Appendix A
Statistical Mechanical Derivation of the Free Volume Theory

Here we present a statistical mechanical derivation of the grand potential. According to statistical mechanics (see for instance T.L. Hill, *An Introduction to Statistical Thermodynamics*. Addison-Wesley, New York, 1962) the grand potential is given by

$$\Omega(N_c, V, T, \mu_d) = -kT \ln \Xi(N_c, V, T, \mu_d), \quad (A.1)$$

where Ξ is the grand canonical partition function

$$\Xi = \sum_{N_d=0}^{\infty} \exp(\mu_d N_d / kT) Q(N_c, V, T, N_d). \quad (A.2)$$

Here Q is the canonical partition function

$$Q = \frac{1}{\Lambda_c^{3N_c}\Lambda_d^{3N_d} N_c!N_d!} \int \exp[-(U_c + U_{cd})/kT] \, dR^{N_c} d\mathbf{r}^{N_d}, \quad (A.3)$$

where U_c is the interaction between the N_c hard spheres and U_{cd} the interaction between the N_c hard spheres and the N_d (depletants). The latter term in the interaction limits the integration over the position of the penetrable hard spheres to the free volume which is a function of the positions \mathbf{R}^{N_c} of the N_c hard spheres. This leads to

$$Q = \frac{1}{\Lambda_c^{3N_c}\Lambda_d^{3N_d} N_c!N_d!} \int \exp[-U_c/kT] \langle V_{\text{free}} \rangle^{N_d} d\mathbf{r}^{N_d}. \quad (A.4)$$

Substituting (A.4) in (A.2) and taking into account that

$$\sum_{N_d=0}^{\infty} \frac{\exp(\mu_d N_d / kT) \langle V_{\text{free}} \rangle^{N_d}}{\Lambda_d^{3N_d} N_d!} = \exp[P \langle V_{\text{free}} \rangle / kT], \quad (A.5)$$
where we have used that the right hand side of (A.5) is just the grand canonical partition of the penetrable hard spheres with chemical potential μ_d in a volume $\langle V_{\text{free}} \rangle$, we obtain

$$
\Xi = \frac{1}{N_c^{N_c} N_c!} \int \exp[-(U_c - P_d^R \langle V_{\text{free}} \rangle)/kT] \, d\mathbf{R}^{N_c}
$$

(A.6)

where $Q(N_c, V, T)$ is the canonical partition function of the N_c hard spheres and the pointed brackets with subscript 0 indicate an average over the unperturbed configurations of the hard spheres. Substitution of (A.6) in (A.1) leads to

$$
\Omega = -kT \ln Q(N_c, V, T) - kT \ln \left(\exp \left(\frac{P^R \langle V_{\text{free}} \rangle}{kT} \right) / \left(\exp \left(\langle V_{\text{free}} \rangle / kT \right) \right) \right) \bigg|_0
$$

(A.7)

This expression for Ω is exact but, from a point of view of calculating it, difficult to handle. To make progress we replace the average of the exponent by the exponent of the average and obtain the following approximate expression for the grand potential

$$
\bar{\Omega} = F_0(N_c, V, T) - P^R \langle V_{\text{free}} \rangle_0
$$

(A.8)

This is precisely expression (3.24) we obtained from the thermodynamic integration route using the approximation (3.22). Using the well-known result that for an arbitrary probability distribution the following inequality holds

$$
\langle \exp(x) \rangle \geq \exp(\langle x \rangle)
$$

it follows immediately that the approximate grand potential obeys the inequality

$$
\bar{\Omega} \geq \Omega.
$$

(A.9)

We could have surmised this result also from our thermodynamic integration approach. As addition of depletants leads to some “clustering” of the hard spheres one expects that

$$
\langle V_{\text{free}} \rangle \geq \langle V_{\text{free}} \rangle_0
$$

and hence using the approximation (3.22) in the integration (3.18) leads to an approximate grand potential that is larger than the exact one. The statistical mechanical derivation presented above presents a rigorous proof of this supposition.
Index

A
Aggregation, 39, 165
Arrested states, 163
Asakura and Oosawa, 13, 14, 18, 23, 70
Atomic force microscope, 98

B
Binodal, 27, 125
Bridging flocculation, 131
Brownian, 1

C
Carnahan–Starling, 111
Cell model, 113
Clusters; equilibrium, 158
Colloid, 1
Colloid limit, 31
Colloid-atom analogy, 109
Colloidal disks, 92
Computer simulation, 73, 81, 87
Concentration profile between two flat plates, 72
Correlation length, 142, 143
Crystalline solid, 197
Crystallization, 24

D
De Broglie wavelength, 112
Demixing; the three-phase region, 162
Density profile around two spheres, 76
Density profile ideal chains; flat plate
Density profile ideal chains; sphere
Density profile of disks between two walls, 95
Density profile of disks near a wall, 94
Density profile of hard spheres between two walls, 82
Density profile of hard spheres near a wall, 79
Density profile of rods between two walls, 95
Density profile of rods near a wall, 90
Depletion, 3, 12
Depletion interaction between a sphere and a plate, 63
Depletion interaction between plates; phs
Depletion interaction between spheres; ideal chains
Depletion interaction between spheres; phs
Depletion interaction between two plates; disks, 92
Depletion interaction between two plates; hard spheres, 84
Depletion interaction between two plates; ideal chains
Depletion interaction between two plates; rods, 88
Depletion interaction between two spheres; disks, 190
Depletion interaction between two spheres; hard spheres, 79
Depletion interaction between two spheres; ideal chains
Depletion interaction between two spheres; rods, 184
Depletion interaction; AOV potential, 13
Depletion thickness, 78
Depletion thickness at a sphere; ideal chains, 8
Depletion thickness near a plate, ideal chains
Depletion; charges, 154
Depletion; permittivity gradients, 158
Derjaguin approximation, 64, 66, 76, 78, 91
D (cont.)
DFT, 36, 37
Diffusion, 49
DLVO, 4
Double layer interaction, 7

E
Excluded volume, 141–143, 145–148

F
Fluid-crystal coexistence, 115
Fluid-crystal transition, 110
Force, 57
Force method, 49
Fractal aggregation
Free volume theory, 32, 109
Friction coefficient, 49

G
Gaussian chain, 68
Gaussian distribution function
Gel, 132, 158
Gibbs adsorption equation, extended, 58
Gibbs–Duhem relation, 112
Glass, 132, 158
Gold, 3

H
Hard sphere fluid-crystal
transition, 110
Hard-sphere crystal, 113
Hard-sphere fluid, 110

I
Ideal chain, 67
Le Sage, 17
Ideal Gaussian chain, 68
Ideal polymer, 67

L
Le sage, 17
Liquid crystalline phases, 194
Liquid window, 118

M
Macromolecular crowding, 48
Many-body interactions, 109
Milk, 3

N
Negative adsorption, 71
Nematic, 223, 225
Nonequilibrium behaviour, 136

O
Onsager, 57, 194
Optical tweezers, 98
Orientational distribution function, 196
Orientational entropy, 195
Osmotic pressure, 57

P
Packing entropy, 195
Pair-wise additive, 118
Partition function, 68
Penetrable hard spheres, 107, 110, 117
Phase behaviour, 24
Phase coexistence, 124
Phase diagram; hard spheres plus phs
Phase diagrams; experimental colloid-polymer mixtures
Phase separation, 11
Platelets, 94, 95
Plates; parallel flat, 58
PMMA, 133
PMMA particles, 115
Polyelectrolyte depletion
Polymer adsorption, 130
Polymer chains in a Θ-solvent, 147
Polymer chains in a good solvent, 213
Polystyrene, 133
Potential of mean force, 57, 80, 104
PRISM, 36, 158
Product function, 72
Protein limit, 31

R
Radius of gyration; excluded-volume polymer chains
Radius of gyration; ideal chain
RGT; Renormalization group theory, 142
Rod-like colloids, 88
Rods, 188

S
Salt, 3
Scaled particle theory, 120
Scattering, 98, 100, 104, 105, 131, 134, 160, 167, 170
Sedimentation, 49
Self-organisation, 44
Semi-grand potential, 119
Shape selection, 43
Size selection, 43
Slip, 49
Smectic, 195, 221
Spherocylinders, 188
Spinodal, 27
Spinodal decomposition, 159
Structure factor, 105, 106
Superposition approximation, 72
Surface force apparatus, 98

T
Thermal energy, 1
Thermodynamic perturbation theory, 116
Tie-line, 27
Total internal reflection microscopy, 98
Transient gel, 166
Triple line, 127
Triple points, 126

U
Unbalanced force, 4, 16, 17

V
Van ’t Hoff’s law, 123
Van der Waals, 2
Van der Waals interaction, 4
Virial coefficient, second osmotic, 148
Virial coefficient; second osmotic, 148
Virial coefficients, 111
Virial coefficients of hard spheres, 112
Virial expansion, 111
Viscosity; apparent, 48
Viscosity; effective, 48
Von Guericke, 16, 17

W
Widom insertion theorem, 119