Quantum gravity era

10^{-43} s

Gravity separates as a force, the other forces remain as one (Grand Unification)

$t < 10^{-43}$ s : The Big Bang
The universe is considered to have expanded from a single point with an infinitely high energy density (infinite temperature). Is there a meaning to the question what existed before the big bang?

$t \approx 10^{-43}$ s, 10^{32} K (10^{19} GeV, 10^{-34} m) : Gravity “freezes” out
All particle types (quarks, leptons, gauge bosons, and undiscovered particles e.g.Higgs, sparticles, gravitons) and their anti-particles are in a thermal equilibrium (being created and annihilated at equal rate). These coexist with photons (radiation). Through a phase transition gravity "froze" out and became distinct in its action from the weak, electromagnetic and strong forces. The other three forces could not be distinguished from one another in their action on quarks and leptons. This is the first instance of the breaking of symmetry amongst the forces.
Grand unification era

10^{-35} s

Inflation ceases, expansion continues
Grand Unification breaks. Strong and electroweak forces become distinguishable

$t \approx 10^{-35}$ s, 10^{27} K (10^{16} GeV, 10^{-32} m) : Inflation

The rate of expansion increases exponentially for a short period. The universe doubled in size every 10^{-34} s. Inflation stopped at around 10^{-32} s. The universe increased in size by a factor of 10^{50}. This is equivalent to an object the size of a proton swelling to 10^{19} light years across. The whole universe is estimated to have had a size of $\sim 10^{23}$ m at the end of the period of inflation. However the presently visible universe was only 3 m in size after inflation. This solves the problems of ‘horizon’ (how is it possible for two opposing parts of the present universe to be at the same temperature when they cannot have interacted with each other before recombination) and ‘flatness’ (density of matter is close to the critical density).

$t \approx 10^{-32}$ s : Strong forces freezes out

Through another phase transition the strong force “freezes” out and a slight excess of matter over anti-matter develops. This excess, at a level of 1 part in a billion, is sufficient to give the presently observed predominance of matter over anti-matter. The temperature is too high for quarks to remain clumped to form neutrons or protons and so exist in the form of a quark gluon plasma. The LHC can study this by colliding together high energy nuclei.
Electroweak era

$t \approx 10^{-10} \text{ s}, 10^{15} \text{ K (100 GeV, } 10^{-18} \text{ m)} : \text{ Electromagnetic and Weak Forces separate}$

The energy density corresponds to that at LEP. As the temperature fell the weak force “freezes” out and all four forces become distinct in their actions. The antiquarks annihilate with the quarks leaving a residual excess of matter. W and Z bosons decay. In general unstable massive particles disappear when the temperature falls to a value at which photons from the black-body radiation do not have sufficient energy to create a particle-antiparticle pair.
Protons and neutrons form

10^{-4} s

Quarks combine to make protons and neutrons

$t \approx 10^{-4}$ s, 10^{13} K (1 GeV, 10^{-16} m) : Protons and Neutrons form

The universe has grown to the size of our solar system. As the temperature drops quark-antiquark annihilation stops and the remaining quarks combine to make protons and neutrons.

$t = 1$ s, 10^{10} K (1 MeV, 10^{-15} m) : Neutrinos decouple

The neutrinos become inactive (essentially do not participate further in interactions). The electrons and positrons annihilate and are not recreated. An excess of electrons is left. The neutron-proton ratio shifts from 50:50 to 25:75.
Nuclei are formed

100 s

Protons and neutrons combine to form helium nuclei

$t = 3$ minutes, 10^9 K (0.1 MeV, 10^{-12} m): Nuclei are formed

The temperature is low enough to allow nuclei to be formed. Conditions are similar to those that exist in stars today or in thermonuclear bombs. Heavier nuclei such as deuterium, helium and lithium soak up the neutrons that are present. Any remaining neutrons decay with a time constant of ~ 1000 seconds. The neutron-proton ratio is now 13:87. The bulk constitution of the universe is now in place consisting essentially of protons (75%) and helium nuclei. The temperature is still too high to form any atoms and electrons form a gas of free particles.
Atoms and light era

300000 years

The Universe becomes transparent and fills with light

$t = 300\,000\text{ years, }6000\text{ K (0.5 eV, }10^{-10}\text{ m)} : Atoms are created}$

Electrons begin to stick to nuclei. Atoms of hydrogen, helium and lithium are created. Radiation is no longer energetic enough to break atoms. The universe becomes transparent. Matter density dominates. Astronomy can study the evolution of the Universe back to this time.
Galaxy formation
1000 million years

Galaxies begin to form

$t = 10^9$ years, 18 K : Galaxy Formation
Local mass density fluctuations act as seeds for stellar and galaxy formation. The exact mechanism is still not understood. Nucleosynthesis, synthesis of heavier nuclei such as carbon up to iron, starts occurring in the thermonuclear reactors that are stars. Even heavier elements are synthesized and dispersed in the brief moment during which stellar collapse and supernovae explosions occur.
Today
15000 million years

Man begins to wonder where it all came from

\(t = 15 \times 10^9 \text{ years}, 3 \text{ K} : \text{Humans} \)

The present day. Chemical processes have linked atoms to form molecules. From the dust of stars and through coded messages (DNA) humans emerge to observe the universe around them.
The size of things

Instruments

- **Accelerators**
 - LHC
 - LEP
- **(Particle beams)**
- **Electron Microscope**
- **Microscope**

Observables

- **SUSY particle?**
- **Higgs?**
- **Z/W**
 - (range of weak force)
- **Proton Nuclei**
 - (range of nuclear force)
- **Atom**
- **Virus Cell**
- **Earth radius**
- **Earth to Sun**
- **Galaxies**
- **Radius of observable Universe**

Universe

- 10^{-34}
- 10^{-30}
- 10^{-26}
- 10^{-22}
- 10^{-18}
- 10^{-14}
- 10^{-10}
- 10^{-6}
- 10^6
- 10^{10}
- 10^{14}
- 10^{18}
- 10^{22}
- 10^{26}

- 1m

Particles and forces
Particle Physics

Aim to answer the two following questions

- What are the elementary constituents of matter?
- What are the fundamental forces that control their behavior at the most basic level?
Particles

Leptons

<table>
<thead>
<tr>
<th>Particle</th>
<th>Electric Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tau Neutrino</td>
<td>0</td>
</tr>
<tr>
<td>Muon Neutrino</td>
<td>0</td>
</tr>
<tr>
<td>Electron Neutrino</td>
<td>0</td>
</tr>
<tr>
<td>Tau</td>
<td>-1</td>
</tr>
<tr>
<td>Muon</td>
<td>-1</td>
</tr>
<tr>
<td>Electron</td>
<td>-1</td>
</tr>
</tbody>
</table>

Quarks

<table>
<thead>
<tr>
<th>Quark</th>
<th>Electric Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom</td>
<td>-1/3</td>
</tr>
<tr>
<td>Top</td>
<td>2/3</td>
</tr>
<tr>
<td>Strange</td>
<td>-1/3</td>
</tr>
<tr>
<td>Charm</td>
<td>2/3</td>
</tr>
<tr>
<td>Down</td>
<td>-1/3</td>
</tr>
<tr>
<td>Up</td>
<td>2/3</td>
</tr>
</tbody>
</table>

Each quark: \(\bullet \text{R}, \bullet \text{B}, \bullet \text{G} \) 3 colors

The particle drawings are simple artistic representations.
Forces

Strong

- Gluons (8)
- Quarks
- Mesons
- Baryons
- Nuclei

Electromagnetic

- Photon
- Atoms
- Light
- Chemistry
- Electronics

Gravitational

- Graviton ?
- Solar system
- Galaxies
- Black holes

Weak

- Bosons (W,Z)
- Neutron decay
- Beta radioactivity
- Neutrino interactions
- Burning of the sun

The particle drawings are simple artistic representations.
Interactions: coupling of forces to matter

Electromagnetic

- Range ∞, relative strength $\leq 10^{-2}$

** Weak**

- Charged
 - W interactions
 - Range $\sim 10^{-18}$ m, relative strength 10^{-14}
- Neutral
 - Z^0 interactions

Strong

- Range $\sim 10^{-15}$ m, relative strength $= 1$
Short history and new frontiers

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Event/Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900-....</td>
<td>Quantum Mechanics, Atomic Physics</td>
</tr>
<tr>
<td>1940-50</td>
<td>Quantum Electro Dynamics</td>
</tr>
<tr>
<td>1950-65</td>
<td>Nuclei, Hadrons, Symmetries, Field theories</td>
</tr>
<tr>
<td>1965-75</td>
<td>Quarks, Gauge theories</td>
</tr>
<tr>
<td>SPS, pp 1970-83</td>
<td>ElectroWeak Unification, QCD</td>
</tr>
<tr>
<td>LEP 1990</td>
<td>3 families</td>
</tr>
<tr>
<td>Tevatron 1994</td>
<td>Top quark</td>
</tr>
<tr>
<td>LHC 2005</td>
<td>Higgs ? Supersymmetry ?</td>
</tr>
<tr>
<td></td>
<td>Underground Labs</td>
</tr>
<tr>
<td></td>
<td>GRAND Unified Theories ?</td>
</tr>
<tr>
<td>The Origin of the Universe</td>
<td>10^{-35} m \quad \approx 10^{19} \text{ GeV} \quad \approx 10^{-43} \text{ sec}</td>
</tr>
<tr>
<td>Proton Decay ?</td>
<td>10^{-32} m \quad \approx 10^{16} \text{ GeV} \quad \approx 10^{-32} \text{ sec}</td>
</tr>
</tbody>
</table>

Origin of masses

<table>
<thead>
<tr>
<th>Distance</th>
<th>Mass</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-19} m</td>
<td>10^{3} \text{ GeV}</td>
<td>10^{-12} \text{ sec}</td>
</tr>
<tr>
<td>10^{-32} m</td>
<td>10^{16} \text{ GeV}</td>
<td>10^{-32} \text{ sec}</td>
</tr>
<tr>
<td>10^{-35} m</td>
<td>10^{19} \text{ GeV}</td>
<td>10^{-43} \text{ sec}</td>
</tr>
</tbody>
</table>

Particles and forces

- **Quarks** (u, d, c, s, t, b)
- **Leptons** (ν_μ, ν_τ, ν_τ, e, μ, τ)
- **Colors** (R, G, B)

<table>
<thead>
<tr>
<th>Scale</th>
<th>Mass</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-10} m</td>
<td>\leq 10 \text{ eV}</td>
<td>>300000 \text{ Y}</td>
</tr>
<tr>
<td>10^{-15} m</td>
<td>MeV - GeV</td>
<td>\approx 3 \text{ min}</td>
</tr>
<tr>
<td>10^{-16} m</td>
<td>>> GeV</td>
<td>\approx 10^{-6} \text{ sec}</td>
</tr>
<tr>
<td>10^{-18} m</td>
<td>\approx 100 \text{ GeV}</td>
<td>\approx 10^{-10} \text{ sec}</td>
</tr>
</tbody>
</table>

Origin of masses

- **The next step...**
- **LHC 2005**
- **Proton Decay ?**
- **The Origin of the Universe**

Underground Labs

- **GRAND Unified Theories ?**
- **Quantum Gravity?**
- **Superstrings ?**
Unification of forces

Terrestrial mechanics

Universal Gravitation
Inertial vs. Gravitational mass
(I. Newton, 1687)

Celestial mechanics

Electricity

Electromagnetism
Electromagnetic waves (photon)
(J.C. Maxwell, 1860)

Magnetism

Electromagnetism

Weak force

Intermediate bosons W, Z
(1970-83)

Probing shorter distances
reveals
deeper regularities

UNIFIED DESCRIPTIONS
Summary

Particles and forces

10^{-43} sec 10^{-32} sec 10^{-10} sec 10^{-4} sec 100 sec 300000 years

10^{-35} m 10^{-32} m 10^{-18} m 10^{-16} m 10^{-15} m 10^{-10} m

10^{19} GeV 10^{16} GeV 10^2 GeV 1 GeV 1 Mev 10 eV

Theories:

STRINGS?

RELATIVISTIC/QUANTUM

CLASSICAL