Constraints on new physics in $B - \bar{B}$ mixing in the light of recent LHCb data

A. Lenz,1,* U. Nierste,2†† J. Charles,3,‡ S. Descotes-Genon,4,§ H. Lacker,5,‖ S. Monteil,6,¶ V. Niess,6,** and S. T’Jampens7,†††

(CKMfitter Group)

1CERN—Theory Division, PH-TH, Case C01600, CH-1211 Geneva 23, Switzerland
2Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany
3Centre de Physique Théorique, Aix-Marseille Université, CNRS UMR 7332, Université Sud Toulon Var, F-13288 Marseille cedex 9, France
4Laboratoire de Physique Théorique, Bâtiment 210, Université Paris-Sud 11, F-91405 Orsay Cedex, France
5Humboldt-Universität zu Berlin, Institut für Physik, Newtonstraße 15, D-12489 Berlin, Germany
6Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Université Blaise Pascal, 24 Avenue des Landais, F-63177 Aubiere Cedex, France (UMR 6533 of the CNRS-IN2P3 associated to the Université Blaise Pascal)
7Laboratoire d’Annecy-Le-Vieux de Physique des Particules, 9 Chemin de Bellevue, BP 110, F-74941 Annecy-le-Vieux Cedex, France (UMR 5814 of the CNRS-IN2P3 associated to the Université de Savoie)

(Received 24 April 2012; published 15 August 2012)

We perform model-independent statistical analyses of three scenarios accommodating new physics (NP) in $\Delta F = 2$ flavor-changing neutral current amplitudes. In a scenario in which NP in $B_d - \bar{B}_d$ mixing and $B_s - \bar{B}_s$ mixing is uncorrelated, we find the parameter point representing the standard model disfavored by 2.4 standard deviations. However, recent LHCb data on B_s neutral meson mixing forbid a good accommodation of the DØ data on the semileptonic CP asymmetry $A_{S\ell}$. We introduce a fourth scenario with NP in both $M_{12}^{d;s}$ and $\Gamma_{12}^{d;s}$, which can accommodate all data. We discuss the viability of this possibilty and emphasize the importance of separate measurements of the CP asymmetries in semileptonic B_d and B_s decays. All results have been obtained with the CKMfitter analysis package, featuring the frequentist statistical approach and using Rfit to handle theoretical uncertainties.

In this letter, we present novel analyses which include the new data of 2011, in particular, from the LHCb experiment. $B_q - \bar{B}_q$ ($q = d, s$) oscillations involve the off-diagonal elements $M_q^{d;s}$ and $\Gamma_{12}^{d;s}$ of the 2 × 2 mass and decay matrices, respectively. One can fix the three physical quantities [M_{12}^q, Γ_{12}^q, and ϕ_q] from the mass difference $\Delta M_q \approx 2|M_{12}^q|$ among the eigenstates, their width difference $\Delta \Gamma_q \approx 2|\Gamma_{12}^q|$ cos ϕ_q, and the semileptonic CP asymmetry

$$a_{SL}^q = \text{Im} \frac{\Gamma_{12}^q}{M_{12}^q} = \left| \frac{\Gamma_{12}^q}{M_{12}^q} \right| \sin \phi_q = \frac{\Delta M_q}{\Delta \Gamma_q} \tan \phi_q.$$ (1)

M_{12}^q is especially sensitive to NP. Therefore the two complex parameters Δ_q and Δ_q^*, defined as

$$M_{12}^q = M_{12}^{SM,q} \cdot e^{i \Delta_q}, \quad \Delta_q \equiv |\Delta_q| e^{i \phi_q}, \quad q = d, s. \quad (2)$$

can differ substantially from the SM value $\Delta_q = \Delta_q^* = 1$. Importantly, the NP phases $\phi_{d,s}^\Delta$ do not only affect a_{SL}^d, but also shift the CP phases extracted from the mixing-induced CP asymmetries in $B_d \rightarrow J/\Psi K$ and $B_s \rightarrow J/\Psi \phi$ to $2 \beta - \phi_{d}^\Delta$ and $2 \beta_s - \phi_{s}^\Delta$, respectively. In summer 2010 the CDF and DØ analyses of $B_s \rightarrow J/\Psi \phi$ pointed towards a large negative value of ϕ_{s}^Δ, while simultaneously being consistent with the SM due to large errors. With a large $\phi_{s}^\Delta < 0$ we
could accommodate DO's large negative value for the semileptonic CP asymmetry reading \(A_{SL} = 0.6a_{SL}' + 0.4a_{SL} \) in terms of the individual semileptonic CP asymmetries in the \(B_d \) and \(B_s \) systems. Moreover, the discrepancy between \(B(B \to \tau \nu) \) and the mixing-induced CP asymmetry in \(B_d \to J/\psi K \) can be removed with \(\phi^2_d < 0 \). The allowed range for \(\phi^2_d \) implies a contribution to \(A_{SL} \) with the right (i.e., negative) sign. In our 2010 analysis in Ref. [4] we have determined the preferred ranges for \(\Delta_s \) and \(\Delta_q \) in a simultaneous fit to the CKM parameters in three generic scenarios in which \(\Delta_q = 0 \). In our Scenario I we have treated \(\Delta_s \), \(\Delta_q \) (and three more parameters related to \(K - \bar{K} \) mixing) independently, corresponding to NP with arbitrary flavor structure. Scenario II implements minimal flavor violation with small bottom Yukawa coupling entailing real \(\Delta_s = \Delta_q \). Scenario III covers minimal flavor violation models in which \(\Delta_s = \Delta_q \) is allowed to be complex. In Ref. [4] we have found an excellent fit in Scenario I (and a good fit in Scenario III) with all discrepancies relieved through \(\Delta_s, \Delta_q \neq 1 \), while the fit has returned \(K - \bar{K} \) mixing essentially SM-like.

The recent LHCb measurement of the CP phase \(\phi^s_{\psi \phi} \) from \(A_{CP} (B \to J/\psi \phi \phi) \) does not permit large deviations of \(\phi^s_{\psi \phi} \) from zero anymore. This trend was also confirmed by the latest CDF results [10]. The current situation with the phase \(2\phi^s_{\psi \phi} - 2\beta_s + \phi^d_s \) and \(A_{SL} \) is as follows (at 68% CL):

\[
2\phi^s_{\psi \phi} = -\frac{\pi}{2} = -2\beta_s + \phi^d_s \quad \text{CDF}[10].
\]

\[
-60^\circ < 2\phi^s_{\psi \phi} < -2.3^\circ \quad \text{CDF}[10].
\]

\[
2\phi^s_{\psi \phi} = (0.1 \pm 5.8 \pm 1.5)^\circ \quad \text{LHCb J/\psi \phi}[12].
\]

\[
2\phi^s_{\psi \phi} = (-25.2 \pm 25.2 \pm 1.2)^\circ \quad \text{LHCb J/\psi f_0}[13].
\]

\[
A_{SL} = (-7.87 \pm 1.72 \pm 0.93) \times 10^{-3} \quad \text{DO}[9].
\]

(3)

Here \(2\beta_s = 2 \arg(-V_{ts} V_{tb}^*/(V_{cs} V_{cb}')) \approx 2.2^\circ \) [14].

From this discussion, there is a conflict between LHCb data on \(B_s \to J/\psi \phi \phi \) and the DO measurement of \(A_{SL} \) which we cannot fully resolve in our Scenarios I, II and III. We therefore discuss a fourth scenario which also permits NP in the decay matrices \(\Gamma_{12} \) or \(\Gamma_{12} \).

I. RESULTS FOR SCENARIOS I, II AND III

In Table I we summarize the changes in the inputs compared to Tables 1–7 of Ref. [4]. Following Ref. [3] we have included \(K_{(3,3)}, K_{(2,2)}, \pi_{(2,2)} \) (and the related \(\tau \) decays) for \(|V_{ud}| \) and \(|V_{us}| \). Concerning the measurements of \((\phi_s, \Gamma_s) \) from \(B_s \to J/\psi \phi \phi \), we have combined the CDF and LHCb results by taking the product of their 2D profile likelihoods [10,12]. Unfortunately, we could not obtain the corresponding likelihood from DO. The impact of this omission is mild due to the smaller uncertainties of the CDF and LHCb results. We have neither used

![Table I. Experimental and theoretical predictions added or modified compared to Ref. [4] and used in our fits.](image)

![Table II. CL intervals for the results of the fits in Scenario I.](image)
TABLE III. Pull values for selected parameters and observables in SM and Scenarios I, II, III, in terms of the number of equivalent standard deviations between the direct measurement and the full indirect fit predictions.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>SM</th>
<th>Scenario I</th>
<th>Scenario II</th>
<th>Scenario III</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi^3_d + 2\beta$</td>
<td>2.7σ</td>
<td>2.1σ</td>
<td>2.7σ</td>
<td>1.2σ</td>
</tr>
<tr>
<td>$\phi^3_d - 2\beta_s$</td>
<td>0.3σ</td>
<td>2.7σ</td>
<td>0.3σ</td>
<td>2.4σ</td>
</tr>
<tr>
<td>$</td>
<td>\Delta m_{dd}</td>
<td>$</td>
<td>0.0σ</td>
<td>\cdots</td>
</tr>
<tr>
<td>Δm_{ds}</td>
<td>1.0σ</td>
<td>\cdots</td>
<td>1.0σ</td>
<td>0.9σ</td>
</tr>
<tr>
<td>Δm_{ss}</td>
<td>0.0σ</td>
<td>\cdots</td>
<td>1.0σ</td>
<td>1.3σ</td>
</tr>
<tr>
<td>A_{SL}</td>
<td>3.7σ</td>
<td>3.0σ</td>
<td>3.7σ</td>
<td>3.0σ</td>
</tr>
<tr>
<td>a_{SL}^d</td>
<td>0.9σ</td>
<td>0.3σ</td>
<td>0.8σ</td>
<td>0.4σ</td>
</tr>
<tr>
<td>a_{SL}^s</td>
<td>0.2σ</td>
<td>0.2σ</td>
<td>0.2σ</td>
<td>0.0σ</td>
</tr>
<tr>
<td>$\Delta \Gamma_f$</td>
<td>0.0σ</td>
<td>0.4σ</td>
<td>0.0σ</td>
<td>1.0σ</td>
</tr>
<tr>
<td>$B(B \rightarrow \tau\nu)$</td>
<td>2.8σ</td>
<td>1.1σ</td>
<td>2.8σ</td>
<td>1.7σ</td>
</tr>
<tr>
<td>$B(B \rightarrow \tau\nu)\cdot A_{\text{SL}}$</td>
<td>4.3σ</td>
<td>2.8σ</td>
<td>4.2σ</td>
<td>3.4σ</td>
</tr>
<tr>
<td>$\phi^3_d - 2\beta_s\cdot A_{\text{SL}}$</td>
<td>3.3σ</td>
<td>2.7σ</td>
<td>3.3σ</td>
<td>3.2σ</td>
</tr>
<tr>
<td>$B(B \rightarrow \tau\nu)$</td>
<td>4.0σ</td>
<td>2.4σ</td>
<td>3.9σ</td>
<td>3.2σ</td>
</tr>
<tr>
<td>$\phi^3_d - 2\beta_s\cdot A_{\text{SL}}$</td>
<td>4.0σ</td>
<td>2.4σ</td>
<td>3.9σ</td>
<td>3.2σ</td>
</tr>
</tbody>
</table>

The LHCb result on $B_s \rightarrow J/\psi f_0$ as only ϕ_s (not the 2D likelihood) was provided in Ref. [13]. But we have included the flavor-specific B_s lifetime $\tau^{FS}_{B_s}$ [20] providing an independent constraint on $\Delta \Gamma_s$. We analyze the DØ measurement of A_{SL} with the production fractions at 1.8–2 TeV according to Ref. [20]; $f_s = 0.111 \pm 0.014$ and $f_d = 0.339 \pm 0.031$, corresponding to $A_{\text{SL}} = (0.532 \pm 0.039) a_{\text{SL}}^d + (0.468 \pm 0.039) a_{\text{SL}}^s$.

We summarize our results in Tables II and III and in Fig. 1 (Scenario I) as well as Fig. 2 (Scenario III). Even in Scenario I our fit to the data is significantly worse than in 2010 [4]: while $\phi^3_d < 0$ alleviates the discrepancy of A_{SL} with the SM, the LHCb result on ϕ^3_s prevents larger contributions from the B_s system to A_{SL}. In Scenario I, we find pull values for A_{SL} and $\phi^3_s - 2\beta_s$ of 3.0σ and 2.7σ, respectively (compared to 1.2σ and 0.5σ in Ref. [4]). We do not quote pull values for Δm_{ds} in Scenario I, as these observables are not constrained once their experimental measurement is removed. In contrast to earlier analyses, only one solution for Δ_s survives thanks to the recent LHCb determination of $\Delta \Gamma_s > 0$ [21] entailing Re$\Delta_s > 0$. Table IV lists the p-values for various SM hypotheses within our NP scenarios (more information can be found in Ref. [14]).

II. NEW PHYSICS IN Γ_{12}^d OR Γ_{12}^s

Several authors have discussed the possibility of a sizable new CP-violating contribution to Γ_{12}^d to explain the DØ measurement of A_{SL} [22] by postulating new B_s decay channels with large branching fraction. In such models also the width difference $\Delta \Gamma_s$ typically deviates from the SM prediction in Refs. [7,23,24]. Γ_{12}^d is dominated by the CKM-favored tree-level decay $b \rightarrow c\bar{s}s$. Any competitive new decay mode will increase the total B_s width, which LHCb finds as $\Gamma_s = 0.657 \pm 0.009 \pm 0.008$ [12], implying $\Gamma_s/\Gamma_d = 0.998 \pm 0.014 \pm 0.012$ in excellent agreement with the SM expectation $0 \leq \Gamma_s/\Gamma_d \leq 1 \leq 4 \times 10^{-4}$ [24]. The new interaction will open new $b \rightarrow s$ decay modes affecting precisely measured inclusive B_d and B_s^+ quantities [4]. Furthermore, new decays mediated by a particle with mass $M > M_W$ will add a term of order M_W^4/M^4 to $\Gamma_{12}^d/\Gamma_{12}^s$, while Δ_s normally receives a larger contribution of order M_W^2/M^2. In models involving a
fermion pair \((f, \bar{f})\) in the final state, e.g., those with an enhanced \(B_s \to \tau \tau\) decay \[22\], one can solve this problem through chirality suppression. The extra contribution to \(M_{12}'\) is down by another factor of \(m_f^2/M_f^2\), while that to \(\Gamma_{12}'\) is affected by the milder factor of \(m_f^2/m_b^2\). Quantities like \(\Gamma_{d,s}\) will not be chirality suppressed. Therefore it seems not possible to add large NP effects to \(\Gamma_{12}'\).

Phenomenologically it is thus much easier to postulate NP in \(\Gamma_{12}'\) rather than \(\Gamma_{12}^d\), because \(\Gamma_{12}'\) is constituted by Cabibbo-suppressed decay modes like \(b \to c\bar{e}d\). Also here chirality suppression is welcome to avoid problems with \(M_{12}'\), but inclusive decay observables like the semi-leptonic branching fraction or the unmeasured \(\Delta \Gamma_d\) pose no danger. Clearly, testing this hypothesis calls for a better measurement of \(a_d^{SL}\). We have studied a Scenario IV including the possibility of NP in \(\Gamma_{12}'\). We stress that Scenario IV permits NP in the \(|\Delta F| = 1\) transitions contributing to \(\Gamma_{12}'\), but not in other \(|\Delta F| = 1\) quantities entering our fits, such as \(B(B \to \tau \nu)\). Further, no new CP phase in \(b \to c\bar{c} s\), which would change \(\phi_{d,s}^C\), is considered. Such a phase might further increase the hadronic uncertainty from penguin pollution, which is not an issue in the SM at the current levels of experimental precision.

Handy new parameters are

\[
\delta_q = \frac{\Gamma_{12}' / M_{12}^q}{\Re (\Gamma_{12}' / M_{12}^q)}, \quad q = d, s, \tag{4}
\]

Re\(\delta_q\), Im\(\delta_q\) amount to \((\Delta \Gamma_q / \Delta M_q)/(\Delta \Gamma_{SM}^q / \Delta M_{SM}^q)\) and \(\Delta \Gamma_{SL}^q / \Delta \Gamma_{SM}^q\), respectively. The best fit values of the SM predictions are \(\delta_d^{SM} = 1 + 0.097i\) and \(\delta_s^{SM} = 1 - 0.0057i\). Re\(\delta_d\) is experimentally only weakly constrained. We illustrate the correlation between Im\(\delta_d\) and Im\(\delta_s\) in Fig. 3, relegating correlations of Re\(\delta_s\) and Im\(\delta_{d,s}\) to Ref. \[14\]. The \(p\)-value of the 8D SM hypothesis \(\Delta_d = \Delta_s = 1\) is \(\delta_d^{SM} = 2.6\sigma\).

We stress that too large values for \(|\delta_s - \delta_s^{SM}|\) are in conflict with other observables as explained above. We have also studied Scenario IV without NP in the \(B_s\) sector \((\Delta_s = 1\) and \(\delta_s = \delta_s^{SM}\)). It could accommodate the main anomalies by improving the fit by \(3.3\sigma\), but with large contributions to \(\Gamma_{12}'\): Im\(\delta_d = 1.60^{+1.02}_{-0.76}\).

III. CONCLUSIONS

We have performed new global fits to flavor physics data in scenarios with generic NP in the \(B_d - \bar{B}_d\) and \(B_s - \bar{B}_s\) mixing amplitudes, as defined in Ref. \[4\]. Our results represent the status of the end of the year 2011. Unlike in summer 2010 the two complex NP parameters \(\Delta_d\) and \(\Delta_s\)
CONSTRAINTS ON NEW PHYSICS IN $B - \bar{B}$ …

(parametrizing NP in $M_{12}^{d,s}$) are not sufficient to absorb all discrepancies with the SM, namely, the DØ measurement of A_{SL} and the inconsistency between $B(B \to \tau \nu)$ and $A_{\text{CP}}^{\text{max}}(B_{d} \to J/\Psi K)$. Still, in Scenario I, which fits Δ_d and Δ_s independently, we find the SM point $\Delta_d = \Delta_s = 1$ disfavored by 2.4σ; this value was 3.6σ in our 2010 analysis [4]. We notice that data still allow sizeable NP contributions in both B_d and B_s sectors up to 30%-40% at the 3σ level. The preference of Scenario I over the SM mainly stems from the fact that $B(B \to \tau \nu)$ favors $\phi_3^d < 0$ which alleviates the problem with A_{SL}.

In order to fully reconcile A_{SL} with ϕ_s^d, we have extended our study to a Scenario IV, which permits NP in both $M_{12}^{d,s}$ and $\Gamma_{12}^{d,s}$. While this scenario can accommodate all data, it is difficult to find realistic models in which the preferred NP contributions to $\Gamma_{12}^{d,s}$ (composed of Cabibbo-favored tree-level decays) comply with other measurements. There are fewer phenomenological constraints on the Cabibbo-suppressed quantity Γ_{12}^{d}; a possible conflict with M_{12}^{d} can be circumvented with chirality suppression. NP in M_{12}^{d} and Γ_{12}^{d} with the B_s system essentially SM-like appears thus as an interesting possibility, requiring only a mild statistical upward fluctuation in the DØ data on A_{SL}. Clearly, independent measurements of a_{SL}^{d}, a_{SL}^{s}, and/or $a_{\text{SL}}^{d} - a_{\text{SL}}^{s}$ are necessary to determine whether scenarios with NP in Γ_{12}^{d} and/or Γ_{12}^{s} are viable explanations of discrepancies in $\Delta F = 2$ observables with respect to the standard model.

ACKNOWLEDGMENTS

We thank the CDF and LHCb collaborations for providing us with the 2D profile likelihood functions needed for our analyses. A.L. is supported by DFG through a Heisenberg fellowship. U.N. acknowledges support by BMBF through Grant No. 05H09VKF.

[10] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 85, 072002 (2012), during the completion of the present paper, this analysis was redone with 9.6 fb$^{-1}$ data (CDF note 10778).