Pixel Hybrid Photon Detector
Magnetic Distortions
Characterization and Compensation

Gianluca Aglieri Rinella1,2, T.F. Bellunato3,4, C. D’Ambrosio1, R. Forty1, T. Gys1, M. Patel1, D. Piedigrossi1, A. Van Lysebetten1

On behalf of the LHCb RICH collaboration

IEEE 2004 NSS N30-4

1CERN, Geneva, Switzerland, 2DIEPA, University of Palermo, Italy 3University of Milano Bicocca, 4INFN Sezione di Milano
The LHCb experiment

- b physics at the LHC p-p collider: CP violation, rare decays
- Single arm forward spectrometer (*W. Witzeling, IEEE NSS N21-8*)
- Hadrons identification -> Ring Imaging Cherenkov detectors RICH
LHCb RICH detectors

Particle ID by Cherenkov angle measurement from photon hits on detector planes

- **RICH1**
 - Aerogel (2 - ~10 GeV/c)
 - C_4F_{10} (10 - ~60 GeV/c)

- **RICH2**
 - CF$_4$ (16 - ~100 GeV/c)

Magnet fringe field shielding boxes
Magnetic shielding and photon detector requirements

Photon detectors requirements:

• Single photon detection in the 200-600 nm wavelength range
• 2.5x2.5 mm² spatial resolution on entrance window equivalent to $\sigma_{\theta C} = 0.62$ mrad error contribution to Cherenkov angle
• Operational in magnetic field of ~ 2.5 mT in RICH1 and ~ 1.0 mT in RICH2
Hybrid Photon Detectors

- Vacuum tube
- Quartz window, S20 photo-cathode, 25% peak QE
- Cross-focusing electron optics
- Anode assembly:
 - hybrid pixel detector (16x16 mm²) fully encapsulated in the vacuum tube
 - 32x256 pixel silicon detector bump-bonded onto the LHCbPIX1 CMOS readout chip
 - Analog and digital chain readout on chip

- Electron trajectories distorted by magnetic field like in Image Intensifiers for fluoroscopy
- Rotation (S-distortion) due to axial component
- Translation due to transverse component
Magnetic distortions

- Individual magnetic shielding
- Smaller displacements for transverse component
- No losses due to magnetic effects unless image shifted out of anode (>> 5.0 mT)

- Reconstruct pixel hit – photon hit position correspondence for each HPD
- Magnetic field not uniform and varying tube-by-tube
Set-up description

- Projection of collimated light on known positions on the HPD entrance window
- Magnetic field generated by Helmholtz coils
 - B field value is the one in the region when HPD and shield are not there
- Cylindrical Mumetal® magnetic shield

- 160 points Double Cross pattern to position the LED
- Characterization for axial magnetic field B_\parallel
- Rotational symmetry
- Not too restrictive
 - Local shielding very effective on transverse component
 - Smaller displacement due to transverse field
Radial distance of hit on chip vs radial distance of LED source on entrance plane

\[y = -0.0016x^2 + 0.2425x \]

\[y = -0.001x^2 + 0.2043x \]

\[y = -0.0004x^2 + 0.1772x \]

- Non uniform radial dilation
- Second order polynomial fit

\[\rho = \rho_1(B) r + \rho_2(B) r^2 \]

\[\rho_i(B) = \sum_j \rho_{i,j} B^j \]
Rotation law

- Non uniform rotation (S-distortion)
- Third order polynomial fit, first order coefficient zero

\[\Delta \varphi = \Delta \varphi_0(B) + \Delta \varphi_2(B) r^2 + \Delta \varphi_3(B) r^3 \]

\[\Delta \varphi_i(B) = \sum_j \Delta \varphi_{i,j} B^j \]
Photon hit reconstruction

Parameterization obtained is used to

- **Reconstruct** photon hit position from pixel hit position given the magnetic field
- Develop an estimator of $B_{//}$ with a test pattern

- **Distorted images** of double cross processed to calculate the photon hit position
- Reconstruction error at 2.5 mT larger than intrinsic resolution of the HPD ($2.5/\sqrt{12} = 0.72$ mm)
- First trial, on-going study

<table>
<thead>
<tr>
<th>Applied B field [mT]</th>
<th>Average reconstruction error [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.82</td>
</tr>
<tr>
<td>1.0</td>
<td>1.24</td>
</tr>
<tr>
<td>2.0</td>
<td>1.40</td>
</tr>
<tr>
<td>3.0</td>
<td>1.78</td>
</tr>
</tbody>
</table>
Test Pattern

- **Test pattern features:**
 - Allows easy **automatic search** and identification of clusters (correspondence problem)
 - Spots averaged centers as coordinates for the analysis
 - Sample rotation of the image at various radii
 - **Estimate the B field** axial component by best fit of the model

<table>
<thead>
<tr>
<th>Applied B field [mT]</th>
<th>Estimated field [mT]</th>
<th>Bias [mT]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.90</td>
<td>0.20</td>
</tr>
<tr>
<td>2.0</td>
<td>2.05</td>
<td>0.27</td>
</tr>
<tr>
<td>3.0</td>
<td>3.24</td>
<td>0.27</td>
</tr>
<tr>
<td>4.0</td>
<td>4.08</td>
<td>0.24</td>
</tr>
<tr>
<td>5.0</td>
<td>5.07</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Estimator average bias: 0.07 mT

- Projection of a **static pattern** on the detectors plane in the experiment
- **Automated calibration** procedure on the full set of HPDs determining field in each tube
Conclusion

- Innovative **Hybrid Photon Detectors** developed by the LHCb collaboration and industrial partners fulfil the LHCb RICH detectors requirements
- Shielded HPDs are **fully operational** in the residual magnetic field (2.5 mT) inside the shielding boxes
- **Characterization and parameterization** of **ExB distortions** of the image
- Strong S-distortion **correction** possible given B_\parallel value, recovering spatial resolution
- B_\parallel estimation with test pattern
- **Automated calibration procedure** for the LHCb RICH to estimate the axial field applied on each of the **484 HPDs installed** in the experiment has been proposed

Acknowledgements: The authors wish to thank **Asmund Skjaeveland** for the contribution given to this work in the framework of CERN Summer Students program
Spares
Test Pattern

- **Test pattern features:**
 - Allows easy **automatic search** and identification of clusters (correspondence problem)
 - Spots averaged centers as coordinates for the analysis
 - Sample rotation of the image at various radii
 - **Estimate the B field** axial component by best fit of the model

<table>
<thead>
<tr>
<th>Applied B field [mT]</th>
<th>Estimated field [mT]</th>
<th>Bias [mT]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.90</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.10</td>
</tr>
<tr>
<td>2.0</td>
<td>2.05</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>3.0</td>
<td>3.24</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.24</td>
</tr>
<tr>
<td>4.0</td>
<td>4.08</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>5.0</td>
<td>5.07</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.07</td>
</tr>
</tbody>
</table>

Estimator average bias: 0.07 mT

- **Projection of a static pattern** on the detectors plane in the experiment
- **Automated calibration** procedure on the full set of HPDs determining field in each tube