ATHENA: common ATLAS computing framework for Monte Carlo simulation, Data and Monte Carlo reconstruction and physics analysis

ATLAS described in XML

- **barrel structures**
- **endcap structures**

XML input
- independent language to describe all kinds of shapes (extendable to anybody’s needs)
- visual debugging reduces development duty cycles
- intuitive interpretation of the code due to direct correspondence of XML elements to shapes and detector elements
- input for generic visualisation and simulation applications

XML parser
- interface with minimal interpretation of elements
- various open source solutions available (e.g. TinyXML, Xerces, ...)

Atlas Generic Detector Description
- generic geometry model based on volumes (solids equipped with material properties) and positions is built inside memory
- parser from generic representation to arbitrary visitor program (e.g. TGeo, Geant4, GeoModel, ...) or file outstream
- extensible for new XML elements thanks to modular programming techniques
- configuration via python scripts (common for ATLAS software framework)
- resources are saved if several visitors are required by the end user

Example (GeoModel)
- common geometry description used in ATLAS software

Example (Geant4)
- accurate simulation software

Example (Persint)
- fast tracking and detector simulation

Example (ASCII code)

Example (Persint)

ATLAS Collaboration
Laurent Chevalier (CEA Saclay), Andrea Dell’Acqua (CERN), Jochen Meyer (Universität Würzburg)