37: Also at Izmir Institute of Technology, Izmir, Turkey
38: Also at Kafkas University, Kars, Turkey
39: Also at Suleyman Demirel University, Isparta, Turkey
40: Also at Ege University, Izmir, Turkey
41: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
42: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
43: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
44: Also at Utah Valley University, Orem, USA
45: Also at Institute for Nuclear Research, Moscow, Russia
46: Also at Los Alamos National Laboratory, Los Alamos, USA
47: Also at Erzincan University, Erzincan, Turkey