The complexity behind the date

For the waiting world, and indeed for most of us here at CERN, ‘the LHC schedule’ simply means the date that the LHC will restart - and we only take notice when that end-date changes. But in fact the schedule is a constantly evolving intricate document coordinating all the repairs, consolidation and commissioning in every part of the machine. So, what actually goes on behind the scenes in timing and planning all the work on one of the most complex scientific instruments ever built?

For example, something as simple as cleaning a water cooling tower - required regularly by Swiss law to prevent Legionella - has a huge impact on the planning: “When you clean the water tanks it means we don’t have water-cooling for the compressors, that means we can’t run the cryogenics, so the temperature starts to go up,” explains Myers. “If a sector gets above 100 K, then the expansion effects of heating can cause problems, and we could have to replace parts.”

(Continued on page 2)
The complexity behind the date

A bigger task, such as warming a sector, causes even more of a headache in planning, and must at times seem like trying to solve the world’s most complex Rubik’s Cube. For instance, despite having one of the world’s largest liquid helium storage facilities, CERN’s tanks hold only just over half of the total helium in the LHC – the rest must remain in the machine itself. “To warm up a sector, you have to shift all the helium to another sector. And if that one already has helium, then you need to shift that too. You end up playing musical chairs with helium!”

The initial restart schedule was decided upon during the Chamonix meeting in February this year. “In fact we’ve done much more work than we planned in Chamonix,” says Myers. Originally the schedule focused mainly on the repairs in Sector 3-4 – repairing, reinstalling and interconnecting the magnets – but since then a lot of extra consolidation work has been done all around the ring: most importantly, the new pressure release valves, and a whole new system for ‘symmetric quench’ protection. “All of these will make the machine that much safer to operate,” Myers adds.

“At Chamonix we agreed on a success-orientated schedule, but we knew from last year that in all likelihood there would be unexpected things that could delay us”, says Myers. “Even with all the additional work that we added, and we added a lot, we were still on schedule up to the beginning of May,” he continues. “We managed to do that by putting a huge amount of more people on the critical operations and by redoing the schedule every week.”

While most of the extra work has not postponed the schedule, two problems have meant it has been necessary to warm sectors, causing unavoidable delay. “At the end of May we found a problem with the copper stabilized busbars, and there was no way round that, and we had to warm Sector 4-5”. At present, all the eight sectors have undergone resistance measurements to check for any imperfection. These crucial measurements will also determine the energy that it is safe to run at (see press release at http://press.web.cern.ch/press/PressReleases/Releases2009/PR13.09E.html). More recently, two leaks were found in the insulating vacuum that required partial warming up of two other sectors.

Even with the repairs completed, planning the restart schedule will continue to be a very complex task, especially when you consider that a powering test in just one of the LHC’s eight sectors actually prevents work on half of the entire ring. “Obviously we want to restart as early as possible,” says Myers. “However, we can’t afford to take any shortcuts with a machine like this, or the price will be very high.”

20 years ago: first collisions (at LEP)

It’s interesting to contrast the start-up of LEP with that of the LHC. With the benefit of hindsight, LEP seems to have got going without a hitch, and indeed it was a smooth start. We circulated beam on 14 July, much to the joy of one of our host states, and it was just a month before the magic words ‘Colliding stable beams’ could be read on the monitors around the lab.

The reality, of course, is somewhat more complex. LEP was a much simpler machine than the LHC, especially at the beginning before the superconducting accelerating cavities were introduced. And there was a great deal of work behind that image of serenity. Back then, of course, the world was less interested in accelerator start-ups than it is today.

Beam diagnostics have also come a long way since 1989, and what was taking the LEP operations team days to do was being accomplished in just hours last September at the LHC. To get circulating beams in both directions on day one was a fantastic achievement for the machine operators, and to capture them and achieve stable circulating beams in just a few days was unprecedented.

Of course, what happened next is well known, and we’re still recovering from it. We are emerging stronger, and the LHC is a better machine than it was a year ago. Switching on a new accelerator is always a difficult task, and sometimes lessons are learned the hard way. That’s certainly true for the LHC, but one thing that last year’s short run has told us is that when we get the LHC running this November, we can expect it to run beautifully.

Rolf Heuer

Watch the video at

http://cdsweb.cern.ch/record/1201453
On 13 August 1989, the OPAL experiment saw the first Z particle at the Large Electron-Positron collider. By 20 September, the machine was ready for serious physics. It was a period of enormous satisfaction for the teams that had worked together to bring the project to fruition and for the project leader Emilio Picasso.

Picasso recalls, "It was a good team, we all knew each other well and respected each other".

Part of the tunnel was ready for installation by 1987, when Jacques Chirac, then French prime minister, visited CERN with Swiss president Pierre Aubert. Asked to arrange an event for the visitors, Picasso proposed that they position the first magnet. Not surprisingly, Chirac asked when the machine would be ready. At the time, there was no definite date, so Picasso decided there and then, answering "14 July 1989 - the 200th anniversary of the storming of the Bastille."

While Chirac responded "very good", Picasso's colleagues were less impressed: "Is Emilio crazy? How will we be ready?" By July 1988, however, the first sector was completely installed and a test with beam by the LEP operations team led by Steve Myers proved that the machine was indeed well designed. A year later, Picasso's prediction was confirmed, when the first beam went round the ring at 11 pm on 14 July 1989.

A month later there was great jubilation as the first collisions occurred. "For a long 10 minutes, Steve Myers and I didn't know whether the beams were colliding or not", Picasso recalls, "and then Aldo Michelini, the OPAL spokesman, called: 'We have the first Z'. It was a beautiful moment. Steve had done an excellent job – and I thought, OK, I've finished my job now."
TOTEM and LHCf: refinements for the restart

TOTEM

The past 10 months at TOTEM have been amongst the busiest since the project's inception. The delay in the LHC startup has certainly had a silver lining for the TOTEM collaboration - not only has it given them a much-needed opportunity to test and install many crucial new detector parts, but also the lower energy range that the LHC will initially operate at in 2009 is perfect for TOTEM physics. “In fact, the LHC almost seems to be following the schedule of TOTEM!” jokes Karsten Eggert, TOTEM spokesperson.

TOTEM is made up of three different detectors spread out over 440 m. The two charged particle trackers, known as T1 and T2, are situated in the CMS cavern on either side of the interaction point. Since last September the remaining three quarters of the T2 detector has now been completely tested and installed. The team is now commissioning all the services to the detector, such as cooling, gas and power supplies. In-situ cosmic ray tests are not very useful for TOTEM, so instead much more emphasis is put on thoroughly testing each individual detector with the test beam facilities from the SPS and with cosmics before installation. The T1 detector is currently being tested and will be installed later in the year, although as the T1 detector is actually situated inside the CMS endcap the installation has to be carefully planned and coordinated by both collaborations.

The third part of TOTEM, the Roman Pots, has also progressed greatly since last September. The pots are positioned at two distances from the interaction point, 147 m and 220 m. “Now all the Roman Pot Detectors at 220 m have been installed, and we will probably even install a few at 147 m,” explained Ernst Radermacher, TOTEM technical coordinator. All the housings for the Roman Pot detectors were completed back in 2007, but for the first beam only 2 of the 24 housings actually had the silicon detectors in place. “The silicon detectors are positioned very close to the beam, just 4 cm at maximum when the pots are in retracted position. Because of the radiation risk in the early stages of operation we didn’t want to install many of the silicon detectors, but after the short LHC run in 2008 we’re much more confident that the detectors won’t be damaged, so we are installing most of the silicon detectors,” adds Radermacher.

Outreach

As well as preparing for the first physics results, the TOTEM Outreach Coordinators also want to make more resources available for the general public. “It all started with the Open Days last year. We produced a variety of new resources, like posters, and had detector units on display,” explains Beatrice Bressan, one of TOTEM’s two outreach coordinators together with Virginia Greco. Since then the collaboration has been making a real effort in outreach activities. “We are currently working on a new website for the general public, in line with the other LHC experiments,” explains Bressan. “We already have a photo gallery, which we will make available to the public. But there will also be many other features, like milestones of the progress of TOTEM.” The new website should be online to coincide with the LHC restart.

Video interview available at http://cdsweb.cern.ch/record/1201265
TOTEM and LHCf: refinements for the restart

LHCf

LHCf is made up of two independent detectors, located in the tunnel at 140 m to either side of the ATLAS collision point. Both detectors were completed and ready to take data last year. In fact while the LHC had circulating beams during the short run last September, LHCf successfully detected interactions between the protons and residual molecules in the beam pipe vacuum (known as beam-gas background events), thus proving the detectors are fully functioning.

Since then little work has been needed on the detectors themselves. During the shutdown period LHCf has been mainly working to optimize the data acquisition system (DAQ). In preparation for the restart, they have also been running simulations at different beam energies.

Outreach

The collaboration has recently had a new brochure published: http://cdsweb.cern.ch/record/1183425/files/CERN-Brochure-2009-006-Eng.pdf. The brochure is also available in Italian and Japanese, as Italian and Japanese researchers make up the majority of the collaboration.

The latest from the LHC

The LHC will run with an energy of 3.5 TeV per beam when it starts up in November this year. The 80 K resistance measurements on the copper stabilizer of the superconducting busbars were completed in the remaining sectors, Sectors 8-1 and 2-3. No abnormally high resistance measurements were found, indicating that no further repairs are necessary for safe running.

Detailed analysis of the resistance data from the entire ring determined a safe initial energy of 3.5 TeV per beam. Once a significant data sample has been collected and the operations team has gained experience in running the machine, the energy will be taken towards 5 TeV per beam. More information is available in the recent press release http://press.web.cern.ch/press/PressReleases/Releases2009/PR13.09E.html.

Following the helium leaks into the insulation vacuum in Sectors 2-3 and 8-1 (see previous update) the cause of the leak in Sector 2-3 has been confirmed as the flexible hose. This has now been replaced by a solid tube, with an expansion loop to mitigate the effect of contraction due to cooling. In preparation for re-cooling the sector, both the insulation and beam vacuum are currently being tested. The final subsector in 8-1 is also now warm, and work will start to remove the flexible hose once the temperature has stabilized.

The Vacuum group have also leak-tested the final subsector in Sector 6-7, completing vacuum validation for the entire ring outside Sectors 2-3 and 8-1. Work is also currently ongoing to install the ‘pressure release springs’ in the sectors without new pressure release ports (see previous update).

A short-circuit to ground occurred in the dipoles circuit of Sector 6-7 on 20 August. The cooling of the sector had to be stopped. The repairs will be carried out in the coming week.

With the present planning Sector 6-7 was due to be ready 2 weeks before the last Sector 8-1, so there will be minimal or no effect on the overall date for first injections.
Student Club

For many young people, their time at CERN can be filled not only with exciting opportunities but also anxious uncertainty. Whether your stay is for just a few months or a few years, it can be quite daunting to arrive at a new place and try to find your way around – and let’s face it, CERN is not an easy place to find your way around! Much of their time here is spent on doing analysis or technical work on the experiments or the LHC; but even at the end of the day or on weekends there are few social outlets at CERN geared just towards young people.

Fortunately, some young people have decided to come together and make their time here not just productive, but fun! Doctoral student, Omer Khalid, Marie Curie fellow, Yi Ling Hwong, and CERN fellow, David Garcia Quintas are the founders of the new CERN Student Club – a slight misnomer as anyone can join, but the idea is to engage young people. The club is a place to air creative ideas, from publishing poetry to planning group outings. A unique aspect to this group is that its decision making process is consensus-driven and everyone can suggest or organize something.

“When I first came to CERN as a technical student there was just a group photo, no social events planned for us or even a special website designed for people of the same category, as is done for the summer students,” said Omer. “And when I returned to CERN as a doctoral student I thought to send out an email to a list of students and fellows and see if anyone would be interested in doing something fun and creative.” It was this random email that started it all, and when Yi Ling and David responded the ideas started flowing. One of the things they did was create a Facebook page linked to their website: http://cern.ch/student-club. There are already around 1,400 members online, with organized monthly drinks at local pubs and information about some of the other CERN clubs’ activities, such as the CERN Cine Club’s upcoming films.

In this age of social networking websites, it seems strange to want to publish and print a newsletter, but the idea came about as a way to let others know the club existed, with more up-to-date information online. This newsletter offers a space for literary expression, including anything from editorial articles, physics-related comics, travel stories, pictures of the month and even local restaurant reviews. Other official CERN clubs’ activities are also featured. Ling, one of the editors for the newsletter, said, “It can be a bit hard finding people to write for the newsletter. Perhaps they feel they will be judged, but it is just for fun.” The HR department at CERN has offered to help the club out by printing 400 copies of each issue of the newsletter. A call for articles was also recently put out amongst the summer students.

“We have also recently organized a trip in July to Chamonix with around 90 participants,” said David. “We want to get people involved and it takes someone to push to make definite plans, but once we have them more people get interested. It provides an opportunity for those that maybe do not have access to a car or do not know what is around in the local area to visit.” Omer added, “During the trip people could break up into smaller groups depending on their interest – some went hiking, others saw the glaciers or visited Mt. Blanc. The most rewarding thing about the trip was seeing a girl next to me on the bus call her mum and tell her what a great time she had.”

For more information about future activities of the Club, please see their website, http://cern.ch/student-club. There is also practical information about what to do when you first arrive at CERN, where to find accommodation, and how to get around Geneva. And if you have any ideas for submissions to the newsletter please email student-club@cern.ch.

They know where the work is, but where’s all the fun? CERN’s new student club provides a much-needed social outlet for all young people coming to CERN for any length of time.

Some of the participants on the trip to Chamonix enjoy the breath-taking scenery.
Good-bye Summer Students 2009!

During the summer months between June and August, your normal lunchtime routine is inevitably disrupted by the small stampede of students that leaves the Main Auditorium just around midday and starts queuing in Restaurant 1. When this happens, you can’t help but notice that the CERN Summer Students have arrived!

With its rich lecture series, inspirational visits and actual work experience, the Summer Student programme provides a real chance to get acquainted with a career in particle physics, engineering and computation. The programme includes a morning lecture series that covers a large variety of topics, from particle physics to engineering, information technology and statistics, and during the afternoon, each student works as a member of one of the experimental teams on a specific supervised project. Discussion sessions complement the morning lectures and each student has the unique chance to descend 100 m underground for a visit to one of the experiments located around the LHC ring. At the end of their stay, students submit brief reports on their assigned projects, and a selected few make short presentations in the Main Auditorium, describing to their colleagues the work that they have been doing at CERN.

Needless to say, this is a very important experience for those who are chosen to participate. The majority of the students are entering their final year of undergraduate education and the experience provides them with an excellent insight into what they will pursue after obtaining their degree. “It’s a fantastic way to actually get involved with ongoing scientific research,” explains Will Barter, who studies at Cambridge University, “It is very useful for me and for the other students because we are at the point when we need to work out where we are going with our careers and whether we really do want to pursue science.”

The prospect of learning from and working alongside scientists conducting the world-leading research at CERN attracts students from both Member and many non-Member States. “This year, a total of 174 students have been enrolled from both Member States and non-Member States with Summer Student contracts,” says Ingrid Schmid, Coordinator of the programme. “The students attending from non-Member states are participating with the help of John Ellis, the Coordinator for non-Member States. Also there are many more Member State and non-Member State students who have come to follow the lectures but are supported financially by their respective universities or other funding agencies.” John Ellis reckons that, in addition to students from the 20 Member States, some 40 non-Member States are represented this year. All will take back with them unforgettable memories of a global partnership in science.

Along with the official programme organized by the HR Department, Summies (as they are commonly called) never fail to set up an after-work programme of social activities, which includes outings and parties. This year they have also formed a Facebook group to aid with organization and spreading news and they have even designed their own souvenir T-shirt. All information about the programme, its past editions and a link to the application form for future editions can be found here:

CERN Summer Students 2009 in the Microcosm garden.
It’s true that many people come to CERN and never leave. But those who do escape CERN’s gravitational pull often go on to a whole variety of jobs all over the world. To find out more about ‘life after CERN’, the Bulletin is starting a new series of interviews with CERN alumni. This issue we kick off with a very high-flying former CERN physicist – Christer Fuglesang. He is scheduled to fly on the STS-128 NASA mission onboard the Discovery space shuttle.

CERN’s astroparticle prepares for launch

N
o, as you might have guessed, this is not a real neutralino, but a soft toy version created by Julie Peasley, the particle zookeeper. It will be taken to the International Space Station (ISS) for a 13-day flight by Christer Fuglesang, a former CERN physicist-turned-astronaut.

Fuglesang started at CERN in 1984 on the UA5 experiment. He later worked on the CPLEAR experiment and ATLAS before being selected for the European Space Agency astronaut corps in 1992. As a memento of his time here, Fuglesang wanted to take something representing CERN up into space on his next mission. But rather than a CERN baseball cap or t-shirt, he will take a specially made neutralino, branded with both the CERN and ESA logos. The neutralino was chosen because it links together astrophysics and particle physics.

Fuglesang’s next mission to the ISS, is scheduled for launch in late August. This is Fuglesang’s second space flight. Originally from Stockholm, he has the honour of being the first Swedish national in space, with his first flight in 2006. The Bulletin managed to get a few moments out of Fuglesang’s busy training schedule to find out more about his life as a particle physicist and an astronaut.

Why did you want to take something from CERN into space? I’ve always felt close to CERN and still love particle physics, although I don’t get to work much on it anymore. I also think there is a nice connection between ESA and CERN, two successful European scientific organisations, both of which I have been lucky enough to work for. I loved my years at CERN, it was a very stimulating environment, with scientifically minded people all around you, always ready for interesting discussions.

Did your experience at CERN improve your chances to be selected at ESA? Astronauts come from many different areas: military pilots, engineers, medical doctors, and researchers in various fields of natural sciences, including physics. I believe my CERN experience gave me an edge because I worked in large collaborations, it is very international, I worked both hands-on with experiment hardware and computer software.

What are the best and worst things about being an astronaut? The best is the variety in things you get to do: fly airplanes, work under water in the pool, simulations in space craft simulators and you get to do a lot of physical training. Best of all, of course, is the space flight itself, which is a wonderful adventure on top of exiting work. The worst thing is that you have little influence on your situation and what you do. You do what you’re told. There is not much creativity in the job.

Does your experience in experimental particle physics help being an astronaut? Not specifically. But in general terms: experiments at CERN are large and technically complex with many people involved, which is also the case with space vehicles. I have used my experience in particle physics to work with radiation caused by cosmic rays affecting astronauts in space, which is a direct “heritage” of my work at CERN. But in fact, this is not something astronauts generally do.

What is your next mission? What will come after that? I will fly on the mission STS-128, planned for 25 August. It’s a 13-day flight with the space shuttle Discovery to the International Space Station (ISS). We are bringing logistics to the ISS: food, clothing and other things to keep the permanent crew of six alive and well. We are also bringing new experiments onboard, and spare parts. Among other things we will exchange a large ammonia tank for cooling on the outside of ISS. That job will take almost two full space walks. After STS-128 I don’t expect to fly more missions. Not that I wouldn’t like to, but there are other European astronauts in line waiting and ESA have too few flight opportunities.

More information about the STS-128 mission is available from:

A video interview with Christer is available at:
http://cdsweb.cern.ch/record/1200735

European Space Agency (ESA) astronaut Christer Fuglesang, STS-116 mission specialist, participates in the mission’s second extravehicular activity (EVA) as construction resumes on the International Space Station. Image: NASA.
A twenty-seven kilometre film

While working towards his film degree in 2008, Bram Conjaerts won an award at the International Documentary Festival for his documentary “Henri and the Islands”, an anthropological documentary about the smallest village in Belgium. In an unlikely change of subject matter he decided to use the prize money to make a film about the LHC.

“With the money granted by the Flemish government, I wanted to create a documentary about something adventurous and something that I did not know about,” explains Conjaerts. “I started doing research about the LHC and CERN and I came across the fantasy of black holes and all the conspiracies revolving around CERN.”

However, the proposed documentary will not focus on black holes. Conjaerts plans on taking a tour of the countryside under which the LHC ring is laid, in order to gain perspectives from those who inhabit the local surroundings. “We will follow the path of the ring above ground. So we’ll interview scientists, but also meet locals who have formed their own opinions about what is going on at CERN,” says Conjaerts. “We might also meet the priests of churches on the route, who have special ideas about religion and science. And also the Chateau Voltaire is near the top of the ring, so there are ideas about incorporating philosophical perspectives of science and the history of the chateau.”

Conjaerts, who is only beginning his career as a filmmaker, will be conducting research for three weeks before starting preliminary filming in September. The rest of the filming will be completed before December 2010.

Hardronic Festival

The terrace of Restaurant 3 was once again transformed into the CERN version of Glastonbury on 25 July, for the 20th edition of the CERN Hardronic Festival. This mythical yearly music event gathered over 1000 CERNois, CERNoises and CERNoisesettes (the little ones jumping on bouncy castles) for a fabulous hot day in a spirit of summer fairs and good music. Twelve of the best bands in the CERN Musiclub played an assortment of excellent music ranging from country to pop and rock, ending with metal mayhem by midnight, which spread havoc amongst a crowd of students who rocked and headbanged into the night.

Produced by the CERN Musiclub and Softball clubs as a community event, under the motto “Have fun together to work better together”, the Hardronic has always been the most popular family entertainment day at CERN.

Awards and Honours

Lyn Evans, LHC project leader and Welsh physicist, received an Honorary Doctorate from the University of Glamorgan on July 14. The University of Glamorgan is the second largest University in Wales with over 22,000 students. Visit the University website at http://www.glam.ac.uk and read the full Press Release issued by the University at

Anne-Sylvie Catherin, Head of the Human Resources Department

Anne-Sylvie Catherin has been appointed Head of the Human Resources Department with effect from 1 August 2009. Mrs Catherin is a lawyer specialized in International Administration and joined CERN in 1996 as legal advisor within the Office of the HR Department Head.

After having been promoted to the position of Group Leader responsible for social and statutory conditions in 2000, Mrs Catherin was appointed Deputy of the Head of the Human Resources Department and Group Leader responsible for Strategy, Management and Development from 2005 to date. Since 2005, she has also served as a member of CCP and TREF. In the execution of her mandate as Deputy HR Department Head, Mrs Catherin closely assisted the HR Department Head in the organization of the Department and in devising new HR policies and strategies. She played an instrumental role in the last five-yearly review and in the revision of the Staff Rules and Regulations.

Environmentally friendly AND cheap?

What with the Medical Service’s “Be active” health campaign, the emphasis placed on two-wheel safety this spring and the sheds for two-wheeled vehicles that are springing up all over the CERN site, it’s time to get on your bike... or one of the bikes available to the personnel, such as the DG/SCG’s new electric cycle.

On Tuesday, 21 July, Building 57 welcomed CERN’s first electric bicycle, and the message to the DG/SCG group is clear: “Use it rather than taking one of the CERN cars as often as you can”.

With this new means of transport that’s easy on the environment (no direct gas emissions) as well as on the wallet (the only cost being the electricity needed to charge the battery), the Safety Commission has embarked on a policy of sustainable development.

This environmentally clean vehicle fits in particularly well at CERN, which is not only a centre of excellence and innovation at the cutting edge of technology but also a laboratory with an extensive surface area and two sites that many members of the personnel need to travel between on a daily basis, not to mention the need for repeated journeys of varying length throughout the day.

In the context of the initiative to make CERN a greener laboratory (see the Word from the DG in issue 20-21/2009 of the Bulletin), the Safety Commission’s General Safety Group has acquired CERN’s first electric bicycle.

The new electric cycle has a maximum speed of 25 km/hour and a range of up to 50 km. Need we say more? No more excuses of the type “I don’t want to arrive at my meeting all hot and bothered” or “I’m tired”!

And let’s not forget the safety side in all this. The bike comes with a safety helmet and reflecting jacket, as well as puncture-resistant tyres. We are sure that this initiative will have a snowball effect and other groups will wish to follow suit.

Over to you!
With great sadness we have learned of the sudden and unexpected passing of Jan Nassalski. Jan was a long-standing and faithful friend of CERN, a prominent figure in the deep inelastic scattering community and more recently a diligent CERN Council delegate. But first and foremost he was an ingenious physicist and dedicated teacher.

Jan Nassalski graduated from the Physics Department of Warsaw University in 1966. He started his scientific career at the Warsaw University of Technology and in 1971 joined the Institute of Nuclear Research (now the Soltan Institute for Nuclear Studies), which he finally headed as Scientific Director.

He has collaborated with the Laboratory of High Energy Physics in the Joint Institute of Nuclear Studies in Dubna, the Rutherford Laboratory in Didcot, and the Fermi Laboratory in Batavia, but from the late 70’s his activity was concentrated at CERN.

His continuous participation in experiments on one of CERN’s longest running experimental facilities, the muon beam, started by joining the European Muon Collaboration. In the early 80’s he set up a group studying the nucleon structure in deep inelastic muon scattering. He participated in the ground-breaking discovery that the quark spins contribute little to the nucleon spin (1988) and was a key contributor to the structure function studies in NMC, leading to the measurement showing violation of the Gottfried sum rule. In the 90’s Jan focused on high precision experiments of the polarised structure of the nucleon. Under his leadership the Warsaw group contributed to the first test of the Bjorken sum rule (SMC) and was essential in studying the gluon polarisation in the nucleon (COMPASS), an important step in understanding the quark/gluon structure of the matter around us. For his colleagues Jan Nassalski was reference point for all aspects of physics in the domain of deep inelastic scattering.

Jan’s group from the Soltan Institute for Nuclear Studies also successfully contributed to the NA48 experiment, with electronic elements required for read-out of the Liquid Krypton Calorimeter. Jan’s group was very active in physics analysis, leading some rare kaon decay studies and precise measurements of fundamental properties of neutral mesons. In particular, Jan was one of the main authors of the precision-measurement of the eta meson mass. He was a rigorous physicist, a great motivator and a crystal clear communicator.

In his home country of Poland, he was tireless in his outreach activities, publishing widely in the Polish media. Whenever CERN launched a new outreach initiative, the uptake in Poland was phenomenal, and Jan’s hand could be seen behind that success. For example, a CERN educational CD was distributed free with a popular science magazine, and more recently, Jan has played a vital role in making CERN’s high school teacher programme a great success in Poland. Jan was particularly proud of this work, and justifiably so.

As a Council delegate, Jan represented his country’s interests powerfully and with great conviction. Although softly spoken, he knew how to carry an argument. Yet even in the most heated of debates, he was a model of politeness and courtesy. Jan’s colleagues at CERN and in the CERN Council agree that he will be strongly missed. Particle physics has lost not only an excellent physicist, but also a true gentleman.

Thanks to his natural kindness and sense of humor, his infinite patience and above all his extreme rigour and great integrity, exchanges with Jan were of high standard and rewarding. The quality and accuracy of his judgments always made them an irreplaceable reference. Jan was to all of us more than a colleague, we will greatly miss his perceptiveness and sensitivity as well as his advice. We will all remember him as a precious friend.

Jan Nassalski

His colleagues and friends
ANNUAL REPORT OF THE PENSION FUND

The 2008 Annual Report and Accounts of the Pension Fund which was approved by Council at its session of 19 June 2009, is now available from the Departmental secretariats.

It is also available on the Pension fund site:

http://pensions.web.cern.ch/Pensions/

Pension beneficiaries can obtain this document from Emilie Clerc (tel. + 41 22 767 87 98), building 5-5/017.

Secretariat of the Pension Fund
72742

GENERAL MEETING OF THE PENSION FUND

All members and beneficiaries of the Pension Fund are invited to attend the Annual General Meeting to be held in the CERN Council Room on Wednesday 9 September 2009 from 14:00 to 16:30 p.m.

The Agenda comprises:

1. Opening Remarks - F. Ferrini
2. Results and presentation of the Annual Report 2008 - C. Cuénoud
 Recent evolution of financial markets. 2009-2010 work plan - T. Economou.
 Copies of the 2008 Report are available from departmental secretariats.
3. Report on Funding policy and principles of the Pension Fund:
 Working Group 2 Report. - F. Ferrini
4. Questions from members or beneficiaries
 Persons wishing to ask questions are encouraged to submit them, where possible, in writing in advance, addressed to the secretariat of the Pension Fund.
5. Conclusions - F. Ferrini
As usual, participants are invited to drinks after the Meeting.

NB The minutes of the 2008 General Meeting are available from the Administration of the Fund (tel. + 41 22 767 27 42; e-mail Sevda.Budun-Kocaturk@cern.ch

REVIEW YOUR COMPUTER SECURITY NOW AND FREQUENTLY!

The start-up of LHC is foreseen to take place in the autumn and we will be in the public spotlight again. This increases the necessity to be vigilant with respect to computer security and the defacement of an experiment’s Web page in September last year shows that we should be particularly attentive. Attackers are permanently probing CERN and so we must all do the maximum to reduce future risks.

Security is a hierarchical responsibility and requires to balance the allocation of resources between making systems work and making them secure. Thus all of us, whether users, developers, system experts, administrators, or managers are responsible for securing our computing assets. These include computers, software applications, documents, accounts and passwords. There is no “silver bullet” for securing systems, which can only be achieved by a painstaking search for all possible vulnerabilities followed by their mitigation. Additional advice on particular topics can be obtained from the relevant IT groups or members of the security team, but we include here a basic list of items to be considered by all CERN computer users:

- Review access rights to your computers, documents (InDiCo, EDMS, TWiki, etc.), as well as files and directories on AFS, DFS and local disks. Don’t give write access if read access is sufficient and limit access only to those who need it.
- Protect web sites. Very few should be publicly accessible and those which are should not reveal details of system architecture and design, computer configurations or source code.
- Ensure that accounts have been closed for individuals who have left.
- Reduce the number of service accounts where possible.
- Harden computers by removing unnecessary applications, disable unneeded services such as for Web, FTP, etc., use automated update and patching services as well as up-do-date antivirus-software for PCs (but also for embedded devices like oscilloscopes), upgrade SLC3 to SLC5, use local firewalls to block both incoming and outgoing traffic which is not expected.
- Protect private SSH keys.
- For experiment networks, review central firewall openings and review whether devices need to be trusted or exposed.

Further information about how to improve computer security may be found on the Web sites http://cern.ch/security/ as well as www.ISSEG.eu which include material on risk analysis, training and recommendations for general users, developers and system administrators. As well as the many security awareness presentations which are given, training courses are also available on writing secure code and secure Web applications (see http://cern.ch/security/training).

CERN Computer Security Team
computer.security@cern.ch
DRAFT Agenda for the meeting to be held on Wednesday 9 September 2009
At 9:15 a.m. in room 60-6-002

1. Chairman’s remarks
2. Adoption of the agenda
3. Minutes of the previous meeting
4. Matters arising
5. News from the CERN Management
6. Code of Conduct
7. Equal Opportunities at CERN
8. An update on Safety at CERN
9. The CERN shuttle service
10. Reports from ACCU representatives on other committees
11. Users’ Office news
12. Any Other Business
13. Agenda for the next meeting

Anyone wishing to raise any points under item 12 is invited to send them to the Chairman in writing or by e-mail to
Christopher.Onions@cern.ch

Chris Onions (Secretary)

ACCU meeting is the forum for discussion between the CERN Management and the representatives of CERN Users to review the practical means taken by CERN for the work of Users of the Laboratory. The User Representatives to ACCU are (CERN internal telephone numbers in brackets):

Austria G. Walzel (76592) Norway J. Nystrøm (73601)
Belgium C. Vander Velde (71539) Poland M. Witek (78967)
Bulgaria P. Závada (75877) Slovak Republic A. Dubnickova (71127)
Czech Republic J.B. Hansen (75941) Spain S. Cabrera Urbán (71170)
Denmark K. Lassila-Perini (79354) Sweden K. Jon-And (71126)
Finland F. Kunne (76342) Switzerland M. Weber (71271)
France A. Rozanov (71145) United Kingdom M. Campanelli (72340)
Germany H. Lacker (78736) Non-Member States S. McMahon (75039)

CERN Management is represented by S. Bertolucci (Director for Research and Computing), S. Lettow (Director for Administration and General Infrastructure) and J. Salicio Diez/PH with C. Onions/PH as Secretary. The Human Resources Department is represented by J. Purvis, the General Infrastructure Services Department by M. Tiirakari and the CERN Staff Association by M. Goossens. Other members of the CERN Staff attend as necessary for specific agenda items. Anyone interested in further information about ACCU is welcome to contact the appropriate representative, or the Chairman or Secretary (75039 or Christopher.Onions@cern.ch).

http://cern.ch/ph-dep-ACCU/
CERN MANAGEMENT & COMMUNICATION TRAINING PROGRAMME

Timetable of courses from September to December 2009

Please check our Web site to find out the number of places available, which may vary.

Management Curriculum

<table>
<thead>
<tr>
<th>Course</th>
<th>Dates</th>
<th>Places Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Scheduling & Costing</td>
<td>3, 4 September</td>
<td>(2 places available)</td>
</tr>
<tr>
<td>Communicating Effectively – Residential</td>
<td>15, 16, 17 September</td>
<td>(6 places available)</td>
</tr>
<tr>
<td>Personal Awareness & Impact – Follow-up</td>
<td>17, 18 September</td>
<td>(full)</td>
</tr>
<tr>
<td>Project Management</td>
<td>22, 23 September</td>
<td>(full)</td>
</tr>
<tr>
<td>Personal Awareness & Impact</td>
<td>22, 23, 24 September</td>
<td>(full)</td>
</tr>
<tr>
<td>Introduction to Leadership</td>
<td>7, 8, 9 October</td>
<td>(full)</td>
</tr>
<tr>
<td>Managing Teams</td>
<td>10, 11, 12 November</td>
<td>(full)</td>
</tr>
</tbody>
</table>

Communication Curriculum

<table>
<thead>
<tr>
<th>Course</th>
<th>Dates</th>
<th>Places Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Time</td>
<td>22 September + 27 October + 18 November</td>
<td>(3 places available)</td>
</tr>
<tr>
<td>Making presentations</td>
<td>14, 15 October + 9 November</td>
<td>(Full)</td>
</tr>
<tr>
<td>Communiquer efficacement dans votre équipe</td>
<td>19, 20 octobre</td>
<td>(complet)</td>
</tr>
<tr>
<td>Communiquer efficacement</td>
<td>19, 20 octobre + 9, 10 novembre</td>
<td>(complet)</td>
</tr>
<tr>
<td>Techniques d’exposé et de présentations</td>
<td>10, 11 novembre + 8 décembre</td>
<td>(1 place disponible)</td>
</tr>
<tr>
<td>Service Orientation/Orientation service</td>
<td>12, 13 November/novembre</td>
<td>(5 places available/disponibles)</td>
</tr>
</tbody>
</table>

If you are interested in attending any of the above course sessions, please talk to your supervisor and/or your DTO, and apply electronically via EDH from the course description pages that can be found at: http://cta.cern.ch/cta2/f?p=300

Management & Communication programme
Sudeshna Datta Cockerill, Head of the programme 74127 - Sudeshna.datta.cockerill@cern.ch
Secretariat 78144 - Nathalie.dumeaux@cern.ch
Carlson Wagonlit Travel
http://www.carlsonwagonlit.com

CARLSON WAGONLIT TRAVEL INFORMS
From 7 to 9 September come and visit our “Andalusia” stand at the entrance to Restaurant No. 1 – Novae. Take part in our competition where you could win over 1000 Swiss francs worth of travel vouchers from our partner VT Vacances!

Carlson Wagonlit Travel
http://www.carlsonwagonlit.com
MONDAY 24 AUGUST

CERN HEAVY ION FORUM
11:00 - Bldg. 1-1-025
Transport coefficients of the “perfect fluid” created in RHIC collisions
R. LACEY / STONY BROOK UNIVERSITY

TH STRING THEORY SEMINAR
14:00 - TH Auditorium, Bldg. 4
Quantum Tunneling in Flux Compactifications
J. J. BLANCO-PILLADO / TUFTS UNIVERSITY

TECHNICAL PRESENTATION
14:00 - Main Building, Room A, 61-1-017
SEMIC RF Electronic GmbH & Orient Microwave Corporation

TUESDAY 25 AUGUST

TH STRING THEORY SEMINAR
14:00 - TH Auditorium, Bldg. 4
Quantum Tunneling in Flux Compactifications
J. J. BLANCO-PILLADO / TUFTS UNIVERSITY

TH BSM FORUM
14:00 - Bldg. 1-1-025
(Non-)Abelian discrete anomalies
M. RATZ / UNKNOWN

TH STRING THEORY SEMINAR
14:00 - TH Auditorium, Bldg. 4
TBA
J. HECKMAN / HARVARD UNIVERSITY

WEDNESDAY 26 AUGUST

TH THEORETICAL SEMINAR
14:00 - TH Auditorium, Bldg. 4 3-006
New state of matter in white dwarfs
G. GABADADZE / NEW YORK UNIVERSITY

TH BSM FORUM
14:00 - Bldg. 1-1-025
(Non-)Abelian discrete anomalies
M. RATZ / UNKNOWN

TH STRING THEORY SEMINAR
14:00 - TH Auditorium, Bldg. 4
TBA
J. HECKMAN / HARVARD UNIVERSITY

TH PHENCLUB
11:00 - Bldg. 1-1-025
TBA
G. SENJANOVIC

CONFERENCES & WORKSHOPS
14:00 - Main Auditorium, Bldg. 500
Celebration in Honour of Andre Martin’s 80th Birthday
L. ALVAREZ-GAUME / CERN

TH BSM FORUM
14:00 - Bldg. 1-1-025
tba
T. VOLANSKY / PRINCETON, INST. ADVANCED STUDY

FRIDAY 28 AUGUST

CERN COLLOQUIUM
16:30 - Main Auditorium, Bldg. 500
Cosmology as Science?: From Inflation to Eternity
L. M. KRAUSS / ARIZONA STATE UNIVERSITY

WEDNESDAY 4 SEPTEMBER

COMPUTING SEMINAR
10:00 - IT Auditorium, Bldg. 31-3-004
Securing with the OSSTMM 3
P. HERZOG, C. BAUMGARTNER

TH BSM FORUM
14:00 - Bldg. 1-1-025
(Non-)Abelian discrete anomalies
M. RATZ / UNKNOWN

TH STRING THEORY SEMINAR
14:00 - TH Auditorium, Bldg. 4
TBA
J. HECKMAN / HARVARD UNIVERSITY

BE SEMINAR
16:00 - Main Auditorium, Bldg. 500
Beam loss mechanisms in relativistic heavy-ion colliders
R. BRUCE / LUND UNIVERSITY, SWEDEN

TH CERN COLLOQUIUM
16:30 - Main Auditorium, Bldg. 500*
The Creation of the Universe
S. HAWKING / UNIVERSITY OF CAMBRIDGE
* PLEASE NOTE UNUSUAL DATE AND TIME!

WEDNESDAY 9 SEPTEMBER

TH CERN COLLOQUIUM
16:30 - Main Auditorium, Bldg. 500*
The Creation of the Universe
S. HAWKING / UNIVERSITY OF CAMBRIDGE
* PLEASE NOTE UNUSUAL DATE AND TIME!

TH STRING THEORY SEMINAR
14:00 - TH Auditorium, Bldg. 4
TBA
J. HECKMAN / HARVARD UNIVERSITY

TH PHENCLUB
11:00 - Bldg. 1-1-025
TBA
G. SENJANOVIC

CERN COLLOQUIUM
16:30 - Main Auditorium, Bldg. 500
Climate Change: The Physical Basis and Latest Results
T. STOCKER / PHYSICS INSTITUTE, UNIVERSITY OF BERN

WEDNESDAY 9 SEPTEMBER