Search for the Higgs boson in the $H \to WW \to ℓνjj$ decay channel in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS Collaboration

A search for a Higgs boson has been performed in the $H \to WW \to ℓνjj$ channel in 1.04 fb$^{-1}$ of pp collision data at $\sqrt{s} = 7$ TeV recorded with the ATLAS detector at the Large Hadron Collider. No significant excess of events is observed over the expected background and limits on the Higgs boson production cross section are derived for a Higgs boson mass in the range $240 \, \text{GeV} < m_H < 600 \, \text{GeV}$. The best sensitivity is reached for $m_H = 400 \, \text{GeV}$, where the 95% confidence level upper bound on the cross section for $H \to WW$ production is 3.1 pb, or 2.7 times the Standard Model prediction.

In the Standard Model (SM \cite{1,3}), a scalar field vacuum expectation value breaks the electroweak symmetry, gives masses to the W and Z bosons \cite{4,6}, and manifests itself directly as the so-called Higgs boson. A primary goal of the Large Hadron Collider (LHC) is to test the SM mechanism of electroweak symmetry breaking by searching for Higgs boson production in high energy proton-proton collisions. Thanks in part to the large gluon luminosity at LHC energies \cite{7,8}, the Higgs boson is predominantly produced via gluon fusion ($gg \to H$) \cite{9,12} and to a lesser extent via vector boson fusion ($qq \to qgH$) \cite{13,15}. Current limits from direct searches at LEP and the Tevatron exclude Higgs boson masses $m_H < 114.4 \, \text{GeV}$ \cite{16} and $156 \, \text{GeV} < m_H < 177 \, \text{GeV}$ \cite{17} at 95% C.L.

For $m_H \gtrsim 135 \, \text{GeV}$, the dominant decay mode of the Higgs boson is $H \to WW^{(*)}$ \cite{18,19}. The most sensitive Higgs boson search channel in the mass region around $m_H = 160 \, \text{GeV}$ is the purely leptonic mode $H \to WW^{(*)} \to ℓνℓν$. For $m_H \gtrsim 200 \, \text{GeV}$, the $H \to WW \to ℓνjj$ channel, where one W decays to a pair of jets ($W \to jj$), also becomes important. The advantage of $H \to WW \to ℓνjj$ over $H \to WW \to ℓνℓν$ is the ability to fully reconstruct the Higgs boson mass.

This Letter describes a search for a Higgs boson in the $H \to WW \to ℓνjj$ channel using the ATLAS detector at the LHC, based on 1.04 fb$^{-1}$ of pp collision data at a center-of-mass energy $\sqrt{s} = 7$ TeV collected during 2011. In this analysis, the distribution of the $ℓνjj$ invariant mass $m(ℓνjj)$, reconstructed using the charged-lepton neutrino invariant mass constraint $m(ℓν) = m(W)$ and the requirement that two of the jets in the event are consistent with a $W \to jj$ decay, is used to search for a Higgs boson signal. The results of a similar search for $H \to WW \to ℓνjj$ based on 35 pb$^{-1}$ of data recorded during the 2010 LHC run were presented in Ref. \cite{20}.

The present search, based on the measured shape of the $m(ℓνjj)$ distribution, is restricted to $m_H > 240 \, \text{GeV}$, in order to ensure a smoothly varying non-resonant background, well clear of the effective kinematic cutoff $m(ℓνjj) \sim 160 \, \text{GeV}$. For $m_H \gtrsim 600 \, \text{GeV}$, the jets from $W \to jj$ decay begin to overlap due to the large W boost, and the natural width of the Higgs boson becomes large. A detailed treatment of these issues is beyond the scope of the present analysis. The best sensitivity in this analysis is expected for $m_H \sim 400 \, \text{GeV}$.

The ATLAS detector \cite{21} is a multipurpose particle physics apparatus with forward-backward symmetric cylindrical geometry covering the pseudorapidity range $|η| < 2.5$ for track and $|η| < 4.9$ for jet measurements \cite{22}. The inner tracking detector (ID) consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. The ID is surrounded by a thin superconducting solenoid providing a 2 T magnetic field, and by a high-granularity liquid-argon (LAr) sampling electromagnetic (EM) calorimeter. An iron-scintillator tile calorimeter provides hadronic coverage in the central rapidity range. The end-cap and forward regions are instrumented with LAr calorimetry for both electromagnetic and hadronic measurements. The muon spectrometer surrounds the calorimeters and consists of three large superconducting toroids, each with eight coils, a system of precision tracking chambers, and detectors for triggering.

Detailed Monte Carlo (MC) studies of signal and backgrounds have been carried out \cite{23}. The interaction with the ATLAS detector is modeled with GEANT4 \cite{24} and the events are processed using the same reconstruction that is used to perform the reconstruction on data. The effect of multiple pp interactions in the same bunch crossing (pile-up) at the high luminosities achieved by the LHC in 2011 is modeled by superimposing, at the generation stage, several simulated minimum-bias events on the simulated signal and background events. MC samples were generated with different pile-up levels and subsequently reweighted to match the pile-up conditions observed in the data.

The data used in this analysis were recorded during...
Electron candidates are selected from clustered energy deposits in the EM calorimeter with an associated significance of hits in the inner detector. They must lie in the range $|\eta| < 2.47$, excluding $1.37 < |\eta| < 1.52$ and small calorimeter regions affected by temporary operational problems. The track associated with the electron candidate is required to point back to a reconstructed primary vertex with a transverse impact parameter $d_0/\sigma_{d_0} \leq 10$ and an impact parameter along the beam direction $z_0 \leq 10$ mm. Electrons are required to be isolated: the sum of the transverse energies in cells inside a cone $\Delta R < 0.3$ around the cluster barycenter (excluding the electron itself) must satisfy $\Sigma(E_T^{\text{iso}}) < 4$ GeV.

Muons are reconstructed by combining tracks in the inner detector and muon spectrometer, with efficiency $92 \pm 0.6\%$ for muons with $p_T > 20$ GeV. Muons are required to pass basic quality cuts on the number and type of hits in the inner detector. They must lie in the range $|\eta| < 2.4$, and satisfy the same impact parameter cuts as electrons. They must also be isolated, with the sum of the transverse momenta of all tracks in a cone $\Delta R < 0.2$ around the muon satisfying $\Sigma(p_T^{\text{track}})/p_T^\mu < 0.1$.

Jets are reconstructed from topological clusters using the anti-k_t algorithm [24] with radius parameter $R = 0.4$. The reconstructed jets are calibrated using E_T and η dependent correction factors based on MC simulation and validated with data [28]. They are required to have $E_T > 25$ GeV and $|\eta| < 4.5$. Jets are considered b-tagged if they contain a reconstructed displaced secondary vertex consistent with a b-decay [24]. The operating point chosen for this tag is set at an efficiency of 50% for b-jets in $t\bar{t}$ events in MC, and the mistag rate for non-b-jets has been measured to be between 0.1% and 2.0%, depending on the $|\eta|$ and p_T of the jet [24]. The event missing transverse momentum E_T^m is reconstructed starting from topological energy clusters in the calorimeters calibrated according to the type of the object to which they are associated. The momenta of any muons in the event are also taken into account in the E_T^m measurement.

For this analysis, events are required to have at least one vertex with at least three associated tracks with $p_T > 400$ MeV. There must be exactly one reconstructed lepton candidate (electron or muon) with $p_T > 30$ GeV. In order to ensure that this analysis is statistically independent of the ATLAS $H \to ZZ \to \ell\ell\nu
\nu$ analysis, events are vetoed if there is an additional lepton with $p_T > 20$ GeV, including electrons which only satisfy the looser identification cuts used in the $H \to ZZ \to \ell\ell\nu
\nu$ analysis [31].

Events are required to have $E_T > 30$ GeV to account for an unobserved neutrino from $W \to \ell\nu$ decay. There must be exactly two jets ($H + 0$ jet sample) or exactly three jets ($H + 1$ jet sample) with $E_T > 25$ GeV and $|\eta| < 4.5$. The two jets with invariant mass (m_{jj}) closest to the mass of the W boson are required to satisfy $71 < m_{jj} < 91$ GeV. These two jets are taken as the W decay jets and are required to lie in the range $|\eta| < 2.8$, where the jet energy scale (JES) is best known (to better than $\pm(4 - 8)\%$ for $E_T > 25$ GeV [28]).

After this event selection, the background is expected to be dominated by W+jets production. Other important backgrounds are Z+jets, multijets (MJ) from QCD processes, top quark, and diboson (WW, WZ, and ZZ) production. In order to further reject backgrounds from top quark production, events are rejected if any of the jets is b-tagged.

Although the MC is not used to model the background in the final fit used to obtain limits, a combination of MC and data-driven methods is used to better understand the background yields at this intermediate stage. Backgrounds due to W/Z+jets, $t\bar{t}$, and diboson production are modeled using the ALPGEN [31], MC@NLO [32], and HERWIG [33] generators, respectively. A small contribution from $W/Z + \gamma$ events is generated using MadEvent [34]. The shape of the MJ background is modeled using histograms derived from data samples selected in an identical way to the $H \to WW \to \ell\nu jj$ selection except that the electron identification requirements are loosened and the isolation requirement on muons is inverted. In the loosened selection, electrons satisfying the complete set of identification criteria are not included. Expected contributions from non-QCD processes to the MJ shape histogram are subtracted using MC predictions.

To normalize the MJ shape histogram, the loose lepton control sample selection is further relaxed by removing the E_T^m cut to construct a shape template for the E_T^m distribution for the MJ background. The normalizations of this MJ template and the corresponding template for W/Z+jets taken from MC are fit to the observed E_T^m distribution, and the resulting scale factors are then used to normalize the MJ and W/Z+jets processes in comparisons between data and expectations. Both the gluon fusion and the vector boson fusion signal production processes are simulated using the POWHEG [35, 36] event generator interfaced to PYTHIA [37], normalizing to the NNLO cross sections [19] shown in Table II.

In order to reconstruct the invariant mass $m(\ell\nu jj)$ of the WW system, the mass constraint $m(\ell\nu) = m(W)$ is used, where the neutrino transverse momentum p_T^ν is taken from the event E_T^m. This equation can have real or complex solutions. In the case of complex solutions,
the event is rejected. This requirement rejects 45% of background events in both data and MC, but only 36% of MC signal events with \(m_H = 400 \) GeV. In the case of two real solutions, the solution with smaller neutrino longitudinal momentum \(|p_{\nu}^{z}| \) is taken, based on simulation studies. Table I shows the observed and expected numbers of events for signal and background after this full selection.

Figure 1 (top) shows the \(m(\ell\nu jj) \) distribution for this final sample. The expected signal for \(m_H = 400 \) GeV is also shown, scaled up by a factor of 2.7. The \(m(\ell\nu jj) \) resolution is \((7.5 \pm 0.6)\% \) at \(m_H = 400 \) GeV, depending mostly on the jet energy resolution as checked in data versus MC by various jet-balance techniques [38], and shows a \(1/\sqrt{m_H} \) dependence over the range of this analysis. Limits are set using a maximum likelihood fit to the shape of the observed \(m(\ell\nu jj) \) distribution in the range \(200 < m(\ell\nu jj) < 2000 \) GeV. The non-resonant background in this fit is modeled by the sum of two exponential functions. The normalization and slope of each exponential are unconstrained parameters in the fit. The double-exponential form for the total background is well justified by fits to the \(m(\ell\nu jj) \) distributions obtained by selecting events with \(m_{jj} \) just below (50 < \(m_{jj} \) < 60 GeV) or just above (100 < \(m_{jj} \) < 110 GeV) the \(W \) peak, respectively. As a consistency check, the background parametrization was altered to use three exponentials and the shift in signal yield as compared to the nominal background shape was found to be small as compared to other uncertainties. The \(m(\ell\nu jj) \) distribution for the expected signal at each hypothesized \(m_H \) is modeled using the signal MC samples.

The fit includes nuisance parameters which account for the uncertainty in the efficiency of the electron, muon, and jet reconstruction. The electron and muon efficiencies are varied within their uncertainties, leading to an uncertainty in the signal efficiency of \(\pm 1.6\% \) and \(\pm 0.6\% \), for electrons and muons respectively. Varying the jet energy scale within its uncertainties yields a corresponding uncertainty of \(\pm 17\% \) in the expected signal, and smearing the jet energies within the uncertainty on their resolutions results in a signal uncertainty of \(\pm 8.6\% \). The limits also take into account a \(\pm 3.7\% \) uncertainty on the

![Table I: Cross section for Standard Model Higgs boson production and the branching ratio (BR) for \(H \to WW \to \ell\nu jj \) (\(\ell = e/\mu \)) as a function of mass [19].](image)

<table>
<thead>
<tr>
<th>(m_H) (GeV)</th>
<th>(\sigma(qg \to H)) [pb]</th>
<th>(\sigma(qq \to H)) [pb]</th>
<th>(\text{BR}(H \to \ell^\pm\nu\ell\nu jj))</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>2.4±0.4</td>
<td>0.30±0.014</td>
<td>0.202</td>
</tr>
<tr>
<td>400</td>
<td>2.0±0.31</td>
<td>0.162±0.010</td>
<td>0.170</td>
</tr>
<tr>
<td>500</td>
<td>0.85±0.15</td>
<td>0.095±0.0032</td>
<td>0.160</td>
</tr>
<tr>
<td>600</td>
<td>0.33±0.063</td>
<td>0.058±0.005</td>
<td>0.164</td>
</tr>
</tbody>
</table>

![FIG. 1: Top: the reconstructed invariant mass \(m(\ell\nu jj) \) in the data summed over lepton flavor and jet multiplicity. The expected backgrounds are also shown. Bottom: the difference between data and the fitted non-resonant background. The expected contribution from Higgs boson decays for \(m_H = 400 \) GeV in the SM is also shown, multiplied by a factor of 2.7.](image)

![FIG. 2: The expected and observed 95% confidence level upper limits on the Higgs boson production cross section divided by the SM prediction for an integrated luminosity of 1.04 fb\(^{-1}\). For any hypothesized Higgs boson mass, the background contribution used in the calculation of this limit is obtained from a fit to the \(m(\ell\nu jj) \) distribution. The green and yellow bands show the ±1σ and ±2σ uncertainties on the expected](image)
luminosity determination [33] and a ±19.4% uncertainty on the predicted cross section [19], taken to be independent of mass. The off-shell effects and interference between the signal and backgrounds, which are discussed in Refs. [19, 40, 41], have been neglected. A conservative estimate of this uncertainty would be 150 × m_H^3 (m_H in TeV), where the m_H^3 form is motivated by the scaling of the Higgs width with m_H and the normalization factor is chosen to give ~30% at m_H = 600 GeV, based on Figure 6 of Ref. [11]. If this were included, it would increase the total systematic error by less than 6% for m_H ≤ 500 GeV, and as much as 15% for m_H = 600 GeV where the limit would be increased by ~18%.

Figure 1 (bottom) shows the difference between the m(ℓνjj) distribution in data and the fitted background. There is no indication of any significant excess. Limits are extracted using the Profile Likelihood [42] as a test statistic and following the CL_s procedure described in Ref. [43].

Figure 2 shows the 95% CL upper bound on the cross-section times branching ratio for Higgs production in units of the Standard Model prediction, σ × BR_H→WW/(σ × BR_H→WW)^SM, as a function of m_H. The observed cross section limit for m_H = 400 GeV is 3.1 pb, or 2.7 times the SM prediction, while the corresponding expected limits are 5.2 pb or 4.5 times the SM expectation. In the SM with an additional heavy fourth generation [44, 45], the gluon fusion mechanism for production of a Higgs boson is expected to be substantially enhanced. Within the four generation context, a Higgs boson is excluded at 95% CL by the present data over the range m_H = 310 – 430 GeV.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEAS-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCUK, Norway; MINSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

ACKNOWLEDGEMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

TABLE II: Expected and observed numbers of events for an integrated luminosity of 1.04 fb⁻¹ after all selection cuts (including the requirement that m(ℓν) = m(W) has a real solution) for the signal and the main backgrounds. For the W/Z+jets and MJ backgrounds, the uncertainties are taken from the fit to the E_T distribution used to normalize these backgrounds. For signal, top and diboson, the quoted uncertainties are JES (±17%), jet energy resolution (8.6%), cross section (±10% for both top and diboson, and ± 19.4% for signal), and luminosity (±3.7%), added in quadrature; the total errors in the rightmost column for these processes are the linear sum of the errors for the individual channels since these sources of systematic uncertainty are correlated across channels. Statistical errors are small compared to these uncertainties.

<table>
<thead>
<tr>
<th>Process</th>
<th>Expected Signal (m_H = 400 GeV)</th>
<th>Data</th>
<th>Expected Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(ℓνjj) + 0j</td>
<td>11 ± 3.0</td>
<td>6446</td>
<td>6400 ± 160</td>
</tr>
<tr>
<td>H(µνjj) + 0j</td>
<td>9 ± 2.4</td>
<td>7201</td>
<td>7220 ± 440</td>
</tr>
<tr>
<td>H(ℓνjj) + 1j</td>
<td>13 ± 3.5</td>
<td>4134</td>
<td>4390 ± 150</td>
</tr>
<tr>
<td>H(µνjj) + 1j</td>
<td>10 ± 2.7</td>
<td>4380</td>
<td>4530 ± 370</td>
</tr>
<tr>
<td>H + 0j or 1j</td>
<td>43 ± 12</td>
<td>22360</td>
<td>22630 ± 640</td>
</tr>
</tbody>
</table>

...
[18] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis coinciding with the axis of the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, \phi) are used in the transverse plane, \phi being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle \theta as \eta = -\ln\tan(\theta/2).
[22] \Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}, where \Delta \phi and \Delta \eta are the relevant separations in \phi and \eta, respectively.
11 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain
12 (a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
14 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
15 Department of Physics, Humboldt University, Berlin, Germany
16 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
17 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
18 (a) Department of Physics, Bogazici University, Istanbul; (b) Division of Physics, Dogus University, Istanbul;
(c) Department of Physics Engineering, Gaziantep University, Gaziantep; (d) Department of Physics, Istanbul Technical University, Istanbul, Turkey
19 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica, Università di Bologna, Bologna, Italy
20 Physikalisches Institut, University of Bonn, Bonn, Germany
21 Department of Physics, Boston University, Boston MA, United States of America
22 Department of Physics, Brandeis University, Waltham MA, United States of America
23 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
24 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
25 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) University Politehnica Bucharest, Bucharest; (c) West University in Timisoara, Timisoara, Romania
26 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
27 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
28 Department of Physics, Carleton University, Ottawa ON, Canada
29 CERN, Geneva, Switzerland
30 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
31 (a) Departamento de Fisica, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
32 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu;
(d) High Energy Physics Group, Shandong University, Shandong, China
33 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Aubiere Cedex, France
34 Nevis Laboratory, Columbia University, Irvington NY, United States of America
35 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
36 (a) INFN Gruppo Collegato di Cosenza; (b) Dipartimento di Fisica, Università della Calabria, Arcavata di Rende, Italy
37 Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Krakow, Poland
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
39 Physics Department, Southern Methodist University, Dallas TX, United States of America
40 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technical University Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham NC, United States of America
45 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, 2700 Wiener Neustadt, Austria
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg i.Br., Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 Institute of Physics and HEP Institute, Georgian Academy of Sciences and Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
Netherlands
105 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
106 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
107 Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia
108 Department of Physics, New York University, New York NY, United States of America
109 Ohio State University, Columbus OH, United States of America
110 Faculty of Science, Okayama University, Okayama, Japan
111 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
112 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
113 Palacký University, RCP TM, Olomouc, Czech Republic
114 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
115 LAL, Univ. Paris-Sud and CNRS/IN2P3, Orsay, France
116 Graduate School of Science, Osaka University, Osaka, Japan
117 Department of Physics, University of Oslo, Oslo, Norway
118 Department of Physics, Oxford University, Oxford, United Kingdom
119 (a)INFN Sezione di Pavia; (b) Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, Pavia, Italy
120 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
121 Petersburg Nuclear Physics Institute, Gatchina, Russia
122 (a)INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
123 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
124 (a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal; (b) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain
125 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
126 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
127 Czech Technical University in Prague, Praha, Czech Republic
128 State Research Center Institute for High Energy Physics, Protvino, Russia
129 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
130 Physics Department, University of Regina, Regina SK, Canada
131 Ritsumeikan University, Kusatsu, Shiga, Japan
132 (a) INFN Sezione di Roma I; (b) Dipartimento di Fisica, Università La Sapienza, Roma, Italy
133 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Fisica, Università Roma Tre, Roma, Italy
135 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c) Université Cadi Ayyad, Faculté des sciences Semlalia Département de Physique, B.P. 2390 Marrakech 40000; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des Sciences, Université Mohammed V, Rabat, Morocco
136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a l'Energie Atomique), Gif-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
138 Department of Physics, University of Washington, Seattle WA, United States of America
139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140 Department of Physics, Shinshu University, Nagano, Japan
141 Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby BC, Canada
143 SLAC National Accelerator Laboratory, Stanford CA, United States of America
144 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145 (a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
146 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Department of Physics and Astronomy, Stony Brook University, Stony Brook NY, United States of America
149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
America

z Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

y Also at California Institute of Technology, Pasadena CA, United States of America

z Also at Institute of Physics, Jagiellonian University, Krakow, Poland

ab Also at Institute of Physics, Academia Sinica, Taipei, Taiwan

ac Also at Department of Physics, Oxford University, Oxford, United Kingdom

ad Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

af Also at Department of Physics, Nanjing University, Jiangsu, China

* Deceased