Photon and diphoton production at ATLAS

Marco Delmastro
CERN
on behalf of the ATLAS Collaboration

Moscow, August 23 2011
Why measure prompt photons?

probe the gluon content of the proton

QCD backgrounds to new physics

test NLO $pQCD$
predictions using a measurement without jets

resummation

k_T factorisation

fragmentation important at low E_T, suppressed by isolation cut. MCs rely on fragmentation function to compute

Marco Delmastro

Photon physics at the LHC with the ATLAS detector
We measure *isolated prompt* photons

prompt

- Direct from the hard scatter
- Parton fragmentation
 - More important at low E_T

isolated

- Isolation criterion imposed to reduce QCD background
 - Photons from neutral meson decays in jets
- Reduces fragmentation component
 - ~30% of inclusive cross section at 15 GeV
 - <10% above 35 GeV
ATLAS prompt photon measurements

 - 0.88 pb\(^{-1}\), 10 GeV-threshold photon trigger
 - 15 < \(E_T \) < 100 GeV
 - |\(\eta \)| in [0,0.6) [0.6,1.37) [1.52, 1.81)

 - 35 pb\(^{-1}\), 40 GeV-threshold photon trigger
 - 45 < \(E_T \) < 400 GeV
 - |\(\eta \)| in [0,0.6) [0.6,1.37) [1.52, 1.81) [1.81, 2.37)

 - 37 pb\(^{-1}\), 15 GeV-threshold diphoton trigger
 - \(E_T > 16 \) GeV
 - \(m_{\gamma\gamma} < 200 \) GeV
Measuring photons with ATLAS

- **Inner detector**
 - track charged particles
 - measure transition radiation
 - e/γ discrimination
 - γ conversion reconstruction

- **Pb-LAr EM calorimeter**
 - η/φ/longitudinal segmentation
 - fine granularity in 1st layer up to η<2.37
 - γ energy and direction
 - γ/π⁰ separation (EM shower moments)
Photon identification

S3 ("Back")

S3 ("Middle")

S1 ("Strips")

Presampler

• **loose and tight selections**
• optimized separately for unconverted and converted γ

Photon Identification at ATLAS

- Photon identification is crucial for understanding the properties of particles at the Large Hadron Collider (LHC).
- ATLAS detector is used to study various processes, including diphoton production.
- The identification criteria are optimized separately for unconverted and converted photons.
- Loose and tight selections are used to improve the signal-to-background ratio.

Graphical Representation

- The graphs show the distribution of events based on different selection criteria.
- The x-axis represents R, a variable related to the pseudorapidity (η).
- The y-axis shows the number of entries per 0.025 bin.
- Data from 2010 are compared with simulation results for both unconverted and converted photons.

Technical Details

- ATLAS Preliminary
- $\sqrt{s} = 7$ TeV, $\int L dt = 15.8$ nb$^{-1}$
- $|\eta| < 0.6$

Conclusion

- The results from ATLAS provide valuable insights into high-energy physics.
- Further analysis and improvements in photon identification are ongoing to enhance the precision of measurements.
 Photon isolation

- Define an isolated photon comparable to theory
- Isolation energy corrected event-by-event for leakage, pileup and underlying event

✓ Following Cacciari, Salam and Sapeta, JHEP 04, 065 (2010)
✓ Average correction for 1 Primary vertex
 - PYTHIA: 440 MeV
 - HERWIG: 550 MeV
 - DATA: 540 MeV

avoid model-dependent underlying event corrections
Photon identification efficiency

ATLAS

- Simulation $\sqrt{s} = 7$ TeV
- Systematic uncertainty

Unconverted γ
- $|\eta|<0.6$
- $E_T^{\text{iso}} < 3$ GeV

Efficiency

$\epsilon_{\text{ID}} \sim 95\%$ for $E_T > 100$ GeV

$\epsilon_{\text{trigger}} \sim 100\%$ for γ passing the offline selections

$\epsilon_{\text{reco}} \sim 85 (70)\%$ in EM Barrel (EndCaps)

- Main loss due to dead readouts, recovered in Winter shutdown

From MC, corrected for Data/MC discrepancies (EM shower moments)

- Separately for unconverted and converted γ

- Combined in $\gamma\gamma$ event efficiency according to $\gamma\gamma$ E_T spectrum and conversion composition

Marco Delmastro

photon and diphoton production at ATLAS
inclusive photon cross section
Background estimate

\[N_{\text{sig}}^A = N^A - N^B \frac{M^A}{M^B} \]

\[P = 1 - \frac{N^B}{N^A} \frac{M^A}{M^B} \]
Prompt photon purity

Main systematic uncertainties:
- MC inputs (e.g. signal leakage correction, up to 10%)
- Background control region definition (up to 6%)

Isolated electron contamination estimated from data and MC control samples.
Inclusive isolated cross section

JETPHOX isolation < 4 GeV in cone $\Delta R = 0.4$
(vary isolation from 2 to 6 GeV)
CTEQ 6.6 PDFs. MSTW 2008: 3-5% difference

JETPHOX uncertainty dominated by scale variation
(independently from $\mu = 0.5 E_T \gamma$ to $\mu = 2E_T \gamma$):
20% \rightarrow 8%
Inclusive isolated cross section

\[\frac{d\sigma}{dE_T} [\text{pb GeV}^{-1}] \]

- Data 2010 \(\int L dt = 35 \text{ pb}^{-1} \)
- Luminosity uncertainty
- JETPHOX CTEQ 6.6
- \(E_T^\text{iso}(\Delta R < 0.4) < 4 \text{ GeV} \)

\[\frac{d\sigma}{dE_T} [\text{pb GeV}^{-1}] \]

- Data 2010 \(\int L dt = 0.88 \text{ pb}^{-1} \)
- Luminosity uncertainty
- JETPHOX CTEQ 6.6
- \(E_T^\text{iso}(\Delta R < 0.4) < 4 \text{ GeV} \)

\[E_T [\text{GeV}] \]

\[\text{data/theory} \]

\[0.6 \quad 0.8 \quad 1 \quad 1.2 \quad 1.4 \]

\[60 \quad 100 \quad 150 \quad 200 \quad 250 \quad 300 \quad 350 \quad 400 \]

\[1.52 < |\eta| < 1.81 \]

\[1.81 < |\eta| < 2.37 \]
diphoton cross section
Background estimates

2x2D-sidebands

L’ sample, leading candidate

Control region

non-TIGHT

C

D

Identification cut

Signal region

TIGHT

A

B

Control region

E_{T,1}^{iso} [GeV]

-5 0 5 10 15 20 25 30 35

A sample, sub-leading candidate

Control region

non-TIGHT

C’

D’

Identification cut

Signal region

TIGHT

A’

B’

Control region

E_{T,1}^{iso} [GeV]

-5 0 5 10 15 20 25 30 35

2D isolation template fit

ATLAS

Data 2010, \sqrt{s} = 7 TeV, \int L dt = 37 pb^{-1}

E_T > 16 GeV

γγ

γj

jγ+jj

γγ+jγ+jj

(leading photon)

events / GeV

5 10 15 20 25

ATLAS

Data 2010, \sqrt{s} = 7 TeV, \int L dt = 37 pb^{-1}

E_T > 16 GeV

γγ

γj

jγ+jj

γγ+jγ+jj

(sub-leading photon)

events / GeV

5 10 15 20 25

Marco Delmastro

photon and diphoton production at ATLAS
Background estimates

\[
\begin{pmatrix}
PP \\
PF \\
FP \\
FF
\end{pmatrix} =
\begin{pmatrix}
\epsilon_1 \epsilon_2 \\
\epsilon_1 (1 - \epsilon_2) \\
(1 - \epsilon_1) \epsilon_2 \\
(1 - \epsilon_1)(1 - \epsilon_2)
\end{pmatrix}
\begin{pmatrix}
\epsilon_1 f_2 \\
\epsilon_1 (1 - f_2) \\
(1 - \epsilon_1)(1 - f_2) \\
(1 - \epsilon_1)(1 - \epsilon_2)
\end{pmatrix}
\begin{pmatrix}
f_1 \epsilon_2 \\
f_1 (1 - \epsilon_2) \\
(1 - f_1) \epsilon_2 \\
(1 - f_1)(1 - \epsilon_2)
\end{pmatrix}
\begin{pmatrix}
f_1 f_2 \\
f_1 (1 - f_2) \\
(1 - f_1) f_2 \\
(1 - f_1)(1 - f_2)
\end{pmatrix}
\begin{pmatrix}
W_{\gamma\gamma} \\
W_{\gamma j} \\
W_{jj} \\
W_{jjj}
\end{pmatrix}
\]

Passes or Fails

\(\epsilon_i \) = probability for a \(\gamma \) to pass isolation cut (data-driven)

\(f_i \) = probability for a jet to pass isolation cut (data-driven)

Event weights

accounting for the correlation of the isolation energy of the 2 \(\gamma \) candidates

ATLAS

Data 2010, \(\sqrt{s} = 7 \text{ TeV}, \int L dt = 37 \text{ pb}^{-1} \)

(TITI sample)

- event weighting
- 2D fit
- 2D-sidebands

e\(\rightarrow\)\(\gamma\) fake rate measured from data from e\(\gamma\) pairs close to Z mass
Isolated diphoton cross section

\[\frac{d\sigma}{dm_{\gamma\gamma}} \text{ [pb GeV]} \]

Data 2010, $\sqrt{s} = 7$ TeV, $\int L_{\text{int}} = 37$ pb$^{-1}$

- $p_T > 16$ GeV, $E_T^{\text{iso(part)}} < 4$ GeV, $\Delta R > 0.4$
- $|\eta| < 2.37$ excluding $1.37 < |\eta| < 1.52$

- measured (stat)
- measured (stat \oplus syst)
- DIPHOX
- ResBos

\[\text{ATLAS} \]

\[\text{DIPHOX} \]

\[\text{ResBos} \]
Isolated diphoton cross section

\[\text{Data 2010, } \sqrt{s} = 7 \text{ TeV, } \int Ldt = 37 \text{ pb}^{-1} \]

- $p_T > 16 \text{ GeV, } E_T^{\text{iso(part)}} < 4 \text{ GeV, } \Delta R_{\gamma\gamma} > 0.4$
- $|\eta| < 2.37$ excluding $1.37 < |\eta| < 1.52$

- measured (stat)
- measured (stat ⊕ syst)
- DIPHOX
- ResBos
More than 1 fb$^{-1}$ collected in 2011...

\[\text{ATLAS Preliminary} \]

\[\sqrt{s} = 7 \text{ TeV}, \int \text{Ldt} = 1.08 \text{ fb}^{-1} \]

- Data 2011 (tight, isolated γ)
 $E_T^{\text{iso}} < 5 \text{ GeV}$
Unconverted $E_{T}^{iso} < 5$ GeV
Pass tight cuts $E_{T} = 960$ GeV
Summary

• ATLAS has measured on the full \(pp \) collision data set collected in 2010 at \(\sqrt{s} = 7 \) TeV (~35 pb\(^{-1}\)) the production cross-sections for isolated photons and isolated diphotons
 ✓ Isolation energy corrected event-by-event for pileup and UE
 ✓ Data-driven background subtraction

• Results in good agreement with theoretical pQCD computation at NLO. Some differences observed:
 ✓ Inclusive photon production at low \(E_T \) (Fragmentation? \(K_T \) factorization?)
 ✓ Azimuth separation for diphoton production (Resummation?)

• ATLAS is capable to explore the photon physics in a robust way!

• Looking ahead...
 ✓ Photon + (heavy flavor) jets
 ✓ Inclusive photons at very high ET, using refined isolation prescriptions
 ✓ Diphotons at high \(m_{\gamma\gamma} \)
 ✓ Double/triple differential cross sections, cross section ratios, …