Recent Advances of the Engineering Prototype of the CALICE Analog Hadron Calorimeter

Oskar Hartbrich1 and Mark Terwort2 on behalf of the CALICE collaboration

1- Bergische Universität Wuppertal
Gaußstraße 20, 42119 Wuppertal - Germany
2- DESY
Notkestraße 85, 22607 Hamburg - Germany

The CALICE collaboration is developing an engineering prototype of an analog hadron calorimeter for a future linear collider detector. The prototype has to prove the feasibility of building a realistic detector with fully integrated front-end electronics. The performance goals are driven by the requirement of high jet energy resolution and the measurement of the details of the shower development. The signals are sampled by small scintillating plastic tiles that are read out by silicon photomultipliers. The ASICs are integrated into the calorimeter layers and are optimized for minimal power consumption. For the photodetector calibration an LED system is integrated into each of the detector channels. In this report the status and performance of the realized module are presented. In particular, results from timing measurements are discussed, as well as tests of the calibration system. The new module has also been used in the DESY test beam environment and first results from the electron beam tests are reported.

1 Introduction

Within the CALICE collaboration [1] new technologies for calorimeters for a future linear collider (LC) experiment are developed and tested. Figure 1 shows a possible design of the (barrel) calorimeters for a LC detector. The sandwich analog hadron calorimeter (AHCAL) with 48 layers is a cylindrical structure with an inner and outer radius of 2.0 m and 3.1 m, respectively. Inside the AHCAL the electromagnetic calorimeter (ECAL) will be placed, while it is surrounded by the magnet. A major aspect for the design is the improvement of the jet energy resolution compared to previous experiments. This can be achieved by measuring the details of the spatial shower development for a good shower separation and combining these information with measurements from the tracking detectors. This approach is known as particle flow and has been validated [2] with the physics prototype [3] of the CALICE AHCAL. A very high segmentation of the calorimeters in all dimensions is mandatory for a good performance of particle flow algorithms.

A new engineering prototype [4] is currently being developed to demonstrate that a scalable device can be built that meets the requirements of an LC experiment. Key requirements for the front-end electronics are very low power consumption and full integration into the

Figure 1: Layout of the barrel calorimeter system of a LC detector. The AHCAL is shown in green and the ECAL in blue, while the structure is surrounded by the magnet.
active calorimeter layers. The prototype is based on scintillating tiles that are read out by silicon photomultipliers (SiPMs). First subunits (HCAL base unit, HBU) with 144 detector channels of size $36 \times 36 \text{cm}^2$ have been designed and extensively tested in the laboratory as well as in the DESY test beam facility.

In Sec. 2 the concept and current status of the prototype are presented, while results from recent tests are discussed in Sec. 3.

2 Design and status of the engineering prototype

Figure 1 illustrates that the AHCAL is divided into two sections along the beam direction and in 16 sectors in ϕ-direction. Each sector consists of 48 layers with a total thickness of 110 cm and a length of 220 cm. A single layer consists of 16 mm thick stainless steel (or 10 mm thick tungsten) absorber plates and an active layer part that is subdivided into several HBUs. Each layer has about 2500 channels, which adds up to about 4 million channels for the whole barrel AHCAL. All electronics connections and interface modules are placed at the two end-faces of the barrel, which are easily accessible for maintenance and service lines.

The AHCAL layers are subdivided into three parallel slabs, which consist of six HBUs that are interconnected via ultra-thin flex leads. Figure 2 shows the current setup of four assembled HBUs. Each HBU features 144 detector channels of $3 \times 3 \text{cm}^2$ size.

The energy deposited in the calorimeter is sampled by 3 mm thick scintillating plastic tiles and the scintillation light is guided with an integrated wavelength shifting fiber to a SiPM with a size of 1.27 mm2. The SiPMs comprise 796 pixels operated in Geiger mode with a gain of $\sim 0.5 \cdot 10^6 - 2.0 \cdot 10^6$. The tiles are connected below the PCB with a nominal distance of 100 μm by two alignment pins that are plugged into holes in the PCB. A photo of 70 assembled tiles on the backside of an HBU is shown in Fig. 3(a).

The 36-channel SPIROC2b ASICs [5], that read out the analog signals from the SiPMs, are mounted on the top side of the PCB and are lowered into cutouts by $\sim 500 \mu$m to reduce the height of the active layers. They are equipped with 5 V DACs for channel-wise bias voltage adjustment. Two gain modes are provided, where the high gain mode is primarily foreseen for taking calibration data and the low gain mode measures signals with higher amplitudes up to SiPM saturation. To avoid the need for an active cooling system inside the calorimeter layers for the final LC operation, the power consumption has to be limited to 25 μW (40 μW) per channel (including SiPMs). This is only possible when parts of the ASICs are switched off when they are not needed. This is done according to the bunch train structure of the LC (power pulsing) [6]. The on-detector zero suppression with an adjustable threshold is integrated into the ASICs as well as the digitization step with a 12-bit ADC for charge and a 12-bit TDC for time measurements. The TDC comprises two ramps with
Figure 3: (a) Photo of 70 tiles that are assembled below an HBU. The orientation of the wavelength shifting fibers depends on the position of the holes for the pins. This is determined by the details of the PCB design. (b) Diagram of the LED driver circuit.

variable lengths between 200 ns and 5 µs, depending on the operation mode (LC or test beam). The working principle as well as the performance of the TDC in LC and test beam mode are discussed in Sec. 3.1.

Since the response of SiPMs strongly depends on the temperature (∼ 1.7%/K) and the applied bias voltage (∼ 2.5%/100 mV), a calibration system is needed in order to correct for these effects. Furthermore, SiPMs saturate at high light intensities due to the limited number of pixels, which also has to be measured. Therefore, each channel contains a circuit for pulsing an integrated UV LED, where the light amplitude can be controlled by an external voltage. A fast trigger with a pulse width of 40 ns and an analog bias voltage of 0 V - 10 V is provided by the corresponding detector interface module (middle interface board in Fig. 2). For the gain calibration low light intensities are used to extract the gain from the distances of individual peaks in a single-pixel-spectrum, while for higher light intensities (corresponding to ∼ 100 minimum-ionizing particles) the SiPMs saturate. Figure 3(b) shows a circuit diagram of the LED driver. The middle bias capacitor $C_1 = 150 \text{ pF}$ is charged and upon an LED trigger signal, that opens the transistor, C_1 is discharged by a current flowing through the LED. The resistor $R_1 = 50 \Omega$ guarantees a fast fall time of the optical LED pulse. Pulse lengths of about 10 ns have been measured for a large range of amplitudes, which is needed for a good quality of the single-pixel-spectra. In order to minimize the number of calibration runs in test beam operations, it is important to have a reasonably uniform light output for a large number of channels. First tests are ongoing to investigate, if this can be achieved by closing solder jumpers to add the bias capacitors $C_2 = 22 \text{ pF}$ and $C_3 = 82 \text{ pF}$ to the default capacitor C_1. More details of the driver circuit can be found in [4]. An alternative concept is also studied that is based on few strong LEDs on special interface boards, where the light is distributed via notched fibers [7].

As shown in Fig. 2 each slab is connected to a data acquisition system (DAQ). The current setup comprises a Central Interface Board that hosts the Detector Interface (left), the steering board for the calibration system (middle) and the power module (right), that distributes all voltages needed in the slab. More details about the concept of the DAQ are reported in [4] and references therein.
3 Measurements and results

The main goal of the current tests of the prototype modules is the commissioning of the design concept for a multi-channel prototype. On one side, this requires tests of the functionality and performance of all subcomponents in the laboratory as well as in a test beam environment. This has been done extensively in the past (see [4] and references therein) and is still ongoing. Results of recent tests are reported in the following. On the other side, system aspects have to be considered and the performance of larger setups as shown in Fig. 2 has to be tested. This will be possible with the next, final stage of the prototype operation, when a complete layer with up to 18 HBUs (72 ASICs) can be operated and read out.

3.1 Time measurement

In addition to the energy measurement of the shower, it is useful to measure also the arrival time of a signal in each cell. With this information one can distinguish between prompt and delayed shower components, which can be used e.g. for the identification of late neutrons. This discrimination improves the performance of the particle flow algorithm. The SPIROC2b ASIC has the capability of measuring the arrival time of a signal relative to the bunch clock (5 MHz at a LC) with a 12-bit Wilkinson TDC. The voltage ramp is started with the rising edge of the clock and is reset with the next rising clock edge. Since the reset of the ramp introduces dead time, two ramps have been implemented. The first ramp is only active on even clock cycles, while the second ramp is only active on odd clock cycles. A multiplexer switches between these two ramps (which again may introduce some dead time).

The working principle of the time measurement is depicted in Fig. 4(a). There are two possible operation modes foreseen in the current HBU design. In the LC mode the ramp has a length of 200 ns (to match the bunch structure of the machine), while in test beam mode the ramp has a length of about 5 µs (in order to reduce dead time due to multiplexing). These values can be further adapted to the test beam needs in the DAQ firmware. To exploit the full dynamic range of the TDC in case of a change of the ramp length, the slope of the ramp can also be changed by SPIROC2b bias points. The
physics goal of the performance of the time measurement is to achieve a resolution of about 1 ns - 3 ns in test beam mode to be able to distinguish between prompt and late shower components. In order to test the performance of the TDC, a signal was injected into one input channel and the ramp was measured with a stepwise delay of the injected signal with respect to the SPIROC2b clock. Figure 4(b) shows a typical TDC ramp measured in LC mode. The two ramps have slightly different peak values, while the dead time between the maximum of one ramp and the start of the other ramp is caused by the multiplexer. Both issues will be improved in the next generation of the ASIC. The resolution is determined to be ~ 300 ps. This can be improved in the future by optimizing the ramp slope and exploiting the full dynamic range of the TDC. The measurement also shows that the use of the LC mode in a test beam environment is not ideal, since about 50% of a clock cycle would be dead time. Therefore, the clock period is tuned to about 5 μs. This compromises the resolution, since the slope of the TDC ramp has to be chosen less steep. The measured ramp in test beam mode provides a resolution of about 3 ns. This can also be improved by tuning the TDC ramp as well as optimizing the clock period, such that a final resolution of 1 ns will be achievable in test beam mode.

3.2 Light amplitude equalization of LED system and SiPM saturation

The main goal of the LED calibration system is to measure the gain of each SiPM by pulsing LED light of low intensity into the tiles. Since this has to be achieved in as few calibration runs (or with as few different LED bias voltages) as possible, the light output of the LEDs have to be equalized, as discussed in Sec. 2. The goal is to find a suitable combination and optimal values of the capacitors C_1, C_2 and C_3 for each tile, such that the range of the LED bias voltage that is needed for the LED to produce photons is as small as possible. Each possible combination of capacitors has been used to measure the LED light output as a function of the bias voltage for a small set of tiles. Figure 5(a) shows the bias voltage, where the measured LED light amplitude exceeds a small threshold (starts flashing), as a function of the total capacitance (sum of the nominal values of the capacitors). As expected, the threshold decreases as the capacitance increases. The range of the bias voltage can already been decreased with this method. Nevertheless, further optimization of the capacity values
is needed and further studies will be done in order to optimize the calibration procedure.

The second task of the LED system is to measure the saturation of the SiPMs. Figure 5(b) shows some typical saturation curves for different channels measured with LED light in the low gain mode of the ASIC. Note that the visible saturation is not due to ADC saturation, since the dynamic range of 12-bit is not fully exploited.

3.3 MIP and light yield test beam measurement

One HBU that is equipped with scintillator tiles is currently under test at the DESY test beam facility. Electrons with an energy of 2 GeV are used to investigate the response of the system to MIPs. For this purpose the HBU is enclosed into a light-tight aluminum cassette and mounted on a movable stage in order to scan all channels (see Fig. 6). The MIP signals are measured in auto-trigger mode, where the threshold is optimized for each channel to measure a full MIP spectrum, while suppressing most of the SiPM noise. Since in SPIROC2b the triggers of all channels are connected with a logical OR, the preamplifiers of all channels that are not used are switched off. The measurements have been done in high gain mode with a preamplifier feedback capacitance of 100 fF and a shaping time of 50 ns.

Figure 7(a) shows a typical MIP spectrum. The measured ADC value from the front-end electronics is converted into a pixel number by using the measured gain from single-pixel-spectra taken with LED light. The most probable value is around 15 pixels. Also the trigger efficiency curve can be observed at the beginning of the spectrum. The spectrum is fitted with a Landau function convolved with a Gaussian function to determine the exact position of the most probable value (light yield). The distribution of the light yield of all investigated tiles is shown in Fig. 7(b). The mean value is at 15 pixels, which is the design value for the used tiles.

4 Summary and outlook

A new engineering prototype for an analog hadron calorimeter is currently being developed by the CALICE collaboration. The goal is to show that a realistic LC detector with fully integrated front-end electronics can be built. The main challenge for the near future is to construct a full LC detector layer to test the signal integrity and the concept of power pulsing. Furthermore, a layer for operation in a hadron test beam environment will be built and used for measuring the time evolution of hadronic showers.

In order to achieve these goals, the calorimeter base units are tested in the laboratory as well as in the DESY test beam to characterize their features and to test the functionality and performance of all subcomponents as well as overall system aspects. Some of the recent measurement results are shown in this report, including the time measurement performance
of the ASIC, some aspects of the LED calibration system and latest test beam measurements of the light yield of the new scintillator tiles.

The next important steps are the construction of multi-HBU setups to further investigate the integrated read-out electronics and the development of a scalable data acquisition system.

Acknowledgments

The authors gratefully thank Karsten Gadow, Erika Garutti, Peter Göttlicher, Benjamin Hermberg, Mathias Reinecke, Julian Sauer, Felix Sefkow and Sebastian Weber for very useful discussions and valuable contributions to the results presented here.

References

