Heavy flavour production and spectroscopy at LHCb

Patrizia de Simone (INFN LNF)
on behalf of the LHCb Collaboration
BEACH 2012, Wichita, July 23-28 2012
Outline

- The LHCb detector
- Overview of heavy flavour physics at LHCb

Results
- Quarkonia
- c-hadrons
- b-hadrons

Conclusions
The LHCb Detector

multi-stage trigger first hardware, subsequent two levels are software

- **Vertexing** proper time resolution 30-50 fs
- **Tracking** $\Delta p/p = 0.35 - 0.55\%$ σ(mass) = 10 - 25 MeV/c2
- **RICH** KaonID ε(K\toK) \approx 95% misID rate (π-\toK) \approx 5%
- **ECAL** σ(E)/E = 10%/VE \pm 1.\% **HCAL** σ(E)/E = 69%/VE \pm 9%
- **MuonID** ε(\mu\to\mu) \approx 97% misID rate ($\pi$$\to$\mu) = 1-3 %
Heavy Flavour Physics at LHCb

- quarkonia and heavy hadrons production processes are valuable tests of perturbative and non-perturbative QCD models
- furthermore different QCD models predict different masses, BR, lifetime, etc., c and b hadron spectroscopy provides excellent test
- due to the unique coverage of LHCb, the results are complementary to the GPDs, and essential to obtain a complete picture (underlying event modeling)

- large production cross sections at $\sqrt{s} = 7$ TeV in acceptance
 \[\sigma(c\bar{c}) = 1742 \pm 267 \text{\mu b} \]
 \[\sigma(b\bar{b}) = 75.3 \pm 5.4 \pm 13 \text{\mu b} \]

<table>
<thead>
<tr>
<th>data samples</th>
<th>2010 (7 TeV)</th>
<th>2011 (2.8 TeV)</th>
<th>2011 (7 TeV)</th>
<th>2012 (8 TeV)</th>
<th>expected end 2012 (8 TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. Lumi.</td>
<td>37 pb$^{-1}$</td>
<td>71 nb$^{-1}$</td>
<td>1 fb$^{-1}$</td>
<td>0.73 fb$^{-1}$</td>
<td>2.2 fb$^{-1}$</td>
</tr>
</tbody>
</table>

- uncertainty on integrated luminosity for all analyses is 3.5%
Quarkonia
Charmonia and Bottomonium at \(\sqrt{s} = 7 \text{ TeV} \)

- LHCb has published the production rates of prompt and non-prompt quarkonia at 7 TeV

EPJC 71 (2011) 1645

- \(\sigma_{\text{prompt}}(J / \psi) = 10.52 \pm 0.04(\text{stat}) \pm 1.40(\text{syst})^{+1.64}_{-2.20}(\text{pol}) \mu b \)
- \(\sigma_{b}(J / \psi) = 1.14 \pm 0.01(\text{stat}) \pm 0.16(\text{syst}) \mu b \)

arXiv: 1204.1258

- \(\sigma_{\text{prompt}}(\psi(2S)) = 1.44 \pm 0.01(\text{stat}) \pm 0.12(\text{syst})^{+0.20}_{-0.40}(\text{pol}) \mu b \)
- \(\sigma_{b}(\psi(2S)) = 0.25 \pm 0.01(\text{stat}) \pm 0.02(\text{syst}) \mu b \)
- \(\text{BR}(b \rightarrow \psi(2S)X) = (2.73 \pm 0.06 \pm (\text{stat}) \pm 0.16(\text{syst}) \pm 0.24(\text{BR}) \times 10^{-3} \)

EPJC 72 (2012) 2025

- \(\sigma_{\text{prompt}}(Y(1S)) \times Br(Y(1S) \rightarrow \mu^{+}\mu^{-}) = 2.29 \pm 0.01(\text{stat}) \pm 0.10(\text{syst})^{+0.19}_{-0.37}(\text{pol}) \text{nb} \)
- \(\sigma_{\text{prompt}}(Y(2S)) \times Br(Y(2S) \rightarrow \mu^{+}\mu^{-}) = 0.562 \pm 0.007(\text{stat}) \pm 0.023(\text{syst})^{+0.048}_{-0.092}(\text{pol}) \text{nb} \)
- \(\sigma_{\text{prompt}}(Y(3S)) \times Br(Y(3S) \rightarrow \mu^{+}\mu^{-}) = 0.283 \pm 0.005(\text{stat}) \pm 0.012(\text{syst})^{+0.025}_{-0.025}(\text{pol}) \text{nb} \)

Data sample of 5.2 pb\(^{-1}\)
- Use \(J/\psi \rightarrow \mu^{+}\mu^{-} \)
- Cross sections integrated over the ranges \(p_{T} < 14 \text{ GeV} / c \) and \(2.0 < y < 4.5 \)

Data sample of 36 pb\(^{-1}\)
- Use \(\psi(2S) \rightarrow \mu^{+}\mu^{-} \) and \(\psi(2S) \rightarrow J/\psi (\mu^{+}\mu^{-}) \pi^{+}\pi^{-} \)
- Cross sections integrated over the ranges \(p_{T} < 16 \text{ GeV} / c \) and \(2.0 < y < 4.5 \)

Data sample of 25 pb\(^{-1}\)
- Use \(Y(iS) \rightarrow \mu^{+}\mu^{-} \) (\(i = 1, 2, 3 \))
- Cross sections integrated over the ranges \(p_{T} < 15 \text{ GeV} / c \) and \(2.0 < y < 4.5 \)

- The largest error on the prompt cross sections is due to the unknown quarkonia states polarizations
- Differential cross sections have been measured as a function of \(p_{T} \) and \(y \) of the quarkonia states
- The inclusive \(\text{BR}(b \rightarrow \psi(2S)X) \) has been obtained combining \(\sigma_{b}(\psi(2S)) \) and \(\sigma_{b}(J/\psi) \), and the last error is due to the uncertainty on \(\text{BR}(b \rightarrow J/\psi X) \) [PDG]
Comparison with theory

- as already seen by Tevatron production σ’s are larger than NRQCD calculations based on LO CSM
- *recent QCD calculations are found to be in good agreement with all our measurements*
- prompt $\psi(2S)$ production measurement is directly compared with theory prediction because has no appreciable feed-down from higher mass states

MWC [arXiv:hep-ph/1012.1030] and
KB [PRL 106(2011)022003] are NLO calculations in NRQCD including CS and CO
AL [PRL 101(2008)152001, EPJ C61(2009)693] is a CS model including the dominant NNLO terms

- QCD predictions for charmonia production from b-hadron decays are based on the **Fixed-Order-Next-to-Leading-Log (FONLL)** approximation

BEACH 2012, Wichita
P. de Simone, LNF-INFN
Charmonia and Bottomonium at 8 vs = TeV \((\text{Preliminary})\)

LHCb is performing extremely well at 8 TeV
\[
\sigma(m_{J/\psi}) \equiv 14.5 \text{ MeV/c}^2
\]
\[
\sigma(m_{\psi}) \equiv 43 \text{ MeV/c}^2
\]
\[
\sigma(\text{proper time}) \equiv 61 \text{ fs}
\]

- fraction of \(J/\psi\) and \(\psi(2S)\) from b extracted from fit to the mass and pseudo proper time
- cross section expected to increase by \(\sim 15\%\)

\[
t_z = \frac{(z_{J/\psi} - z_{PV}) \times M_{J/\psi}}{p_z}
\]
Double charm production

- besides the quarkonia differential cross sections other observables will be necessary to discriminate amongst the various models
 - Color Singlet vs Color Octect, NLO vs NNLO terms, ...
- quarkonia polarization measurements **analysis ongoing**
- *double J/ψ, J/ψ open charm and double open charm production*

production of multiple heavy flavour states tests ➔

1. Leading Order calculations for the $gg \rightarrow J/\psi \ c\bar{c}$ process in perturbative QCD
2. the Double Parton Scattering approach, DPS
3. sea charm quarks from the interacting protons

may not be mutually exclusive

if DPS picture dominates

we would expect

$$
\sigma_{DPS}(C_1C_2) = \begin{cases}
\frac{1}{2} \frac{\sigma(C_1) \times \sigma(C_2)}{\sigma_{eff}^{DPS}} , & \text{for } C_1 = C_2 \\
\frac{\sigma(C_1) \times \sigma(C_2)}{\sigma_{eff}^{DPS}} , & \text{for } C_1 \neq C_2
\end{cases}
$$

where $\sigma_{eff}(DPS) \equiv 15 \text{ mb}$ has been measured with multi-jet events at the Tevatron
Double J/ψ production

\[\sigma_{J/\psi J/\psi} = 5.1 \pm 1.0 \text{(stat)} \pm 1.1 \text{(syst)} \text{nb} \]

- differential production cross section as a function of the invariant mass of J/ψ pairs compared with LO calculations for the $gg \to J/\psi J/\psi$ process in perturbative QCD
 \[\sigma_{J/\psi J/\psi} = 4.1 \pm 1.2 \text{ nb} \ [arXiv:1101.5881] \]

- LHCb results might indicate a contribution from the Double Parton Scattering (DPS) production mechanism
 \[2. \pm 1. \text{ nb} \ [arXiv:1106.2184] \]

data sample of 37.5 pb\(^{-1}\)
reconstruct prompt $J/\psi \to \mu^+\mu^-$
cross sections integrated over the ranges $p_T < 10$. GeV/c and $2.0 < y < 4.5$

result to be updated with full statistics at 7 TeV

BEACH 2012, Wichita
P. de Simone, LNF-INFN
J/ψC and CC production

- data sample 355 pb⁻¹
- signals with a statistical significance in excess of 5σ have been observed for
 - J/ψC → J/ψD⁰, J/ψD⁺, J/ψDˢ⁺, J/ψΛᶜ⁺
 - CC → D⁰D⁰, D⁰D⁺, D⁰Dˢ⁺, D⁺D⁺, D⁺Dˢ⁺, D⁰Λᶜ⁺
 - C̅C → D⁰D⁰, D⁰D⁻, D⁰Dˢ⁻, D⁺D⁻, D⁺Dˢ⁻, D⁰Λᶜ⁻, D⁺Λᶜ⁻ (Control Sample)

in the acceptance region → \(p_T(J/\psi) < 12 \text{ GeV/c} \), 3. \(p_T(C) < 12 \text{ GeV/c} \), and 2 < \(y_{J/\psi}Y_C < 4 \)

DPS prediction works well for J/ψC modes

- gg fusion predictions
 - PRD 57 (1998) 4385
 - EPJC 61 (2009) 693

DPS prediction significantly lower than the measurements

- many more channels to explore with the increasing statistics, also at new √s
Heavy Onia: $\sigma(\chi_{C2})/\sigma(\chi_{C1})$

P-wave charmonia $\chi_{C}(1P)$, with $J = 0,1,2$

1) give substantial feed-down contributions to the J/ψ_{prompt} production through $\chi_{C} \rightarrow J/\psi \gamma$

2) can have impact on the measurement of the J/ψ polarization

3) $\sigma(\chi_{C2})/\sigma(\chi_{C1})$ is sensitive to the CS and CO production mechanisms

- data sample 36 pb$^{-1}$
- prompt χ_{C} reconstructed through $\chi_{C} \rightarrow J/\psi \gamma$, and $J/\psi \rightarrow \mu^{+}\mu^{-}$
- $\sigma(\chi_{C2})/\sigma(\chi_{C1})$ as a function of $p_{T}(J/\psi)$ in the acceptance region $2 < p_{T}(J/\psi) < 15$ GeV/c and $2 < y(J/\psi) < 4.5$

LHCb

$\sqrt{s} = 7$ TeV

converted γ’s after the magnet

χ_{C0}, χ_{C1}, χ_{C2}

$p_{T}(\gamma) > 650$ MeV/c
$p(\gamma) > 5$ GeV/c
likelihood $CL_{\gamma,ID} > 0.5$

χ_{C0} peak is barely visible, its BR is ~ 30 times smaller than those of χ_{C1} and χ_{C2}
Heavy Onia: $\sigma(\chi_{c2})/\sigma(\chi_{c1})$

$$\frac{\sigma(\chi_{c2})}{\sigma(\chi_{c1})} = \frac{N_{\chi_{c2}}}{N_{\chi_{c1}}} \frac{\varepsilon\chi_{c1}}{\varepsilon\chi_{c2}} \frac{BR(\chi_{c1} \rightarrow J/\psi\gamma)}{BR(\chi_{c2} \rightarrow J/\psi\gamma)}$$

from an unbinned maximum likelihood fit to the $(M(\mu^+\mu^-\gamma) - M(\mu^+\mu^-))$ distribution

$N_{\chi_{c2}} = 26110 \pm 620$

$N_{\chi_{c1}} = 38630 \pm 550$

$\frac{\varepsilon\chi_{c1}}{\varepsilon\chi_{c2}}$ obtained from simulation

BR’s from PDG

- internal error bars = statistical errors, external error bars = systematic uncertainties (apart of polarization)
- lines surrounding the data points show the maximum effect due to the unknown χ_c polarization
- CDF data points at $\sqrt{s} = 1.96$ TeV, $PRL 98$ (2007) 232001
- red hatched band: NLO NRQCD calculation in agreement for $p_T(J/\psi) > 8$ GeV/c $[arXiv:1002.3987]$
- blue hatched band: ChiGen Monte Carlo which uses LO CS model describes the shape reasonably well, but consistently below the data

arXiv:1202.1080 accepted by PLB
c-hadrons
D_{S}^{+} - D_{S}^{-} production asymmetry

- CP violation asymmetries can be determined at LHCb if production and detection asymmetries are known.
- While production diagrams are flavour symmetric, the hadronization process may not be.
- D_{S}^{±} prompt production cross section asymmetry using D_{S}^{±} -> φπ±, and φ -> K^+K^-

\[
A_P = \frac{\sigma(D_{S}^{+}) - \sigma(D_{S}^{-})}{\sigma(D_{S}^{+}) + \sigma(D_{S}^{-})}
\]

- Since D_{S}^{±} -> φπ± is Cabibbo favoured, no significant CP asymmetry is expected and A_p is determined after correcting for the relative D_{S}^{+} and D_{S}^{-} detection efficiencies.
- Since final states are symmetric in K production, we have to determine only \(\varepsilon(\pi^{+})/\varepsilon(\pi^{-})\)

Use the decay sequence from PV:

D^{**+} -> π^{+}D^{0}

D^{0} -> K^{-}\pi^{+}\pi^{+}\pi^{-}

The ratio of fully to partially reconstructed decays provides

D^{*+} and D^{*-} decays examined separately magnet UP data separately from magnet DOWN data.
D_\S^+ - D_\S^- production asymmetry

- Data sample 1 fb^{-1}
- 3 candidates tracks, identified by the RICH, with p_T > 2 GeV/c, must form a vertex detached from PV
- The momentum of the reconstructed D_\S^\pm must point to the PV which reduces contamination from b decays to few percent

\begin{align*}
A_p(\%) & \text{ as a function of } y \text{ and } p_T \\
\begin{array}{c|ccc}
p_T (\text{GeV}) & 2.0 - 3.0 & 3.0 - 3.5 & 3.5 - 4.5 \\
\hline
2.0 - 6.5 & 0.2 \pm 0.5 & -0.7 \pm 0.5 & -0.9 \pm 0.4 \\
6.5 - 8.5 & -0.3 \pm 0.4 & 0.1 \pm 0.5 & -1.2 \pm 0.5 \\
8.5 - 25.0 & 0.2 \pm 0.3 & -0.3 \pm 0.5 & -1.0 \pm 0.8 \\
\end{array}
\end{align*}

Overall production asymmetry:

\[A_p = (-0.33 \pm 0.22(\text{stat}) \pm 0.10(\text{syst})) \% \]

Consistent with theoretical expectations [PLB 298(1993)218], [EPJC 17(2000)137] provide constraints on D_\S^{\pm} production models, and can be used as input for CP violation measurements
b-hadrons
B$^+$ production

- measurements of $\sigma(pp \rightarrow b\bar{b}X)$ provide powerful test of pQCD (NLO and FONLL approximations)
- data sample 35 pb$^{-1}$
- B^{\pm} prompt production cross section using \sim9K $B^{\pm} \rightarrow J/\psi(\mu^+\mu^-)K^{\pm}$ candidates selected in the acceptance region $2 < y < 4.5$ and $p_T < 40$ GeV/c

Comparison of $d\sigma/dp_T$ to FONLL prediction [JHEP 05(1998)007], uncertainties due to b mass, renormalizations, scales, and CTEQ 6.6 PDF

M$(J/\psi K^{\pm})$ of selected candidates in one p_T bin

First measurement of B production in the forward region, will be updated with more luminosity + B_s and B^0

\[
\sigma(pp \rightarrow B^{\pm}X) = 41.4 \pm 1.5(\text{stat}) \pm 3.1(\text{syst}) \mu b
\]
first observation of $B_C^+ \rightarrow J/\psi \pi^+ \pi^- \pi^+$

- BR expected to be 1.5-2.3 times higher than for $B_C^+ \rightarrow J/\psi \pi^+$ \cite{PRD81(2010)014015}
- larger number of π's \Rightarrow smaller ε_{TOT} due to the limited detector acceptance
- measure of the BR($B_C^+ \rightarrow J/\psi \pi^+ \pi^- \pi^+$) relative to that for $B_C^+ \rightarrow J/\psi \pi^+$ with a of data sample 0.8 fb$^{-1}$

\[
\frac{BR(B_C^+ \rightarrow J/\psi \pi^+ \pi^- \pi^+)}{BR(B_C^+ \rightarrow J/\psi \pi^+)} = 2.41 \pm 0.30(\text{stat}) \pm 0.33(\text{syst})
\]

model BLL \cite{PRD81(2010)014015} to simulate $B_C^+ \rightarrow J/\psi \pi^+ \pi^- \pi^+$

\Rightarrow resonant structure dominated by

$B_C^+ \rightarrow J/\psi a_1^+(1260)$, \quad $a_1^+ \rightarrow \rho^0(770)\pi^+$

BEACH 2012, Wichita

P. de Simone, LNF-INFN
Observation of excited B_{(s)}^{} (Preliminary)**

- properties of excited B_{(s)} (L=1) are predicted by Heavy Quark Effective Theory [PRD 64(2001)114004]
- $B_1(5721)^0$, $B_2^*(5830)^0$, $B_{s1}(5830)^0$, $B_{s2}(5840)^0$ observed by CDF and D0

- B mesons reconstructed in $J/\psi K^*$ $D\pi$ and $D\pi\pi\pi$ modes
- search for $B_{(s)}^{**}$ states in the invariant mass distributions of B^+K, $B^+\pi$ and $B^0\pi^+$
- $B^{**} \rightarrow Bh$ and $B^{**} \rightarrow B^*(B\gamma)h$, the invariant masses of the 2 decays are shifted because we do not reconstruct the soft γ ($M_{B^*} - M_B \sim 46$ MeV/c^2)
- study the spectrum $Q = m(Bh) - m(B) - m(h)$
- data sample 336 pb$^{-1}$

First observation of B_1^+ and B_2^{+}**

- good agreement with the earlier results from CDF and D0

$\sigma_M <<$ natural width \Rightarrow Breit-Wigner for signal
Observation of excited B_{(s)}^{**} (Preliminary)

The measured Q values are translated into masses

\[
\begin{align*}
M_{B_{s1}^0} &= (5828.99 \pm 0.08_{\text{stat}} \pm 0.13_{\text{syst}} \pm 0.45_{\text{syst}}^{B_{\text{mass}}}) \text{ MeV/c}^2, \\
M_{B_{s2}^{*0}} &= (5839.67 \pm 0.13_{\text{stat}} \pm 0.17_{\text{syst}} \pm 0.29_{\text{syst}}^{B_{\text{mass}}}) \text{ MeV/c}^2, \\
M_{B_1^0} &= (5724.1 \pm 1.7_{\text{stat}} \pm 2.0_{\text{syst}} \pm 0.5_{\text{syst}}^{B_{\text{mass}}}) \text{ MeV/c}^2, \\
M_{B_1^{*+}} &= (5726.3 \pm 1.9_{\text{stat}} \pm 3.0_{\text{syst}} \pm 0.5_{\text{syst}}^{B_{\text{mass}}}) \text{ MeV/c}^2, \\
M_{B_2^{*0}} &= (5738.6 \pm 1.2_{\text{stat}} \pm 1.2_{\text{syst}} \pm 0.3_{\text{syst}}^{B_{\text{mass}}}) \text{ MeV/c}^2, \\
M_{B_2^{**+}} &= (5739.0 \pm 3.3_{\text{stat}} \pm 1.6_{\text{syst}} \pm 0.3_{\text{syst}}^{B_{\text{mass}}}) \text{ MeV/c}^2,
\end{align*}
\]

- All masses are in good agreement with HQET predictions \([PRD 64(2001)114004]\)
- \(B_1^{*+}\) and \(B_2^{**+}\) masses are consistent with those of the isospin partners
- The measurement is being updated with 1 fb^{-1}
First observation of excited Λ_b^0 baryons

- the quark model predicts two orbitally excited Λ_b^0 states (Λ_b^{0*}) with $J^P = 1/2^-$ and $3/2^-$
- they should decay to $\Lambda_b^{0}\pi^+\pi^-$ and/or $\Lambda_b^{0}\gamma$
- properties of Λ_b^{0*} are described by many theoretical models

- predict Λ_b^{0*} mass above $\Lambda_b^{0}\pi^+\pi^-(5900 \text{ MeV}/c^2)$ but below $\Sigma_b\pi$ threshold (5950 MeV/c²)
- data sample 1. fb⁻¹
- search for Λ_b^{0*} starting from our large sample of $\Lambda_b^0 \rightarrow \Lambda_c^+\pi^- \ (\Lambda_c^+ \rightarrow pK^-\pi^+)$

\[
N(\Lambda_b^0) = 70540 \pm 330 \\
S/B = 11
\]

background composition ➔
1) misreconstructed $\Lambda_b^0 \rightarrow \Lambda_c^+K^-$
2) partially reconstructed decays
3) combinatorial background

perfect sample for spectroscopy studies
First observation of excited Λ_b^0 baryons

- Λ_b^0 candidates are combined with two charged π from PV
- Λ_b^0 mass constrained to 5619.37 MeV/c² → combination of the world average [PDG] and LHCb measurement [PLB 708(2012)241]
- same sign candidates ($\Lambda_b^0\pi^\pm\pi^\mp$) are used to model the background shape

`arXiv:1205.3452`

two narrow peaks observed slight above the $\Lambda_b^0\pi^+\pi^-$ threshold

- $N(\Lambda_b^0(5912)^\ast) = 16.4 \pm 4.7, \ 4.6 \ \sigma$ significance
- $N(\Lambda_b^0(5920)^\ast) = 45.5 \pm 7.9, \ 10.1 \ \sigma$ significance

\[
M_{\Lambda_b^0(5912)^\ast} = 5911.95 \pm 0.12 \text{(stat)} \pm 0.03 \text{(syst)} \pm 0.66 (\Lambda_b \text{mass}) \text{MeV/c}^2
\]
\[
M_{\Lambda_b^0(5920)^\ast} = 5919.76 \pm 0.07 \text{(stat)} \pm 0.02 \text{(syst)} \pm 0.66 (\Lambda_b \text{mass}) \text{MeV/c}^2
\]

- main systematics due to signal/background modeling, momentum scale
- limit on natural width (95% CL) $\Gamma_{\Lambda_b^0(5912)^\ast} < 0.82 \text{MeV}$ and $\Gamma_{\Lambda_b^0(5920)^\ast} < 0.71 \text{MeV}$ ($\sigma_M = 0.2 - 0.3 \text{ MeV/c}^2\)
Λ_b^0, Ξ_b^0 -> D^0pK^- (Preliminary)

- **First observation** of the Cabibbo-suppressed decay Λ_b^0 -> D^0pK^-.
- Since the D^0pK^- final state has non-zero strangeness, it may be populated by the Cabibbo-favoured decay of the Ξ_b^0 recently observed by CDF [PRL 107(2011)102001].
- Kinematically similar Cabibbo-favoured Λ_b^0 -> D^0pπ^- and well-established channel Λ_b^0 -> Λ_c^-π^- used as normalization and control samples, D mesons reconstructed in the channel K^-π^+.
- Data sample 330 pb^-1.

\[
R_{D^0p\pi^-} = \frac{BR(Λ_b^0 \rightarrow D^0 p \pi^-) \times BR(D^0 \rightarrow K^- π^+)}{BR(Λ_b^0 \rightarrow Λ_c^- π^-) \times BR(Λ_c^- \rightarrow p K^- π^+)} = 0.119 \pm 0.006 \text{(stat)} \pm 0.013 \text{(syst)}
\]

\[
N(Λ_b^0) = 92.1 \pm 14.7 \text{ 6.3 \sigma significance}
\]

\[
N(Ξ_b^0) = 26.9 \pm 10.0 \text{ 2.6 \sigma significance}
\]

\[
M(Ξ_b^0) = 5802.0 \pm 5.5 \text{(stat)} \pm 1.7 \text{(syst)} \text{ MeV}/c^2
\]

In good agreement with the CDF result.
Measurement of Ξ_b^- and Ω_b^- masses (*Preliminary*)

- search of the strange b-baryon states, Ξ_b^-(bsd) and Ω_b^-(bss), in the
decay modes $\Xi_b^- \rightarrow J/\psi \Xi^-$ and $\Omega_b^- \rightarrow J/\psi \Omega^- \left(J/\psi \rightarrow \mu^+ \mu^-, \Xi \rightarrow \Lambda^0 \pi, \Omega \rightarrow \Lambda^0 K \text{ and } \Lambda^0 \rightarrow p \pi \right)$
- masses of Ξ_b^- and Ω_b^- already measured by CDF [PRD 80(2009)072003] and DO [PRL 101(2008)232002]
- Ω_b^- mass measurements by CDF and DO have a discrepancy greater than 6σ
- rich topology, 5 charged tracks and 3 displaced vertices
- data sample 576 pb$^{-1}$

\[
M(\Xi_b^-) = 5796.5 \pm 1.2 \text{(stat)} \pm 1.2 \text{(syst)} \text{MeV } / c^2
\]

\[
M(\Omega_b^-) = 6050.3 \pm 4.5 \text{(stat)} \pm 2.2 \text{(syst)} \text{MeV } / c^2
\]

- systematics dominated by the momentum scale calibration
- best mass measurements up to date, $M(\Omega_b^-)$ measurement favours CDF

<table>
<thead>
<tr>
<th></th>
<th>$M(\Xi_b^-)$</th>
<th>$M(\Omega_b^-)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DØ</td>
<td>5774 ± 19</td>
<td>6165 ± 16</td>
</tr>
<tr>
<td>CDF</td>
<td>5790.9 ± 2.7</td>
<td>6054.4 ± 6.9</td>
</tr>
<tr>
<td>PDG</td>
<td>5790.5 ± 2.7</td>
<td>6071 ± 40</td>
</tr>
<tr>
<td>LHCb</td>
<td>5796.5 ± 1.7</td>
<td>6050.3 ± 5.0</td>
</tr>
</tbody>
</table>

will be updated with more luminosity
because of time constraints I did not touch ..

heavy onia
Preliminary

- χ_b reconstructed via the radiative decays χ_bJ(nP) -> Y(1S)γ
 1) measured the fraction of Y(1S) from χ_b(1P) decays
 2) measured the masses

exotic onia

- study of X(3827), measured production cross section and mass
- search for X(4140) in B⁺ -> X(4140)K⁺, X(4140) -> J/ψφ

D_{sJ} spectroscopy
Preliminary

- the study of D^{+}K_s and D^{0}K^{+} invariant mass spectra confirms the existence of D^{*}_{sJ}(2860)^{+} and D^{*}_{s1}(2700)^{+} observed at B-factories

world best measurement of B⁺, B_d, B_s and Λ_b masses

measurement of B_c mass
Preliminary

BEACH 2012, Wichita
P. de Simone, LNF-INFN
26
Conclusions

LHCb produced many interesting results with 2010 and 2011 data and will continue to provide precise and competitive measurements in the heavy flavour sector

- several measurements are currently being updated with the full 2011 luminosity
- production measurements will be re-performed at $\sqrt{s} = 8$ TeV (expected 2.2 fb$^{-1}$)
- polarization measurements for J/ψ and other other heavy quarkonia states are in progress
- explore other promising channels for double onia production studies: $J/\psi \psi(2S)$, $J/\psi Y(nS)$, $Y(nS)Y(nS)$
- exotic spectroscopy

- B_c studies
 - Λ^0_b, Ξ_b^- and Ω_b^- lifetimes measurements
 - Σ_b baryon studies
 -

LHCb has a world class heavy flavour production and spectroscopy program
backup slides
Comparison with theory

- as already seen by Tevatron production σ''s are larger than NRQCD calculations based on LO CSM
- recent QCD calculations are found to be in good agreement with all our measurements

LHCb data vs. CS+CO
Charmonia and Bottomonium at 8 \sqrt{s} = TeV (Preliminary)

LHCb-CONF-2012-25

- LHCb is performing extremely well *at 8 TeV*
 - $\sigma(m_{J/\psi}) \approx 14.5$ MeV/c^2
 - $\sigma(m_{\Upsilon}) \approx 43$ MeV/c^2
 - σ (proper time) ≈ 61 fs
J/ψC and CC production: cross sections

gg fusion predictions

PRD 57 (1998) 4385

EPJC 61 (2009) 693

significantly lower than the measurements

DPS prediction works well for J/ψC modes, while CC modes are higher by a factor 2 to 3
J/ψC and CC production: kinematics

harder than those observed in prompt J/ψ production

similar than those observed in prompt C production

for CC events significant rapidity and azimuthal correlations are observed → suggest a sizeable contribution from the gluon splitting process to charm quark production
Polarization

- polarization measurements are important to improve the accuracy on production measurements, but also represent an important test for production models
- polarization described by three parameters λ_θ, λ_ϕ and $\lambda_{\theta\phi}$
 \[\theta = \text{polar angle between } \mu^+ \text{ in the } J/\psi \text{ rest-frame and the } J/\psi \text{ momentum direction} \]
 \[\phi = \text{azimuthal angle between } J/\psi \text{ production plane and } \mu^+ \text{ plane} \]
 \[\frac{dN}{d\cos \theta d\phi} \propto 1 + \lambda_\theta \cos^2 \theta + \lambda_\phi \sin^2 \theta \cos 2\phi + \lambda_{\theta\phi} \sin^2 \theta \cos \phi \]
- extract λ_θ, λ_ϕ and $\lambda_{\theta\phi}$ using an unbinned maximum likelihood fit to the μ^+ angular distribution
- result will be given in bins of p_T and y
- J/ψ polarization result expected soon
Heavy Onia

fraction of J/ψ from χ_c states

results in remarkable agreement with NLO NRQCD calculation [PRD 83(2011)111503]
\(B_C^+ \text{ to } B^+ \) production rate (Preliminary)

- measurements of \(B_C^+ \) production, mass and lifetime constrain QCD calculation
- first \(B_C^+ \) observation by CDF [PRL 81(1998)2432]
- data sample 32.5 pb\(^{-1}\)
- \(B_C^+ \) absolute BR not measured yet \(\rightarrow\) the strategy of this analysis is to measure

\[
R_{C^+} = \frac{\sigma(B_C^+) \times BR(B_C^+ \rightarrow J/\psi\pi^+) \times BR(B^+ \rightarrow J/\psi K^+)}{\sigma(B^+) \times BR(B^+ \rightarrow J/\psi K^+)}
\]

- \(B_C^+ \rightarrow J/\psi\pi^+ \) and \(B^+ \rightarrow J/\psi K^+ \) are selected with identical requirements \(\text{in the range } 2.5 < y < 4.5 \text{ and } p_T > 4 \text{ GeV/c} \)

\[R_{C^+} = 2.2 \pm 0.8 \text{(stat)} \pm 0.2 \text{(syst)} \%
\]

- main systematics (6%) due to \(B_C^+ \) lifetime known with a large uncertainty

Cabibbo-suppressed \(B^+ \rightarrow J/\psi\pi^+ \) decays are considered, contamination estimated \(\sim 19 \%

will be updated with more luminosity
Observation of excited $B_{(s)}^{**}$ *(Preliminary)*

- Properties of excited $B_{(s)} (l=1)$ are predicted by Heavy Quark Effective Theory [PRD 64(2001)114004]
- $B_1(5721)^0$, $B_2^*(5830)^0$, $B_{s1}(5830)^0$, $B_{s2}(5840)^0$ observed by CDF and D0 [PRL 102(2009)102003, 99(2007)172001, 100(2008)082001/082002]
- B mesons reconstructed in $J/\psi K^*$, $D\pi$ and $D\pi\pi\pi$ modes
- Search for $B_{(s)}^{**}$ states in the invariant mass distribution of B^+K^-, $B^+\pi^-$ and $B^0\pi^+$ $B^{**}\rightarrow Bh$ and $B^{**}\rightarrow B^*(B\gamma)h$, the invariant masses of the 2 decays are shifted because we do not reconstruct the soft γ ($M_{B^*} - M_B \sim 46$ MeV/c2)
- Study the spectrum $Q = m(Bh) - m(B) - m(h)$
- Data sample 336 pb$^{-1}$

first observation of B_1^+ and B_2^{}**

Natural width $>> \sigma_M \sim 1$ MeV/c2

Good agreement with the earlier results from CDF and D0
Quarkonia

because of time constraints I did not touch..

heavy onia

- χ_b reconstructed via the radiative decays $\chi_b(nP) \rightarrow Y(1S)\gamma$
- measured the fraction of $Y(1S)$ from $\chi_b(1P)$ decays
- measured the masses

\[
\begin{align*}
M(\chi_b(1P)) &= (9.901 \pm 0.002) \text{GeV} / c^2 \\
M(\chi_b(2P)) &= (10.266 \pm 0.006) \text{GeV} / c^2 \\
M(\chi_b(3P)) &= (10.535 \pm 0.010) \text{GeV} / c^2
\end{align*}
\]

exotic onia

- study of $X(3827)$, measured the
 1) production cross section in the ranges $5 < p_T < 20$ GeV/c and $2.5 < y < 4.5$
 \[
 \sigma(X(3872)) \times BR(X(3872) \rightarrow J/\psi \pi^+\pi^-) = 5.4 \pm 1.3 \text{(stat)} \pm 0.8 \text{(syst)} \text{nb}
 \]
 still unclear if above DD^* threshold or not
 \[
 M(D^0)+M(D^{*0}) = 3871.79 \pm 0.29 \text{ MeV/c}^2
 \]
- search for $X(4140)$ in $B^+ \rightarrow X(4140)K^+$, $X(4140) \rightarrow J/\psi\phi$
 don’t find evidence for this state in 2.4σ disagreement with CDF
- **work in progress** search for $Z(4430)^+ \rightarrow \psi(2S)\pi^+$ claimed by Belle but not confirmed by BaBar

LHCb-PAPER-2012-015
LHCb-CONF-2012-020

EPJC 72(2012)1972
PRD 85(2012)091103

BEACH 2012, Wichita
P. de Simone, LNF-INFN
Heavy hadrons

because of time constraints I did not touch ..

D_{sJ} spectroscopy

- The study of D_K_s and D_0K_s invariant mass spectra confirms the existence of D_sJ(2860)\^+ and D_sJ(2700)\^+ observed at B-factories.

\[M(D_{sJ}^{*}(2700)^+) = (2709.4 \pm 1.9(stat) \pm 4.5(syst)) \text{MeV} / c^2 \]
\[\Gamma(D_{sJ}^{*}(2700)^+) = (121.7 \pm 7.3(stat) \pm 12.1(syst)) \text{MeV} \]
\[M(D_{sJ}^{*}(2860)^+) = (2866.7 \pm 1.0(stat) \pm 6.3(syst)) \text{MeV} / c^2 \]
\[\Gamma(D_{sJ}^{*}(2860)^+) = (64.5 \pm 3.2(stat) \pm 6.6(syst)) \text{MeV} \]

World best measurement of B\^+, B_d, B_s and \Lambda_b masses

- Measurement of B_c mass

\[M(B_c^+) = 6268.0 \pm 4.0(stat) \pm 6.0(syst) \text{MeV} / c^2 \]

Preliminary

LHCb-PAPER-2012-016

LHCb-CONF-2012-016