Gauge and non-gauge curvature tensor copies

Prem P. Srivastava

1982 Miramare-Trieste
I. INTRODUCTION

In gauge theories gauge equivalent potentials are very useful in handling certain problems. In connection with Yang-Mills theory \(^1\), for example, the calculation of topological numbers of the multi-instanton solution can be carried out as an application of the Gauss theorem if we use the 't Hooft solution \(^2\) together with another compact and gauge equivalent solution \(^3\). For the Abelian case gauge copies were used by \(\tilde{W}_0\) and Yang \(^4\) in their formulation of the Dirac monopole \(^5\) theory using overlapping sections into which each monopole divides the space-time. In the non-Abelian case we may also obtain two or more potentials not related by gauge transformation associated to the same gauge covariant field strength. These field strength copies have been studied in several recent papers \(^6\).

For the case of an affine space-time manifold, likewise, the curvature tensor does not determine the space-time connection uniquely. For example, the projective transformation \(^7\) \(T^\mu_{\nu} \rightarrow T^\mu_{\nu} - \delta^\mu_{\nu} \lambda_\mu\), \(\delta_{\nu\mu} \rightarrow \delta_{\nu\mu}\) leaves the curvature scale invariant. The importance of eliminating the projective invariance for a consistent theory of gravity interacting with matter was discussed in detail in Ref.7. The curvature tensor is left invariant in the case \(\lambda_\mu = \beta_\mu\). We will discuss in this paper a general procedure to construct curvature tensor copies in analogy to the case of non-Abelian gauge theory. For this purpose we will use the anholonomic geometrical framework (tetrad formulation) which incorporates in it a local (Lorentz) gauge group. The notation is defined in Sec.II. In Sec.III the curvature tensor copies are constructed and the corresponding geometries compared. The notion of gauge copy in the present context is also elucidated. Finally, Sec.IV contains an explicit calculation and describes briefly the procedure to be followed in the case of Weyl-Cartan geometry.

II. NOTATION \(^8\): SPINOR CONNECTION

The geometry of the space-time manifold \(M\), labelled by co-ordinates \(x^\mu\), is described by means of a sufficiently differentiable field of four vectors \(^8\) (tetrad frame), \(e_\mu = e^\nu_\mu \lambda_\nu\), and a linear connection \(\Gamma\) at each

* To be submitted for publication.
** Permanent address: Centro Brasileiro de Pesquisas Físicas, R. Xavier Sigaud 150, 22290 Rio de Janeiro, N.J., Brasil.

\(^8\) The anholonomic (tetrad or Lorentz) indices \(\alpha, \beta, \ldots\) as well as holonomic (co-ordinate or world) indices \(\mu, \nu, \ldots\) run from 0 to 3. Also \(\eta_{\alpha\beta} = \eta^{\alpha\beta} = \text{diag}(1,1,-1,-1)\).
point. We also assume the existence of a constant Minkowski metric \(\eta_{\mu\nu} \) and may choose the tetrad to be orthonormal, \(g_{\mu\nu} = \eta_{\mu\nu} \). We have the dual frame \(\epsilon^{\mu}_{\nu} = \epsilon^{\mu}_{\nu} dx^\nu \) and find \(e_{\mu}^{\nu} \epsilon_{\nu}^{\mu} = \delta_{\mu}^{\nu} \) which implies \(e_{\mu}^{\nu} \epsilon_{\nu}^{\mu} = \delta_{\mu}^{\nu} \).

Let \(\Gamma^{\lambda}_{\mu\nu} \) be the anholonomic components of \(\Gamma \) of the connection \(\Gamma \) referred to a tetrad basis. We define the mixed components - spinor connection or deformation gauge potential - by

\[
\omega^\lambda_{\mu\nu} = e_{\lambda}^{\mu} e_{\nu}^{\lambda}.
\]

and the holonomic components \(\Gamma^{\lambda}_{\mu\nu} \) of \(\Gamma \) by

\[
\Gamma^{\lambda}_{\mu\nu} = e_{\lambda}^{\mu} e_{\nu}^{\lambda}.
\]

This implies \(\omega^\lambda_{\mu\nu} = -\epsilon^\nu_{\mu} (\Theta^\lambda_{\mu\nu} - \Gamma^\lambda_{\mu\nu} \epsilon_{\lambda}^{\mu} \epsilon_{\lambda}^{\nu}) \). A tensor field may be described either by means of its holonomic or its anholonomic components. It is, however, convenient to use also mixed components, e.g. \(\phi^\mu_{\nu} \), \(\phi^\lambda_{\nu\mu} \), etc. We may also define (complete) covariant derivative *) of such a quantity, for example, as follows:

\[
\phi^\lambda_{\mu\nu;i} = \partial^\lambda_{;i} \phi^\lambda_{\mu\nu} + \omega^\lambda_{\mu\nu;i} \phi^\mu_{\nu} + \omega^\mu_{\mu\nu;i} \phi^\nu_{\nu} + \omega^\nu_{\mu\nu;i} \phi^\mu_{\nu} + \omega^\mu_{\mu\nu;i} \phi^\nu_{\nu} + \omega^\nu_{\mu\nu;i} \phi^\mu_{\nu} + \Gamma^\lambda_{\mu\nu;i} \phi^\mu_{\nu} - \Gamma^\mu_{\mu\nu;i} \phi^\nu_{\nu} - \Gamma^\nu_{\mu\nu;i} \phi^\mu_{\nu}.
\]

i.e. anholonomic indices are differentiated by means of \(\omega^\mu_{\mu\nu;i} \) and holonomic ones by means of \(\Gamma^\mu_{\mu\nu;i} \). Thus Eq.(2) reads \(e_{\mu}^{\nu;i} \epsilon_{\nu}^{\mu} = 0 \). The holonomic components of the metric on \(M \) are \(g_{\mu\nu} = \epsilon_{\mu}^{\mu} \epsilon_{\nu}^{\nu} = \delta_{\mu}^{\nu} \eta_{\mu\nu} \) and **

*) The derivative property may be verified even when we do not impose \(\epsilon^\mu_{\mu\nu;i} = 0 \). We note that \(\epsilon^\mu_{\mu\nu;i} = \epsilon_{\mu}^{\nu;i} \epsilon_{\nu}^{\mu} = 0 \).

**) For Dirac spinor field \(\psi^{(\lambda)} = (\lambda = \Gamma_{i}) \psi \). Considering transformation of \(\Gamma^\lambda_{\mu\nu} \) under Lorentz gauge transformations we can show \(\Gamma^\lambda_{\mu\nu} = \frac{1}{2} [\Gamma^\lambda_{\mu\nu}, \omega^\lambda_{\mu\nu}] \). On making use of the identity

\[
[\Gamma^\lambda_{\mu\nu}, \gamma^\mu] = \frac{1}{2} (\omega^\mu_{\mu\nu} - \omega^\mu_{\mu\nu}) \gamma^\mu
\]

we find \(\gamma^\mu_{\mu\nu} = \omega^\mu_{\mu\nu} \gamma^\mu \). We remark that the definitions above do not impose any symmetry on the indices \((\lambda, \mu)\) in \(\omega^\mu_{\mu\nu} \) even when \(e_{\mu}^{\nu;i} \epsilon_{\nu}^{\mu} \neq 0 \).

\[
\begin{align*}
\Gamma^\lambda_{\mu\nu} &= e_{\mu}^{\nu} e_{\nu}^{\lambda} \eta^\lambda_{\mu\nu} \\
\eta^\lambda_{\mu\nu} &= -2 \omega^\lambda_{\mu\nu}
\end{align*}
\]

Consider local Lorentz transformations \(A(x) = (A^\mu_{(x)}) \), i.e.

\[
\eta^\mu_{\nu} A^\lambda_{\mu(p)} = \eta^\mu_{\nu} A^\lambda_{\mu(p)}
\]

The rotation of the tetrad at \(x^\mu \) by \(A(x) \), e.g.

\[
e_{\mu}^{\mu} = \epsilon_{\nu}^{\nu}, \quad \epsilon_{\mu}^{\mu} = \epsilon_{\nu}^{\nu}
\]

does not affect the metric structure. Since by definition \(\phi^\mu_{\nu} \) transforms as \(\phi^\mu_{\nu} \) we obtain the transformation rule of the connection \(\omega^\lambda_{\mu\nu} \) under Lorentz gauge transformations \(A(x) \) to be

\[
\omega^\lambda_{\mu\nu}(x) = \omega^\lambda_{\mu\nu}(x) - \Gamma^\lambda_{\mu\nu}(x) \Lambda^{-1},
\]

The holonomic components \(\Gamma^\lambda_{\mu\nu} \) of \(\Gamma \) are then seen to be unaltered under tetrad rotations. The geometry of the system is thus invariant under local gauge transformations.

III. CURVATURE TENSOR COPIES. GAUGE COPIES

The space-time curvature tensor is given by

\[
R^\lambda_{\mu\nu} = \partial_{\nu} \phi^\lambda_{\mu} + \phi^\mu_{\nu} \phi^\lambda_{\mu} - (\phi^\lambda_{\mu} \phi^\mu_{\nu}) - (\phi^\lambda_{\mu} \phi^\mu_{\nu})
\]

It is clear from Eq.(3) that, in analogy with the case of Yang-Mills theory, we may define a gauge covariant field strength \(P^\lambda_{\mu\nu} \) - spin curvature tensor - by

\[
P^\lambda_{\mu\nu}(x) = \omega^\lambda_{\mu\nu} - \partial_{\nu} \omega^\lambda_{\mu} + [\omega^\lambda_{\mu}, \omega^\nu_{\lambda}]
\]

The indices in \(R^\lambda_{\mu\nu}(x) = (P^\lambda_{\mu\nu}(x)) \) are all tensorial and it is easy to
verify using Eq. (2) that

$$ R^\alpha_{\mu\lambda \rho}(\omega) = e_\mu^\alpha e_\lambda^\rho R^\ell_{m\lambda \rho}(\omega). \tag{8} $$

The curvature tensor copies arise if we have a connection \(\hat{\omega} \) such that

$$ P_{\lambda \rho}^{\alpha}(\hat{\omega}) = P_{\lambda \rho}^{\alpha}(\omega). \tag{9} $$

Writing \(\hat{\omega} = \omega + \kappa \), we obtain

$$ P_{\lambda \rho}^{\alpha}(\hat{\kappa}) + [\omega_\lambda, K_\rho] - [\omega_\rho, K_\lambda] = 0. \tag{10} $$

This copy is called a gauge copy if \(\hat{\omega} \) and \(\omega \) are connected by a Lorentz gauge transformation, e.g.,

$$ K_\lambda = -\omega_\lambda + \Lambda_\omega \omega_\lambda \Lambda^{-1} - (\partial_\lambda \Lambda) \Lambda ^{-1} \tag{11} $$

for some \(\Lambda(x) \). On substituting in Eq. (10) this leads to \(AP_{\lambda \rho}(\omega) \Lambda^{-1} = P_{\lambda \rho}(\omega) \).

The holonomic connection \(\bar{\n}^\alpha_{\mu \lambda} \) corresponding to \(\hat{\omega} \) follows to be

(Eq. (2))

$$ \bar{\n}^\alpha_{\mu \lambda} = \n^\alpha_{\mu \lambda} + K_\lambda^\ell m e_\mu^m e_\ell^\alpha \tag{12} $$

and

$$ g_{\mu \nu \lambda}^{(\bar{\n})} = e_\mu^\ell e_\nu^m e_\lambda^\ell \delta_{\mu \nu} \tag{13} $$

The case of curvature scalar copies may also be discussed with appropriate modifications. It is worth pointing out that the last term in Eq. (11) is always antisymmetric and that \(\kappa_\alpha \) may be decomposed into its irreducible symmetric and antisymmetric components. Thus, if \(\kappa_\alpha \) is antisymmetric (Kleinian-Cartan geometry), a symmetric \(\kappa_\alpha \) cannot correspond to a gauge copy. A copy with antisymmetric \(\kappa_\lambda \) corresponds to E.C. geometry.

IV. ILLUSTRATIONS OF SOME CURVATURE TENSOR COPIES

Eq. (10) is similar to that encountered in the study of field strength copies in non-Abelian gauge theory 6). We will only consider here some simple solutions as illustrations.

An obvious symmetric solution is \(\kappa_\alpha = -\Sigma(\omega_\lambda) \). Another \(\kappa_\alpha = -\Sigma(\kappa_\lambda) \) where \(\chi(x) \) is a scalar function. We get from Eqs. (12) and (13)

$$ \bar{\n}^\alpha_{\mu \lambda} = \n^\alpha_{\mu \lambda} - \delta^\alpha_{\mu} \partial_\lambda \chi $$

$$ g_{\mu \nu \lambda}^{(\bar{\n})} = g_{\mu \nu \lambda}^{(\n)} + 2 \delta_{\mu \nu} \partial_\lambda \chi \tag{11} $$

For \((\omega_\lambda) \) replaced by a vector field \(\varphi_\lambda \) (projective transformation) we get only a curvature scalar copy 7).

Another simple solution is obtained by making the ansatz

$$ K_\lambda = a(x) \partial_\lambda \chi \tag{15} $$

where \(a(x) = a(x) \) may correspond to a symmetric or antisymmetric solution. Eq. (10) leads to

$$ \partial_\lambda a(x) + [\omega_\lambda, a(x)] = 0. \tag{16} $$

Consider, for an illustration, the metric space defined by the following line element 10):
\[ds^2 = dt^2 - 2A(t) dz dt - C^2(t)(dx^2 + dy^2) \]

(17)

We have for the non-vanishing elements \(e_{00} = 1, e_{11} = e_{22} = -c^2, e_{03} = e_{30} = -A, e_{03} = -A^{-1}, e_{11} = e_{22} = -c^{-2}, e_{33} = -A^2 \) and \(\sqrt{g} = c^2 A \). A set of tetrad fields is found with the non-vanishing elements given by

\[
\begin{align*}
\tau^0_0 &= 1, \\
\tau^1_1 &= e^2_2 = C, \\
\tau^3_3 &= e^3_3 = -A, \\
\tau^0_3 &= -e^0_3 = 1, \\
\tau^1_3 &= -A^{-1}, \\
\tau^3_1 &= e^3_1 = C^{-1}
\end{align*}
\]

(16)

where the indices inside the brackets are the anholonomic indices. We also assume, for definiteness' sake, \(\Gamma^{t} \) to be Christoffel connections, \(\Gamma^{t}_{\mu\nu} = \left(\lambda^{t}_{\mu\nu} \right) \).

The internal spin connections determined from \(e^t_{\mu\nu} = \left(\lambda^{t}_{\mu\nu} \right) = 0 \) are antisymmetric and found to be \(\left(\omega^{\lambda}_{\mu} \| \omega^{\lambda}_{\nu} \right) \)

\[
\begin{align*}
\omega^{3}_{0} &= 0, \\
\dot{\omega}^{1}_{1} &= \dot{\omega}^{2}_{2} = \dot{\omega}^{3}_{3} = 0, \\
\dot{\omega}^{0}_{3} &= \dot{\omega}^{1}_{3} = \dot{\omega}^{2}_{1} = \dot{\omega}^{3}_{2} = 0.
\end{align*}
\]

(19)

A traceless symmetric solution is found to be \(a(t) = A^{2} \) where the non-vanishing elements of \(A \) are \(A^{00} = e^{2}, A^{30} = -A^{03} = -A^{30} = 1. \) Since \(\omega^{\lambda}_{\mu} \) are antisymmetric this cannot correspond to the case of a gauge copy. We find

\[
\begin{align*}
\langle A, \lambda \rangle &= \left\{ \begin{array}{c}
\mu \\
\nu \\
\lambda
\end{array} \right\} + A(2, \lambda) \left[\eta^{\lambda}_{\mu} \delta^{\mu}_{3} \delta^{\nu}_{6} \right. \\
\langle A, \lambda \rangle &= 2 A^{2}(2, \lambda) \left[\eta^{\lambda}_{\mu} \delta^{\mu}_{3} \delta^{\nu}_{6} \right.
\end{align*}
\]

(20)

and verify by direct calculation that \(R_{\mu\nu\lambda\rho}^{\lambda}(F) = R_{\mu\nu\lambda}^{\lambda}(F) \).

An antisymmetric solution is found to be \(a(t) = \left(\frac{1}{2} \right) \), and corresponds to

\[
\begin{align*}
\Gamma^{\lambda}_{\mu\nu}(\vec{F}) &= \frac{A}{c} \frac{\partial A}{\partial x^{\nu}} - C \delta^{\lambda}_{3} \delta^{\nu}_{6} (2, \lambda) \\
\langle A, \lambda \rangle &= 0.
\end{align*}
\]

(21)

However, this case can be shown to correspond to a gauge copy. We find

\[
\begin{align*}
\langle A, \lambda \rangle = -\frac{A}{c} \left(\begin{array}{c}
\frac{\partial A}{\partial x^{\nu}} \\
\frac{\partial A}{\partial x^{\nu}} \\
\frac{\partial A}{\partial x^{\nu}}
\end{array} \right) = \left(\begin{array}{c}
-1 \leftrightarrow \rho
\end{array} \right)
\end{align*}
\]

so that in order to satisfy

\[
\begin{align*}
\langle A, \lambda \rangle = -\frac{A}{c} \left(\begin{array}{c}
\frac{\partial A}{\partial x^{\nu}} \\
\frac{\partial A}{\partial x^{\nu}} \\
\frac{\partial A}{\partial x^{\nu}}
\end{array} \right) = \left(\begin{array}{c}
-1 \leftrightarrow \rho
\end{array} \right)
\end{align*}
\]

we require \(A^{1}_{2} A^{-1} = \frac{1}{2} \langle A, \lambda \rangle \) apart from the restrictions that \(A \) be a Lorentz matrix. Adding to these the restrictions arising from

\[
\begin{align*}
\langle A, \lambda \rangle = \left(\begin{array}{c}
1 - \frac{1}{2} \psi^2 \\
-\psi \\
0
\end{array} \right)
\end{align*}
\]

(22)

where \(\psi = A(t) \lambda(x) \). The case of Weyl-Cartan geometry may also be discussed. The geometry is characterized by \(\delta_{\mu\nu}(F) = \delta_{\mu\nu} + \delta_{\mu\nu}(\pi) \). Since \(\delta_{\mu\nu} \) is a Weyl field. Since we require \(\delta_{\mu\nu} = 0 \) it follows that \(\delta_{\mu\nu} = 2 \delta_{\mu\nu} \lambda \), \(\lambda(x) = -\delta_{\mu\nu} \lambda \).

We may assume \(\lambda(x) = 2 \delta_{\mu\nu} \lambda \) and \(\delta_{\mu\nu} = \delta_{\mu\nu} - \delta_{\mu\nu} \lambda \) and proceed along similar lines.

ACKNOWLEDGMENTS

The author would like to thank Professor Abdus Salam, the International Atomic Energy Agency and UNESCO for hospitality at the Rector, where this work was completed. Thanks are also due to Professor P. van Hulsen for his comments and for conversations with Professors J. Tierney, D. Thomas, M. Novello, C. G. de Oliveira and L. Damiá Soares. This work has been partially supported by CNPq de Brasil.

-8-
REFERENCES

6) S. Dezer and P. Wilczek, Phys. Letters 62B, 391 (1976);
 S. Roskies, Phys. Rev. D15, 1731 (1977);
 M. Calvo, Phys. Rev. D15, 1733 (1977);
 M.B. Halpern, Phys. Rev. D15, 1798 (1977); D22, 517 (1979);
8) See for example, F.W. Kuhl in *Cosmology and Gravitation*, Eds.
 P.G. Bergmann and V. De Sabbata (Plenum Press, N.Y. 1980) and the
 earlier references contained therein.
10) See for example, M. Novello and I. Damião Soares, Phys. Lett. 66A,
 431 (1976).

CURRENT ICTP PUBLICATIONS AND INTERNAL REPORTS

IC/82/63 N.S. CRAIGIE, V.K. DOBREV and I.T. TODOROV - Conformal techniques for OPE
 in asymptotically free quantum field theory.
IC/82/64 A. FRIDYNSKI and J. LUKIEWSKI - N = 2 massive matter multiplet from
 quantisation of extended classical mechanics.
IC/82/65 TANX AHARAN - Study of the atomic ordering in the alloys Ni-In using
 diffuse X-ray scattering and pseudopotentials.
IC/82/66 E.C. MAJU - An analytic examination of distortions in power spectra due
 to sampling errors.
IC/82/67 E.C. MAJU - Power estimation on sinusoids mounted upon D.C. background:
 Conditional problem.
IC/82/68 E.C. MAJU - Distortions in power spectra of signals with short components.
IC/82/69 E.C. MAJU - Distortions in two- and three-dimensional power spectra.
IC/82/70 L. SCHWARTZ and A. PAJA - A note on the electrical conductivity of
 disordered alloys in the muffin-tin model.
IC/82/71 D.G. FALKOV - Mass and form factor effects in spectrum and width of
 the semi-leptonic decays of charmed mesons.
IC/82/72 T. MISHINOV and T. GARIJSKY - Acoustic-plasma waves in inversion layers
 and sandwich structures.
IC/82/73 T. MISHINOV - An exactly averaged conductivity in a disordered electronic
 model.
IC/82/74 S.M. MUJIBUR RAHMAN - Structural energetics of noble metals.
IC/82/75 E. SEGGIN and P. van NIEUWENHOUTEN - Ultraviolet finiteness of N = 8
 supergravity, spontaneously broken by dimensional reduction.
IC/82/76 JERRY BAYES and JACEK RATKI, Jr. - On a fusion of supersymmetries with
 gauge theories.
IC/82/77 A. BOHARI and A. QADIR - A prescription for n-dimensional vierbeins.
IC/82/78 A. QADIR and J. QUAMAR - Relativistic generalization of the Newtonian force.
IC/82/79 B.E. BLAQUE - Evolution kernel for the Dirac field.
IC/82/81 JAE HYUNG YEE - Photon propagators at finite temperature.
IC/82/82 S.M. MUJIBUR RAHMAN - Roles of electrons-per-atom ratio on the structural
 stability of certain binary alloys.
IC/82/83 D.K. SHIVAMBIVA - Geometrical relations for potentials obtained by folding
 density dependent interactions.
IC/82/84 C.A. MAJID - Glass forming tendencies of chalcogenides of the system
 (As2 Se1-x Te x/2, Se1-x Te x/2).
IC/82/85 C.A. MAJID - Surface photoconductivity in amorphous As2 Se3.

THESE PREPRINTS ARE AVAILABLE FROM THE PUBLICATIONS OFFICE, ICTP, P.O. BOX 586,
I-34010 TRIESTE, ITALY.

* (Limited distribution).
IC/82/86 PARIKH HUSAIN and A. QADIR - Quantisation in rotating co-ordinates revisited.
IC/82/87 G. MONOPHADHYAY and S. LUNDQVIST - The dipolar plasmon modes of a small metallic sphere.
IC/82/90 FRADKON-Shukla - A microscopic model of the glass transition and the glassy state.
IC/82/91 WANG KE-LIN - A new vacuum structure, background strength and confinement.
IC/82/92 G.A. CHRISTOS - Anomaly extraction from the path integral.
IC/82/93 M. ALAYA and J.A. DE AGARRAGA - Superconducting aspects: from central charges to quantisation through relativistic wave equations.
IC/82/94 ABDUS SALAM and E. SEGENIN - Maximal extended supergravity theory in seven dimensions.
IC/82/95 G. SENJANOVIĆ and A. SOKOLOV - Observable neutron-antineutron oscillations in SO(10) theory.
IC/82/96 LI Ta-tsein and SHI Jia-hong - Global solvability in the whole space for a class of first order quasi-linear hyperbolic systems.
IC/82/97 Y. FUJIMOTO and ZHAO Zhi-long - Avoiding domain wall problem in SU(3) grand unified theories.
IC/82/100 M.N. SAPPONNI - Treatment of Cerenkov radiation from electric and magnetic charges in dispersive and dissipative media.
IC/82/101 M. OZER - Precocious unification in simple GUTs.
IC/82/103 K.S. KHANNA - Landau's parameters and thermodynamic properties of liquid He II.
IC/82/104 R. PUSZKARSKI - Effect of surface parameter interaction on interband surface mode frequencies of finite diametric chain.
IC/82/105 S. CECOTTI and L. GIRAUDELLO - Local Nicolai mappings in extended supersymmetry.
IC/82/107 A.M. KURBATOV and D.P. SANKOVIC - On one generalisation of the Fokker-Planck equation.
IC/82/108 G. SENJANOVIĆ - Necessity of intermediate mass scales in grand unified theories with spontaneously broken CP invariance.
IC/82/111 M. DURGUT and N.K. PAK - SU(2) - QED_2, meson equation in next-to-leading order.
IC/82/113 P. Raczka, Jr. - On the class of simple solutions of SU(2) Yang-Mills equations.
IC/82/114 G. LAZARIDES and Q. SHAHI - Supersymmetric GUTs and cosmology.
IC/82/115 B.K. SHARMA and M. TOMAI - Compton profiles of some li transition metals.
IC/82/116 M.D. MAIA - Mass splitting induced by gravitation.
IC/82/117 PARTHA GHOS - An approach to gauge hierarchy in the minimal SU(5) model of grand unification.
IC/82/118 PARTHA GHOS - Scalar loops and the Higgs mass in the Salam-Weinberg-Glashow model.
IC/82/119 A. QADIR - The question of an upper bound on entropy.
IC/82/122 C.W. LUNG and L.Y. XIDONG - The dislocation distribution function in the plastic zone at a crack tip.
IC/82/124 BAYANI I. RAMIREZ - A view of bond formation in terms of electron momentum distributions.
IC/82/125 K.N. COHAN and M. WEISSMANN - Phonons and amplitudes in one dimensional incommensurate systems.
IC/82/126 M. TOMAI - The electron ionized donor recombination in semiconductors.
IC/82/127 G.P. TEWAR - High temperature superconducting of a Chevel phase ternary compound.
IC/82/130 L. XUE JIN HOU, WANG KELIN and ZHANG JIANFU - Light spinor monopole.
IC/82/131 C.A. MAJID - Thermal analysis of chalcogenides glasses of the system Ag, Se and Te.
IC/82/133 A. QADIR - Massive neutrinos in astrophysics.
IC/82/137 M.B. GRUSIN and D. CHAPPELIER - On back flow in two and three dimensions.
IC/82/137 M.Y.M. HASSAN, A. RASID and B.H. ISMAIL - Binding energy calculations using the molecular orbital wave function.
IC/82/138 D. BRESKIN - Eigenfunctions in disordered systems near the mobility edge.
IC/82/140 Y. FUJIMOTO, K. SHIGEMOTO and ZHENG ZHONG - No domain wall problem in SU(3) grand unified theory.
IC/82/142 G.A. CHIRITES - Trivial solution to the domain wall problem.
IC/82/143 S. CHAKRABARTI and A.N. NAYAR - On stability of soliton solution in NLC-type general field model.
IC/82/144 S. CHAKRABARTI - The stability analysis of non-topological solitons in gauge theory and in electrodynamics.
IC/82/145 S.N. RAM and C.P. SINGH - Hexadric couplings of open light states.
IC/82/146 BAYANI I. RAMIREZ - Electron momentum distributions of the first-row homonuclear diatomic molecules, A_2.
IC/82/147 A.K. MAJUMDAR - Correlation between magnetoresistance and magnetisation in Ag Mn and Au Mn spin glasses.
IC/82/149 S.A. EL WAKIL, M.T. ATV, I.A. GAAD and A. HENOU - Particle transfer in multiregion.