LHCb

THCP
Overview

- LHCb
- VELO
- Production
- Testing
- Commissioning
- Summary
LHCb: Spectrometer
LHCb: Triggering on B’s

Visible collisions
\[L = 2 \times 10^{32} \text{ cm}^2 \text{ s}^{-1} \]

L0: [hardware]
- high Pt particles
- calorimeter + muons
- 4 μs latency

HLT: [software]
- 1 MHz readout
- ~1800 nodes farm

On tape:
- Exclusive selections
- Inclusive streams
LHCb: VELO Requirements

• Good vertexing
 – Primary vertex <10microns
 – IP parameter \(\sim 40\mu m \) (40fs time resolution)
 • close to LHC beam (vacuum)
 • high radiation levels \(<10^{15}\text{p/cm}^2\)
 – Close to Beam = moving detectors

• Tracking

• 2D trigger algorithm
 – R-phi geometry

• Low mass \(\sim 10\% X_0 \)
LHCb: VELO Design

- Tank
- Mechanics and Cooling
- Modules
- FE electronics
- ODE
- Monitoring
- Software
VELO: Tank
VELO: Secondary Vacuum

- Foil: 5mm from LHC beam
- Al 0.3mm thick

21 (originally 25) modules / side
VELO: Secondary Vacuum

Max deflection in topfoil = 0.458 mm

Max deflection in topfoil = 0.439 mm
VELO: Cooling

- Biphase CO$_2$ @ 15bar
- Low mass
VELO: Sensors

- highly segmented
- n^+n
- double metal layer
- 2048 strips/sensor
- Laser cut
- Two designs
 - R-measuring
 - Phi-measuring

~4cm
LHCb: Sensors Design

- complex
- highly automated
- Simulated ISE-TCAD
Production and Status

• Selected components
 – Tank
 – Wake Field Suppressor
 – Cooling
 – Hybrids & Bonding
 – Modules

• Many other important parts not mentioned
 – High Voltage, Low Voltage, Cables
 – DAQ
Production: Tank

precision 0.2/0.3 mm
Production: Wake Field Suppressor
Production: Foils
Production: Foils
Production: Foils
Production: Cooling
Production: Cooling
Production: Hybrid

- TPG/CF core
- Double sided
- Populated
- Pitch adaptors
 - Chips
- Bonding
- Sensors
- More bonding
Production Bonding

- Vacuum jig to hold Hybrid during bonding
- Handling frame to protect hybrids during transfer
Production: Backend Bonding

There are approximately 72 Back end wires per chip (each chip is different because of the addressing). 16 chips at 72 wires Rad side = 1,152 16 chips at 73 wires Phi side = 1,168 Total Back end bonds per hybrid = 2,320 wires
Production: Front end Bonding

Loop heights
- Row 1 = 250 µm
- Row 2 = 450 µm
- Row 3 = 750 µm
- Row 4 = 900 µm
Production: Front end Bonding

Kulicke & Soffa 8090

- The 8090 has the industry's largest **bonding area**, at 16" x 14" (406mm x 335mm).
- This is obtained using SAW’S (small area windows set at 50mm square)
- 120 kHz Ultrasonic Transducer
- The 8090 bonds at a lightning-fast 5 wires per second
- Pad finder and lead locator to help with programming
 - Because of the pad sizes and angles of the pads on our pitch adaptors this mode has to be switched off.
The above slide shows we can only bond in quadrants because of the small area Windows (SAW).
This is one program but has to aligned each time it accesses a new SAW.
You can’t bond from one saw to another, all wires must be in the same SAW.
Production: Front end Bonding

- The bondjet 710 has the largest **working area** with all axis in the bondhead 10,0" x 7,0“ (255 mm 180mm) This allows us to access the whole hybrid.
- 100 kHz Ultrasonic Transducer
- The 710 bonds at a speed of 2 wires per second
- **Bond quality control** Continuous monitoring of wire deformation and transducer current within programmable upper and lower control limits
Production: Front end Bonding

- Use two H&K 710’s

- There are two problems with the front end bonds.

- The chip pads are four row bonding with small pads, making it difficult but not impossible to do repair work.

- Pads on pitch adaptor rows three and four are only 50µm and 40µm wide making it very difficult to bond in an auto state without spending a lot of time checking the positioning of the bond placement.

Chip to pitch adaptor bonds

- There are 16 chips per side each with 128 wires a total of 4096 wires
Production: Front end Bonding

A close look at 4 row bonding on the Chip

Front and Backend Bonding

bonding on the Pitch Adaptor
Production: Sensor Bonding
Production: Bonding Problems

• 8090 not as reliable or as flexible as we would like
• Lack of pattern recognition hurts with differing dimension kapton pitch adaptor
• Double sided bonding
 – VERY specialized jigging
 – Bounce (1 year to remove)
 – Danger of damaged bond wires (e.g. bias bonds!). Repairs VERY difficult
Production: Module

- 0 CTE module
- Metrology
- Si-Si < 5 μm
- Si to removable base < 20 μm (~15 μm) (will reduce)
- Hybrid and Si needs to be in right place
 - Trigger
 - Foil
Clamps are used to relieve any stress on the modules caused by the cables, they are manufactured by Photofabrication.

Cable and clamp assembly in position and ready to be locked to the module base.
Testing: IR Laser

- Programmed & aligned
- Noise plots
- Laser scan every strip of every detector
Production: Laboratory

- Final testing complicated
 - Cooling in vac
 - CO₂ system safety
 - Pump down
- Noise Plots
- Achieve >99% good strips
Testing: Reception

- Visual inspection
 - Low Resolution
 - High Resolution
- Vacuum Burnin
 - Thermal cycling
 - Noise
Commissioning:

• Alignment Commissioning and Data Challenges
 – Testbeam
 – Detector half (system test)
 – Already using full DAQ and software chain
 • Real Control System, Analogue links etc…
VELO DAQ/ECS TestBeam Setup

- **CERN Network**
- **PVSS**
- **SPECS**
- **Temperature Board**
- **ELMB**
- **ODIN**
- **TELL1**
- **Gb eth.**
- **CCPC**
- **TTC**
- **optical**
- **Analog Data cables 60m**
- **Repeater Boards**
- **Buff**
- **ECS**
- **LV**
- **Repeater power**
- **Long Kaptons**
- **USB-CAN**
- **ISEG HV**
- **Gb eth.**
- **Ethernet (data)**
- **x6**
- **Ethernet (control)**
- **Switch**
- **Velotdaq 00,01,02**
Testing: With Beam

All software ran smoothly: Real alignment software etc
Testing: With Beam

- Real hits shown here
- Expanded view shows r and phi hits
Testing: With Beam
Assembly: Mounting

module bridge rotated into position

module inserted onto support

cooling cookies attached

experts brought in for kapton attachments
Only 41 to go !
Commissioning:

- Final Testbeam/System Test in October/November
- 1st ½ installed in pit by February 2007
- April – May installation of second half
- Ready to take data for pilot run
Summary: Significant Problems

- K&S 8090 not the ideal bonder for front-ends on VELO
- Kapton pitch adaptors VERY difficult to make …
- Clamps → unique cables
- Very cramped space
Summary: Status

• Mechanics almost complete
 – Tank in pit
 – One half ready other very close
 – Cooling well underway
 – Foils ready (being measured)

• Modules
 – 25% at CERN
 – 50% by mid October (currently 4/week)

• Software
 – Close to being fully ready
Conclusion

• VELO a small but complex detector
• LEP scale vertex detector moving in a vacuum
• Well underway for completion in time for 450GeV pilot runs next year
Backup Transparancies

• Shipping
• Frontend bonding
• Assembly/Alignment
• Testbeam results
• Assman/Nakada slides
Production: Shipping Modules

Modules are placed into transportation box with associated Cables ready for shipping to Cern.
Production module delivery

- mid August, production modules available. Coincided with new UK flight regulations

So switched to chauffeur delivery

- 25th August: M24 and M26 delivered to CERN
- 5th September, further 4 production modules
Production: Bonding

Bond footprint is the same size as track width on 4 row

Lower loop formation

THERE ARE A TOTAL OF 10,528 WIRES BONDED PER HYBRID
Sensor being prepared for gluing. Sensor alignment ≤ 5 μm

Position the Sensor on to the Transfer jig and apply vacuum.

Place transfer plates to the hybrid which is held in a glue jig.

Both Radial and Phi sides are glued at the same time.

Remove transfer jigs, then the hybrid/sensor can be taken out of the glue jig, ready for metrology.
Module

- Now we have a hybrid and paddle, these need to be glued together.
- We apply the glue to the hybrid.
- We place the hybrid on a vacuum jig, this jig can be manipulated in X, Y and θ axis.
- The paddle is bolted to an independent jig, which has movement in Z axis.
- The paddle is lowered to within 0.5mm and aligned optically.
- When happy the paddle is lowered to the correct height glue to adhere to both sides.
- Then when the glue has been correctly spread it is aligned to its final position.
- Final alignment ≤ 20 µm.
Assman & Nakada from Plenary

• Risk at 450 GeV
• Magnetic field (off on)
• 7 sigma from beam