ACE: Advanced Composition Explorer
Aerobraking: A maneuver where a spacecraft’s orbit is changed by reducing its energy through repeated passages in a planet’s atmosphere.
Aerocapture: A maneuver where a spacecraft is inserted in orbit around a planet by slowing it down through a passage in the planet’s atmosphere.
Aerogel: A silicon-based foam in which the liquid component of a gel has been replaced with gas or, for use in space, effectively with vacuum, resulting in a very low density solid.
Albedo: in first approximation a measure of the reflecting power of a surface.
Aphelion: The point of maximum distance from the Sun of a solar orbit. Its contrary is the perihelion.
APL: Applied Physics Laboratory
Apoapsis: The point of maximum distance from the central body of any elliptical orbit. This word has been used to avoid complicating the nomenclature, but a term tailored to the central body is often used. The only exceptions used herein owing to their importance were for Earth (apogee) and the Sun (aphelion). The contrary of apoapsis is periapsis.
Apogee: The point of maximum distance from the Earth of a satellite orbit. Its contrary is the perigee.
ASI: Agenzia Spaziale Italiana (Italian Space Agency)
ASPERA: Automatic Space Plasma Experiment with a Rotating Analyzer
Astronomical Unit: To a first approximation the average distance between the Earth and the Sun is 149,597,870,691 (±30) meters.
AU: Astronomical Unit
AXAF: Advanced X-ray Astrophysical Facility
BMDO: Ballistic Missile Defense Organization
BNSC: British National Space Council
Booster: Auxiliary rockets used to boost the lift-off thrust of a launch vehicle.
Bus: A structural part common to several spacecraft.
CAESAR: Comet Atmosphere Encounter and Sample Return or Comet Atmosphere and Earth Sample Return
Glossary

CCD: Charge Coupled Device
CHON: Carbon, Hydrogen, Oxygen, Nitrogen rich molecules
CISR: Comet Intercept and Sample Return
CMOS: Complementary Metal–Oxide Semiconductor
CNES: Centre National d’Etudes Spatiales (the French National Space Studies Center)
Conjunction: The time when a solar system object appears close to the Sun as seen by an observer. A conjunction where the Sun is between the observer and the object is called ‘superior conjunction’. A conjunction where the object is between the observer and the Sun is called ‘inferior conjunction’. See also opposition.
CONTOUR: Comet Nucleus Tour
Cosmic velocities: Three characteristic velocities of spaceflight:
 First cosmic velocity: Minimum velocity to put a satellite in a low Earth orbit. This amount to some 8 km/s.
 Second cosmic velocity: The velocity required to exit the terrestrial sphere of attraction for good. Starting from the ground, this amount to some 11 km/s. It is also called ‘escape’ speed.
 Third cosmic velocity: The velocity required to exit the Solar System for good.
CRAF: Comet Rendezvous/Asteroid Flyby
Cryogenic propellants: These can be stored in their liquid state under atmospheric pressure at very low temperature; e.g. oxygen is a liquid below –183°C.
DASH: Demonstrator of Atmospheric reentry System with Hyperbolic velocity
Deep Space Network: A global network built by NASA to provide round-the-clock communications with robotic missions in deep space.
DeeDri: Deep Driller
Direct ascent: A trajectory on which a deep-space probe is launched directly from the Earth’s surface to another celestial body without entering parking orbit.
DS: Deep Space
DSN: Deep Space Network
Ecliptic: The plane of the Earth’s orbit around the Sun.
EELV: Evolved Expandable Launch Vehicle
Ejecta: Material from a volcanic eruption or a cratering impact that is deposited all around the source.
ESA: European Space Agency
Escape speed: See Cosmic velocities
FIDO: Field Integrated, Design, and Operations
Flyby: A high relative speed and short duration close encounter between a spacecraft and a celestial body.
GPS: Global Positioning System
GRB: Gamma-Ray Bursts
GRO: Gamma-Ray Observatory
GSFC: Goddard Space Flight Center
HER: Halley Earth Return
HST: Hubble Space Telescope
Hypergolic propellants: Two liquid propellants that ignite spontaneously on coming
into contact, without requiring an ignition system. Typical hypergolics are hydrazine and nitrogen tetroxide.

IBEX: Interstellar Boundary Explorer
ICE: International Cometary Explorer
IRAS: Infrared Astronomical Satellite
ISAS: Institute of Space and Astronautical Sciences
ISO: Infrared Space Observatory
ISS: Cassini’s Imaging Science Subsystem
ISS: International Space Station
ITAR: International Traffics in Arms Regulations
IUS: Inertial Upper Stage (previously: Interim Upper Stage)
JAXA: Japanese Aerospace Exploration Agency
JPL: Jet Propulsion Laboratory (a Caltech laboratory under contract to NASA)
Lagrangian Points: Five equilibrium points for a gravitational system comprising two large bodies (e.g. the Sun and a planet) and a third body of negligible mass.
Lander: A spacecraft designed to land on another celestial body.
LaRC: Langley Research Center
Launch window: A time interval during which it is possible to launch a spacecraft to ensure that it attains the desired trajectory.
Lidar: laser radar
LINEAR: Lincoln Near Earth Asteroid Research
Lyman-alpha: The emission line corresponding to the first energy level transition of an electron in a hydrogen atom.
MAGE: Mars Airborne Geophysical Explorer
MAV: Mars Ascent Vehicle
MCO: Mars Climate Orbiter
MER: Mars Exploration Rovers
MESSENGER: Mercury Surface, Space Environment, Geochemistry and Ranging
MGS: Mars Global Surveyor
MINERVA: Micro/Nano Experimental Robot Vehicle for Asteroid
MIT: Massachusetts Institute of Technology
MPF: Mars Pathfinder
MPL: Mars Polar Lander
MRO: Mars Reconnaissance Orbiter
MUSES: MU [rocket] Space Engineering Satellite
NAS: National Academy of Sciences
NASA: National Aeronautics and Space Administration
NASDA: National Space Development Agency
NEAR: Near-Earth Asteroid Rendezvous
NEAT: Near-Earth Asteroid Tracking program
NEP: Nuclear Electric Propulsion
NExT: New Exploration of Tempel 1
NOTSNIK: Naval Ordnance Test Station “Sputnik”
NSTAR: NASA Solar Electric Propulsion Technology Application Readiness
Occultation: When one object passes in front of and occults another, at least from the point of view of the observer.

OMEGA: Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité, observatory for mineralogy, water, ices and activity

OMV: Orbital Maneuvering Vehicle

Orbit: The trajectory on which a celestial body or spacecraft is traveling with respect to its central body. There are three possible cases:

Elliptical orbit: A closed orbit where the body passes from minimum distance to maximum distance from its central body every semiperiod. This is the orbit of natural and artificial satellites around planets and of planets around the Sun.

Parabolic orbit: An open orbit where the body passes through minimum distance from its central body and reaches infinity at zero velocity in infinite time. This is a pure abstraction, but the orbits of many comets around the Sun can be described adequately this way.

Hyperbolic orbit: An open orbit where the body passes through minimum distance from its central body and reaches infinity at non-zero speed. This describes adequately the trajectory of spacecraft with respect to planets during flyby maneuvers.

Opposition: The time when a solar system object appears opposite to the Sun as seen by an observer.

Orbiter: A spacecraft designed to orbit a celestial body.

OSCAR: Orbiting Sample Capture and Return

Parking orbit: A low Earth orbit used by deep-space probes before heading to their targets. This relaxes the constraints on launch windows and eliminates launch vehicle trajectory errors. Its contrary is direct ascent.

PAW: Position Adjustable Workbench

Periapsis: The minimum distance point from the central body of any orbit. See also apoapsis.

PEPE: Plasma Experiment for Planetary Exploration

Perigee: The minimum distance point from the Earth of a satellite. Its contrary is apogee.

Perihelion: The minimum distance point from the Sun of a solar orbit. Its contrary is the aphelion.

PFF: Pluto Fast Flyby

PICA: Phenolic Impregnated Carbon Ablator

PKE: Pluto Kuiper Express

PLUTO: Planetary Underground Tool

PREMIER: Programme de Retour d’Echantillons Martiens et Installation d’Expériences en Réseau, Mars sample return and network experiment establishment program

‘Push-broom’ camera: A digital camera consisting of a single row of pixels, with the second dimension created by the motion of the camera itself.

RAT: Rock Abrasion Tool

Rendezvous: A low relative speed encounter between two spacecraft or celestial bodies.
REP: Radioisotope Electric Propulsion
Retrorocket: A rocket whose thrust is directed opposite to the motion of a spacecraft in order to brake it.
Rj: Jupiter radii (approximately 71,200 km)
Rover: A mobile spacecraft to explore the surface of another celestial body.
Rs: Saturn radii (approximately 60,330 km)
RTG: Radioisotope Thermal Generator
RTH: Radioisotope Thermal Heater
SEDSat: Students for the Exploration and Development of Space Satellite
SERT: Space Electric Rocket Test
SEP: Solar Electric Propulsion
SIRTF: Shuttle (or Space) Infrared Telescope Facility
SMART: Small Missions for Advanced Research in Technology
SOCCER: Sample of Comet Coma Earth Return
Sol: A Martian solar day, lasting 24 Terrestrial hours, 39 minutes, and 35.244 seconds
Solar flare: A solar chromospheric explosion creating a powerful source of high energy particles.
Space probe: A spacecraft designed to investigate other celestial bodies from a short range.
Spectrometer: An instrument to measure the energy of radiation as a function of wavelengths in a portion of the electromagnetic spectrum. Depending on the wavelength the instrument is called, e.g. ultraviolet, infrared, gamma-ray spectrometer etc.
Spin stabilization: A spacecraft stabilization system where the attitude is maintained by spinning the spacecraft around one of its main inertia axes.
Synodic period: The period of time between two consecutive superior or inferior conjunctions or oppositions of a solar system body.
TEGA: Thermal and Evolved Gas Analyzer
Telemetry: Transmission by a spacecraft via a radio system of engineering and scientific data.
THEMIS: Thermal-Emission Imaging System
3-axis stabilization: A spacecraft stabilization system where the axes of the spacecraft are kept in a fixed attitude with respect to the stars and other references (the Sun, the Earth, a target planet etc.)
UTC: Universal Time Coordinated (essentially Greenwich Mean Time)
UTTR: Utah Test and Training Range
VESAT: Venus Environmental Satellite
Vidicon: A television system based on resistance changes of some substances when exposed to light. It has been replaced by the CCD.
VLBI: Very Long Baseline Interferometry
WIRE: Wide-field Infrared Explorer
WSB: Weak Stability Boundaries
CHRONOLOGY OF SOLAR SYSTEM EXPLORATION 1997–2003

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 September 1999</td>
<td>Mars Climate Orbiter is lost as it crashes on Mars</td>
</tr>
<tr>
<td>3 December 1999</td>
<td>Mars Polar Lander is lost as it crashes on Mars</td>
</tr>
<tr>
<td>22 September 2001</td>
<td>Deep Space 1 flies by comet Borrelly</td>
</tr>
<tr>
<td>24 October 2001</td>
<td>Mars Odyssey enters orbit around Mars</td>
</tr>
<tr>
<td>25 December 2003</td>
<td>Mars Express enters orbit around Mars while the Beagle 2 lander is lost</td>
</tr>
</tbody>
</table>

Related milestones

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 January 2004</td>
<td>Stardust flies by comet Wild 2</td>
</tr>
<tr>
<td>4 January 2004</td>
<td>Spirit lands on crater Gusev, Mars</td>
</tr>
<tr>
<td>25 January 2004</td>
<td>Opportunity lands in Meridiani Planum, Mars</td>
</tr>
<tr>
<td>1 July 2004</td>
<td>Cassini enters orbit around Saturn</td>
</tr>
<tr>
<td>8 September 2004</td>
<td>Genesis crashes to Earth, returning samples of the solar wind</td>
</tr>
<tr>
<td>15 January 2005</td>
<td>Huygens lands on Titan</td>
</tr>
<tr>
<td>12 September 2005</td>
<td>Hayabusa rendezvous with asteroid Itokawa</td>
</tr>
<tr>
<td>15 January 2006</td>
<td>Stardust returns samples of comet Wild 2 to Earth</td>
</tr>
<tr>
<td>13 June 2010</td>
<td>Hayabusa returns samples of asteroid Itokawa to Earth</td>
</tr>
<tr>
<td>15 February 2011</td>
<td>Stardust flies by comet Tempel 1</td>
</tr>
</tbody>
</table>
PLANETARY LAUNCHES 1997–2003

<table>
<thead>
<tr>
<th>Launch Date</th>
<th>Name</th>
<th>Main Target</th>
<th>Launcher</th>
<th>Nation</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 October 1997</td>
<td>Cassini</td>
<td>Saturn</td>
<td>Titan IVB</td>
<td>USA/Italy</td>
</tr>
<tr>
<td></td>
<td>Huygens</td>
<td>Titan</td>
<td>M-V</td>
<td>Japan</td>
</tr>
<tr>
<td>3 July 1998</td>
<td>(Nozomi)</td>
<td>Mars</td>
<td>M-V</td>
<td>Japan</td>
</tr>
<tr>
<td>24 October 1998</td>
<td>Deep Space 1</td>
<td>Asteroid + Comet</td>
<td>Delta 7326</td>
<td>USA</td>
</tr>
<tr>
<td>11 December 1998</td>
<td>(MCO)</td>
<td>Mars</td>
<td>Delta 7425</td>
<td>USA</td>
</tr>
<tr>
<td>3 January 1999</td>
<td>(MPL)</td>
<td>Mars</td>
<td>Delta 7425</td>
<td>USA</td>
</tr>
<tr>
<td>7 February 1999</td>
<td>Stardust</td>
<td>Comet</td>
<td>Delta 7426</td>
<td>USA</td>
</tr>
<tr>
<td>7 April 2001</td>
<td>Mars Odyssey</td>
<td>Mars</td>
<td>Delta 7925</td>
<td>USA</td>
</tr>
<tr>
<td>30 June 2001</td>
<td>WMAP</td>
<td>L2</td>
<td>Delta 7425-10</td>
<td>USA</td>
</tr>
<tr>
<td>8 August 2001</td>
<td>(Genesis)</td>
<td>Sun probe</td>
<td>Delta 7326</td>
<td>USA</td>
</tr>
<tr>
<td>3 July 2002</td>
<td>(CONTOUR)</td>
<td>Comet</td>
<td>Delta 7425</td>
<td>USA</td>
</tr>
<tr>
<td>3 May 2003</td>
<td>Hayabusa</td>
<td>Asteroid</td>
<td>M-V</td>
<td>Japan</td>
</tr>
<tr>
<td>2 June 2003</td>
<td>Mars Express</td>
<td>Mars</td>
<td>Soyuz-FG</td>
<td>ESA</td>
</tr>
<tr>
<td></td>
<td>(Beagle 2)</td>
<td>Mars</td>
<td>UK/ESA</td>
<td>USA</td>
</tr>
<tr>
<td>10 June 2003</td>
<td>Spirit</td>
<td>Mars</td>
<td>Delta 7925</td>
<td>USA</td>
</tr>
<tr>
<td>8 July 2003</td>
<td>Opportunity</td>
<td>Mars</td>
<td>Delta 7925H</td>
<td>USA</td>
</tr>
<tr>
<td>25 August 2003</td>
<td>Spitzer</td>
<td>Solar orbit</td>
<td>Delta 7920H</td>
<td>USA</td>
</tr>
</tbody>
</table>

Missions in parentheses are missions that failed, but the status of Genesis is disputed. Despite crashing to Earth instead of landing the sample-return mission looks set to achieve its objectives.

CASSINI TARGETED ENCOUNTERS

<table>
<thead>
<tr>
<th>Date</th>
<th>Satellite</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 June 2004</td>
<td>Phoebe</td>
<td>2,068 km</td>
</tr>
<tr>
<td>26 October 2004</td>
<td>Titan (Ta)</td>
<td>1,174 km</td>
</tr>
<tr>
<td>13 December 2004</td>
<td>Titan (Tb)</td>
<td>1,192 km</td>
</tr>
<tr>
<td>14 January 2005</td>
<td>Titan (Tc)</td>
<td>60,003 km</td>
</tr>
<tr>
<td>15 February 2005</td>
<td>Titan (T3)</td>
<td>1,579 km</td>
</tr>
<tr>
<td>17 February 2005</td>
<td>Enceladus (E0)</td>
<td>1,261 km</td>
</tr>
<tr>
<td>9 March 2005</td>
<td>Enceladus (E1)</td>
<td>497 km</td>
</tr>
<tr>
<td>31 March 2005</td>
<td>Titan (T4)</td>
<td>2,404 km</td>
</tr>
<tr>
<td>16 April 2005</td>
<td>Titan (T5)</td>
<td>1,027 km</td>
</tr>
<tr>
<td>14 July 2005</td>
<td>Enceladus (E2)</td>
<td>166 km</td>
</tr>
<tr>
<td>22 August 2005</td>
<td>Titan (T6)</td>
<td>3,660 km</td>
</tr>
<tr>
<td>7 September 2005</td>
<td>Titan (T7)</td>
<td>1,075 km</td>
</tr>
<tr>
<td>24 September 2005</td>
<td>Tethys</td>
<td>1,495 km</td>
</tr>
<tr>
<td>26 September 2005</td>
<td>Hyperion</td>
<td>479 km</td>
</tr>
<tr>
<td>11 October 2005</td>
<td>Dione</td>
<td>499 km</td>
</tr>
<tr>
<td>28 October 2005</td>
<td>Titan (T8)</td>
<td>1,353 km</td>
</tr>
<tr>
<td>26 November 2005</td>
<td>Rhea</td>
<td>504 km</td>
</tr>
<tr>
<td>Date</td>
<td>Object</td>
<td>Distance</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>December 26, 2005</td>
<td>Titan (T9)</td>
<td>10,411 km</td>
</tr>
<tr>
<td>January 15, 2006</td>
<td>Titan (T10)</td>
<td>2,043 km</td>
</tr>
<tr>
<td>February 27, 2006</td>
<td>Titan (T11)</td>
<td>1,812 km</td>
</tr>
<tr>
<td>March 19, 2006</td>
<td>Titan (T12)</td>
<td>1,949 km</td>
</tr>
<tr>
<td>April 30, 2006</td>
<td>Titan (T13)</td>
<td>1,856 km</td>
</tr>
<tr>
<td>May 20, 2006</td>
<td>Titan (T14)</td>
<td>1,879 km</td>
</tr>
<tr>
<td>June 2, 2006</td>
<td>Titan (T15)</td>
<td>1,906 km</td>
</tr>
<tr>
<td>July 22, 2006</td>
<td>Titan (T16)</td>
<td>950 km</td>
</tr>
<tr>
<td>September 7, 2006</td>
<td>Titan (T17)</td>
<td>1,000 km</td>
</tr>
<tr>
<td>September 23, 2006</td>
<td>Titan (T18)</td>
<td>960 km</td>
</tr>
<tr>
<td>October 9, 2006</td>
<td>Titan (T19)</td>
<td>980 km</td>
</tr>
<tr>
<td>October 25, 2006</td>
<td>Titan (T20)</td>
<td>1,030 km</td>
</tr>
<tr>
<td>December 12, 2006</td>
<td>Titan (T21)</td>
<td>1,000 km</td>
</tr>
<tr>
<td>December 28, 2006</td>
<td>Titan (T22)</td>
<td>1,297 km</td>
</tr>
<tr>
<td>January 13, 2007</td>
<td>Titan (T23)</td>
<td>1,000 km</td>
</tr>
<tr>
<td>January 29, 2007</td>
<td>Titan (T24)</td>
<td>2,631 km</td>
</tr>
<tr>
<td>February 22, 2007</td>
<td>Titan (T25)</td>
<td>1,000 km</td>
</tr>
<tr>
<td>March 10, 2007</td>
<td>Titan (T26)</td>
<td>981 km</td>
</tr>
<tr>
<td>March 26, 2007</td>
<td>Titan (T27)</td>
<td>1,010 km</td>
</tr>
<tr>
<td>April 10, 2007</td>
<td>Titan (T28)</td>
<td>991 km</td>
</tr>
<tr>
<td>April 26, 2007</td>
<td>Titan (T29)</td>
<td>981 km</td>
</tr>
<tr>
<td>May 12, 2007</td>
<td>Titan (T30)</td>
<td>959 km</td>
</tr>
<tr>
<td>May 28, 2007</td>
<td>Titan (T31)</td>
<td>2,299 km</td>
</tr>
<tr>
<td>June 13, 2007</td>
<td>Titan (T32)</td>
<td>965 km</td>
</tr>
<tr>
<td>June 29, 2007</td>
<td>Titan (T33)</td>
<td>1,933 km</td>
</tr>
<tr>
<td>July 19, 2007</td>
<td>Titan (T34)</td>
<td>1,332 km</td>
</tr>
<tr>
<td>August 31, 2007</td>
<td>Titan (T35)</td>
<td>3,324 km</td>
</tr>
<tr>
<td>September 10, 2007</td>
<td>Iapetus</td>
<td>1,622 km</td>
</tr>
<tr>
<td>October 2, 2007</td>
<td>Titan (T36)</td>
<td>973 km</td>
</tr>
<tr>
<td>November 19, 2007</td>
<td>Titan (T37)</td>
<td>999 km</td>
</tr>
<tr>
<td>December 5, 2007</td>
<td>Titan (T38)</td>
<td>1,298 km</td>
</tr>
<tr>
<td>December 20, 2007</td>
<td>Titan (T39)</td>
<td>970 km</td>
</tr>
<tr>
<td>January 5, 2008</td>
<td>Titan (T40)</td>
<td>1,014 km</td>
</tr>
<tr>
<td>February 22, 2008</td>
<td>Titan (T41)</td>
<td>1,000 km</td>
</tr>
<tr>
<td>March 12, 2008</td>
<td>Enceladus (E3)</td>
<td>48 km</td>
</tr>
<tr>
<td>March 25, 2008</td>
<td>Titan (T42)</td>
<td>999 km</td>
</tr>
<tr>
<td>May 12, 2008</td>
<td>Titan (T43)</td>
<td>1,001 km</td>
</tr>
<tr>
<td>May 28, 2008</td>
<td>Titan (T44)</td>
<td>1,400 km</td>
</tr>
<tr>
<td>July 31, 2008</td>
<td>Titan (T45)</td>
<td>1,614 km</td>
</tr>
<tr>
<td>August 11, 2008</td>
<td>Enceladus (E4)</td>
<td>49 km</td>
</tr>
<tr>
<td>October 9, 2008</td>
<td>Enceladus (E5)</td>
<td>25 km</td>
</tr>
<tr>
<td>October 31, 2008</td>
<td>Enceladus (E6)</td>
<td>169 km</td>
</tr>
<tr>
<td>November 3, 2008</td>
<td>Titan (T46)</td>
<td>1,105 km</td>
</tr>
<tr>
<td>November 19, 2008</td>
<td>Titan (T47)</td>
<td>1,023 km</td>
</tr>
<tr>
<td>December 5, 2008</td>
<td>Titan (T48)</td>
<td>961 km</td>
</tr>
<tr>
<td>December 21, 2008</td>
<td>Titan (T49)</td>
<td>971 km</td>
</tr>
<tr>
<td>February 7, 2009</td>
<td>Titan (T50)</td>
<td>967 km</td>
</tr>
<tr>
<td>March 27, 2009</td>
<td>Titan (T51)</td>
<td>963 km</td>
</tr>
<tr>
<td>April 4, 2009</td>
<td>Titan (T52)</td>
<td>4,147 km</td>
</tr>
<tr>
<td>Date</td>
<td>Name</td>
<td>Distance</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>20 April 2009</td>
<td>Titan (T53)</td>
<td>3,599 km</td>
</tr>
<tr>
<td>5 May 2009</td>
<td>Titan (T54)</td>
<td>3,242 km</td>
</tr>
<tr>
<td>21 May 2009</td>
<td>Titan (T55)</td>
<td>966 km</td>
</tr>
<tr>
<td>6 June 2009</td>
<td>Titan (T56)</td>
<td>968 km</td>
</tr>
<tr>
<td>22 June 2009</td>
<td>Titan (T57)</td>
<td>955 km</td>
</tr>
<tr>
<td>8 July 2009</td>
<td>Titan (T58)</td>
<td>966 km</td>
</tr>
<tr>
<td>24 July 2009</td>
<td>Titan (T59)</td>
<td>956 km</td>
</tr>
<tr>
<td>9 August 2009</td>
<td>Titan (T60)</td>
<td>971 km</td>
</tr>
<tr>
<td>25 August 2009</td>
<td>Titan (T61)</td>
<td>970 km</td>
</tr>
<tr>
<td>12 October 2009</td>
<td>Titan (T62)</td>
<td>1,300 km</td>
</tr>
<tr>
<td>2 November 2009</td>
<td>Enceladus (E7)</td>
<td>99 km</td>
</tr>
<tr>
<td>21 November 2009</td>
<td>Enceladus (E8)</td>
<td>1,603 km</td>
</tr>
<tr>
<td>12 December 2009</td>
<td>Titan (T63)</td>
<td>4,850 km</td>
</tr>
<tr>
<td>28 December 2009</td>
<td>Titan (T64)</td>
<td>955 km</td>
</tr>
<tr>
<td>12 January 2010</td>
<td>Titan (T65)</td>
<td>1,073 km</td>
</tr>
<tr>
<td>28 January 2010</td>
<td>Titan (T66)</td>
<td>7,490 km</td>
</tr>
<tr>
<td>2 March 2010</td>
<td>Rhea</td>
<td>101 km</td>
</tr>
<tr>
<td>5 April 2010</td>
<td>Titan (T67)</td>
<td>7,462 km</td>
</tr>
<tr>
<td>7 April 2010</td>
<td>Dione</td>
<td>503 km</td>
</tr>
<tr>
<td>28 April 2010</td>
<td>Enceladus (E9)</td>
<td>99 km</td>
</tr>
<tr>
<td>18 May 2010</td>
<td>Enceladus (E10)</td>
<td>435 km</td>
</tr>
<tr>
<td>20 May 2010</td>
<td>Titan (T68)</td>
<td>1,400 km</td>
</tr>
<tr>
<td>5 June 2010</td>
<td>Titan (T69)</td>
<td>2,044 km</td>
</tr>
<tr>
<td>21 June 2010</td>
<td>Titan (T70)</td>
<td>880 km</td>
</tr>
<tr>
<td>7 July 2010</td>
<td>Titan (T71)</td>
<td>1,005 km</td>
</tr>
<tr>
<td>13 August 2010</td>
<td>Enceladus (E11)</td>
<td>2,550 km</td>
</tr>
<tr>
<td>24 September 2010</td>
<td>Titan (T72)</td>
<td>8,175 km</td>
</tr>
<tr>
<td>11 November 2010</td>
<td>Titan (T73)</td>
<td>7,921 km</td>
</tr>
<tr>
<td>30 November 2010</td>
<td>Enceladus (E12)</td>
<td>48 km</td>
</tr>
<tr>
<td>21 December 2010</td>
<td>Enceladus (E13)</td>
<td>48 km</td>
</tr>
<tr>
<td>11 January 2011</td>
<td>Rhea</td>
<td>76 km</td>
</tr>
<tr>
<td>18 February 2011</td>
<td>Titan (T74)</td>
<td>3,651 km</td>
</tr>
<tr>
<td>19 April 2011</td>
<td>Titan (T75)</td>
<td>10,053 km</td>
</tr>
<tr>
<td>8 May 2011</td>
<td>Titan (T76)</td>
<td>1,873 km</td>
</tr>
<tr>
<td>20 June 2011</td>
<td>Titan (T77)</td>
<td>1,359 km</td>
</tr>
<tr>
<td>12 September 2011</td>
<td>Titan (T78)</td>
<td>5,821 km</td>
</tr>
<tr>
<td>1 October 2011</td>
<td>Enceladus (E14)</td>
<td>99 km</td>
</tr>
<tr>
<td>19 October 2011</td>
<td>Enceladus (E15)</td>
<td>1,231 km</td>
</tr>
<tr>
<td>6 November 2011</td>
<td>Enceladus (E16)</td>
<td>496 km</td>
</tr>
<tr>
<td>12 December 2011</td>
<td>Dione</td>
<td>99 km</td>
</tr>
<tr>
<td>13 December 2011</td>
<td>Titan (T79)</td>
<td>3,586 km</td>
</tr>
<tr>
<td>2 January 2012</td>
<td>Titan (T80)</td>
<td>29,415 km</td>
</tr>
<tr>
<td>30 January 2012</td>
<td>Titan (T81)</td>
<td>31,131 km</td>
</tr>
<tr>
<td>19 February 2012</td>
<td>Titan (T82)</td>
<td>3,803 km</td>
</tr>
<tr>
<td>27 March 2012</td>
<td>Enceladus (E17)</td>
<td>74 km</td>
</tr>
<tr>
<td>14 April 2012</td>
<td>Enceladus (E18)</td>
<td>74 km</td>
</tr>
<tr>
<td>2 May 2012</td>
<td>Enceladus (E19)</td>
<td>74 km</td>
</tr>
<tr>
<td>22 May 2012</td>
<td>Titan (T83)</td>
<td>955 km</td>
</tr>
<tr>
<td>7 June 2012</td>
<td>Titan (T84)</td>
<td>959 km</td>
</tr>
<tr>
<td>Date</td>
<td>Object</td>
<td>Distance (km)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td>24 July 2012</td>
<td>Titan (T85)</td>
<td>1,012</td>
</tr>
<tr>
<td>26 September 2012</td>
<td>Titan (T86)</td>
<td>956</td>
</tr>
<tr>
<td>13 November 2012</td>
<td>Titan (T87)</td>
<td>973</td>
</tr>
<tr>
<td>29 November 2012</td>
<td>Titan (T88)</td>
<td>1,014</td>
</tr>
<tr>
<td>17 February 2013</td>
<td>Titan (T89)</td>
<td>1,978</td>
</tr>
<tr>
<td>9 March 2013</td>
<td>Rhea</td>
<td>997</td>
</tr>
<tr>
<td>5 April 2013</td>
<td>Titan (T90)</td>
<td>1,400</td>
</tr>
<tr>
<td>23 May 2013</td>
<td>Titan (T91)</td>
<td>970</td>
</tr>
<tr>
<td>10 July 2013</td>
<td>Titan (T92)</td>
<td>964</td>
</tr>
<tr>
<td>26 July 2013</td>
<td>Titan (T93)</td>
<td>1,400</td>
</tr>
<tr>
<td>12 September 2013</td>
<td>Titan (T94)</td>
<td>1,400</td>
</tr>
<tr>
<td>14 October 2013</td>
<td>Titan (T95)</td>
<td>961</td>
</tr>
<tr>
<td>1 December 2013</td>
<td>Titan (T96)</td>
<td>1,400</td>
</tr>
<tr>
<td>1 January 2014</td>
<td>Titan (T97)</td>
<td>1,400</td>
</tr>
<tr>
<td>2 February 2014</td>
<td>Titan (T98)</td>
<td>1,236</td>
</tr>
<tr>
<td>6 March 2014</td>
<td>Titan (T99)</td>
<td>1,500</td>
</tr>
<tr>
<td>7 April 2014</td>
<td>Titan (T100)</td>
<td>963</td>
</tr>
<tr>
<td>17 May 2014</td>
<td>Titan (T101)</td>
<td>2,994</td>
</tr>
<tr>
<td>18 June 2014</td>
<td>Titan (T102)</td>
<td>3,659</td>
</tr>
<tr>
<td>20 July 2014</td>
<td>Titan (T103)</td>
<td>5,103</td>
</tr>
<tr>
<td>21 August 2014</td>
<td>Titan (T104)</td>
<td>964</td>
</tr>
<tr>
<td>22 September 2014</td>
<td>Titan (T105)</td>
<td>1,400</td>
</tr>
<tr>
<td>24 October 2014</td>
<td>Titan (T106)</td>
<td>1,013</td>
</tr>
<tr>
<td>10 December 2014</td>
<td>Titan (T107)</td>
<td>980</td>
</tr>
<tr>
<td>11 January 2015</td>
<td>Titan (T108)</td>
<td>970</td>
</tr>
<tr>
<td>12 February 2015</td>
<td>Titan (T109)</td>
<td>1,200</td>
</tr>
<tr>
<td>16 March 2015</td>
<td>Titan (T110)</td>
<td>2,275</td>
</tr>
<tr>
<td>7 May 2015</td>
<td>Titan (T111)</td>
<td>2,722</td>
</tr>
<tr>
<td>16 June 2015</td>
<td>Dione</td>
<td>516</td>
</tr>
<tr>
<td>7 July 2015</td>
<td>Titan (T112)</td>
<td>10,953</td>
</tr>
<tr>
<td>17 August 2015</td>
<td>Dione</td>
<td>474</td>
</tr>
<tr>
<td>28 September 2015</td>
<td>Titan (T113)</td>
<td>1,036</td>
</tr>
<tr>
<td>14 October 2015</td>
<td>Enceladus (E20)</td>
<td>1,839</td>
</tr>
<tr>
<td>28 October 2015</td>
<td>Enceladus (E21)</td>
<td>49</td>
</tr>
<tr>
<td>13 November 2015</td>
<td>Titan (T114)</td>
<td>11,920</td>
</tr>
<tr>
<td>19 December 2015</td>
<td>Enceladus (E22)</td>
<td>4,999</td>
</tr>
<tr>
<td>16 January 2016</td>
<td>Titan (T115)</td>
<td>3,817</td>
</tr>
<tr>
<td>1 February 2016</td>
<td>Titan (T116)</td>
<td>1,400</td>
</tr>
<tr>
<td>16 February 2016</td>
<td>Titan (T117)</td>
<td>1,018</td>
</tr>
<tr>
<td>4 April 2016</td>
<td>Titan (T118)</td>
<td>990</td>
</tr>
<tr>
<td>6 May 2016</td>
<td>Titan (T119)</td>
<td>971</td>
</tr>
<tr>
<td>7 June 2016</td>
<td>Titan (T120)</td>
<td>975</td>
</tr>
<tr>
<td>25 July 2016</td>
<td>Titan (T121)</td>
<td>976</td>
</tr>
<tr>
<td>10 August 2016</td>
<td>Titan (T122)</td>
<td>1,599</td>
</tr>
<tr>
<td>27 September 2016</td>
<td>Titan (T123)</td>
<td>1,737</td>
</tr>
<tr>
<td>14 November 2016</td>
<td>Titan (T124)</td>
<td>1,582</td>
</tr>
<tr>
<td>29 November 2016</td>
<td>Titan (T125)</td>
<td>3,223</td>
</tr>
<tr>
<td>22 April 2017</td>
<td>Titan (T126)</td>
<td>979</td>
</tr>
</tbody>
</table>
The orbital evolution of Cassini during its 13-year exploration mission. Orbit modifications were due in large part to Titan gravity-assists. Note the periods spent in almost circular orbits with periapsis and apoapsis coincident, as well as the different high and low inclination portions of the mission.
Chapter references

Chapter references

Chapter references

[Bibbring-2009b] ibid., 141-142

[Bibbring-2009c] ibid., 142

[Bibbring-2009d] ibid., 145-170

Chapter references

Chapter references

Chapter references

Chapter references

Chapter references

[IAUC-8401] “International Astronomical Union Circular No. 8401”, 9 September 2004

Chapter references 495

[Kronk-1984b] ibid., 148

[Kronk-1984c] ibid., 225-226

[Kronk-1999b] ibid., 367-368

Chapter references

Chapter references

[Lorenz-2008b] ibid., 204-209

Chapter references

Chapter references

Chapter references

[Rieke-2006b] ibid., 119

Chapter references 507

Chapter references

[Spitale-2005b] ibid., 71-72
[Spitale-2005c] ibid., 73-85
[Spitale-2005d] ibid., 86-93
[Spitale-2005e] ibid., 120-141
[Spitale-2005f] ibid., 237-287
[Spitale-2005g] ibid., 288-321
[Spitale-2005h] ibid., 322-329
[Spitale-2005i] ibid., 350-378
[Spitale-2005j] ibid., 329-349

Chapter references

Chapter references

Further reading

BOOKS

MAGAZINES

Aerospace America
l’Astronomia (in Italian)
Aviation Week & Space Technology
Espace Magazine (in French)
Flight International
Novosti Kosmonavtiki (in Russian)
Science
Scientific American
Sky & Telescope
Spaceflight

INTERNET SITES

ESA (www.esa.int)
Jonathan’s Space Home Page (planet4589.org/space/space.html)
JPL (www.jpl.nasa.gov)
Malin Space Science Systems (www.msss.com)
NASA NSSDC (nssdc.gsfc.nasa.gov)
Novosti Kosmonavtiki (www.novosti-kosmonavtiki.ru)
516 **Further reading**

Space Daily (www.spacedaily.com)
Spaceflight Now (www.spaceflightnow.com)
The Planetary Society (planetary.org)
Previous volumes in this series

List of illustrations ... ix
List of tables ... xvii
Foreword .. xix
Author’s preface .. xxi
Acknowledgments ... xxiii

Introduction ... xxv
Mercury: extremes of heat and cold ... xxv
Venus: a swamp or a greenhouse? .. xxvii
Mars, life and the ‘canali’ .. xxxii
Jupiter: a ball of hydrogen .. xxxix
Saturn, its rings and moons .. xliii
Uranus and Neptune: outer giants ... xlv
Pluto: the incredible shrinking planet I
Asteroids: those fantastic points of light lii
Comets: flying sandbanks or dirty snowballs? liii
Phantoms: Vulcan, trans-Plutonian planets and the like Iv

1. The beginning .. 1
Space race .. 1
Humans or robots? .. 2
The first ‘artificial planets’ .. 5
The first interplanetary probe .. 5
The first JPL projects .. 9
The first Soviet probes .. 12
The first success .. 18
Product 2MV .. 26
The ‘Zond’ probes ... 31
Farewell to the ‘little green men’ ... 33
Previous volumes in this series

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korolyov’s last probes</td>
<td>45</td>
</tr>
<tr>
<td>Solar probes</td>
<td>48</td>
</tr>
<tr>
<td>Together to Venus</td>
<td>52</td>
</tr>
<tr>
<td>A Voyager without sails</td>
<td>65</td>
</tr>
<tr>
<td>A repeat mission</td>
<td>70</td>
</tr>
<tr>
<td>Mars again</td>
<td>73</td>
</tr>
<tr>
<td>Other players</td>
<td>88</td>
</tr>
<tr>
<td>2. Of landers and orbiters</td>
<td>97</td>
</tr>
<tr>
<td>A new decade</td>
<td>97</td>
</tr>
<tr>
<td>To the surface!</td>
<td>97</td>
</tr>
<tr>
<td>Into the storm</td>
<td>99</td>
</tr>
<tr>
<td>A first look beyond the asteroids</td>
<td>125</td>
</tr>
<tr>
<td>The taste of Venus</td>
<td>156</td>
</tr>
<tr>
<td>The curse of the transistor</td>
<td>160</td>
</tr>
<tr>
<td>Soviet soil from the Red Planet</td>
<td>167</td>
</tr>
<tr>
<td>The planet of contradictions</td>
<td>171</td>
</tr>
<tr>
<td>Hot and hotter</td>
<td>196</td>
</tr>
<tr>
<td>Snowballs will wait</td>
<td>206</td>
</tr>
<tr>
<td>Postcards from Hell</td>
<td>209</td>
</tr>
<tr>
<td>Landing in Utopia</td>
<td>216</td>
</tr>
<tr>
<td>Pigeons, rovers, sniffers</td>
<td>256</td>
</tr>
<tr>
<td>The Venusian fleet</td>
<td>262</td>
</tr>
<tr>
<td>The color of Venus</td>
<td>284</td>
</tr>
<tr>
<td>‘Purple Pigeons’ from the cold</td>
<td>289</td>
</tr>
<tr>
<td>3. The grandest tour</td>
<td>301</td>
</tr>
<tr>
<td>The journey of three lifetimes</td>
<td>301</td>
</tr>
<tr>
<td>Grand Tour reborn</td>
<td>309</td>
</tr>
<tr>
<td>The spacecraft that could</td>
<td>311</td>
</tr>
<tr>
<td>Launch and teething troubles</td>
<td>318</td>
</tr>
<tr>
<td>Jupiter: ring, new moons and volcanoes!</td>
<td>323</td>
</tr>
<tr>
<td>The return to Jupiter: life, perhaps?</td>
<td>346</td>
</tr>
<tr>
<td>Saturn and mysterious Titan</td>
<td>363</td>
</tr>
<tr>
<td>The final one–two punch</td>
<td>382</td>
</tr>
<tr>
<td>Dull planet, incredible moon</td>
<td>398</td>
</tr>
<tr>
<td>To a blue planet</td>
<td>422</td>
</tr>
<tr>
<td>The larger perspective</td>
<td>441</td>
</tr>
</tbody>
</table>

Glossary ... 457
Appendices .. 465
Chapter references .. 477
Further reading ... 523
Index ... 525

Illustrations ... vii
Tables ... xiii
Foreword .. xvi
Author’s preface ... xix
Acknowledgments .. xxii

4. The decade of Halley ... 1
The crisis ... 1
The face of Venus ... 3
The mission of a lifetime .. 16
Balloons to Venus ... 52
Two lives, one spacecraft .. 58
“But now Giotto has the shout” .. 65
Extended missions .. 89
Low-cost missions: Take one .. 96
Comet frenzy ... 103
The rise of the vermin .. 117
An arrow to the Sun ... 125
Into the infinite .. 132
Europe tries harder ... 135

5. The era of flagships .. 145
The final Soviet debacle .. 145
Mapping Hell ... 167
The reluctant flagship ... 196
Asteroids into minor planets ... 217
Galileo becomes a satellite of Jupiter 237
Returning to Europa and Io ... 278
Beyond the Pillars of Hercules ... 311
The darkest hour ... 327
Overdue and too expensive .. 335

6. Faster, cheaper, better ... 347
The return of sails .. 347
A new hope .. 349
In love with Eros ... 359
Completing the census .. 373
Low-cost masterpiece .. 379
Sinking the heritage ... 423
Wheels on Mars ... 442
Martians worldwide ... 461
Meanwhile in America ... 464
Index

8K78M Molniya launcher, 333
8K82K Proton launcher, 296
11 September 2001 terrorist attacks, 211

ACE (Advanced Composition Explorer), 293
Adrastea (Jupiter satellite), 40
Aegaeon (Saturn satellite), 154, 155, 171-173, 186-187, 189
Aelita (novel), 378
Aerocapture, 2, 292, 311, 315, 317, 318, 367, 368
Aircraft for Mars Exploration (Discovery mission), 313
Aladdin, 242
Albiorix (Saturn satellite), 132
ALH84001 meteorite, 309, 337, 355, 423-424
Amalthea (Jupiter satellite), 40
Ames Research Center, 1, 312, 313, 314
Amundsen: see Deep Space 2
Amundsen, R., 301
Anthe (Saturn satellite), 133, 140, 141, 147, 151
APL: see Applied Physics Laboratory
Apollo lunar manned program, 221, 232, 250, 461
Apollo 1, 385
Apollo 9, 460
Apollo 11, 390
Apollo 12, 457
Apollo 15, 460
Apollo 16, 247
Apollo 17, 337, 463
Applied Physics Laboratory (APL), 195, 242, 250, 255

Arecibo radiotelescope, 460
Ariane 5, 215, 311, 312, 315, 333, 368
ASI (Agenzia Spaziale Italiana), 8, 11, 309, 311, 317
Asteroid (1) Ceres, 215
Asteroid (4) Vesta, 203, 215
Asteroid (24) Themis, 4
Asteroid (66) Maja, 6
Asteroid (250) Bettina, 4
Asteroid (302) Clarissa, 7
Asteroid (433) Eros, 196, 224, 266, 268, 270, 272
Asteroid (830) Petropolitana, 4
Asteroid (2685) Masursky, 34
Asteroid (2867) Steins, 283
Asteroid (3200) Phaethon, 290
Asteroid (3352) McAuliffe, 202
Asteroid (3361) Orpheus, 216
Asteroid (4015) Wilson-Harrington, 207, 208, 209
Asteroid (4660) Nereus, 264
Asteroid (5535) Annewark, 225-226
Asteroid (9969) Braille, 203, 204, 205-207, 208, 210
Asteroid (10302) 1989 ML, 264, 266
Asteroid (25143) Itokawa, 264-266, 267-274, 277, 278-280
Asteroid (35396) 1997 XF11, 216
Asteroid (134340) Pluto: see Pluto
Asteroid 1992 KD: see (9969) Braille
Asteroid 1998 SF36: see (25143) Itokawa
Asteroids, knowledge of, 225-226, 267-274, 278-280
Asteroids, missions to, 34, 196-207, 225-226, 261-268

Index

Athena integrated payload, 308, 369, 371–372
Athena 2 launcher, 203
Atlas (Saturn satellite), 48, 51, 67, 132, 144, 147
Atlas launcher, 281
Atlas III, 310
AXAF (Advanced X-ray Astrophysical Facility): see Chandra X-Ray Observatory
Beagle 2 Mars lander, 316, 333, 334, 335, 336, 337–342, 343, 344–348, 361
BeagleNET, 348
Bebhionn (Saturn satellite), 132
BepiColombo Mercury mission, 215
Bergelmir (Saturn satellite), 132
Bestla (Saturn satellite), 132
Blamont, J., 1
Blériot, L., 147
Blur pop group, 339
BMDO (Ballistic Missile Defense Organization), 201
Bonestell, C., 445
Borrelly, A.L.N., 208
Braille, L., 203
British National Space Council (BNSC), 335, 346
Brown University, 242
Brownlee Particles, 216, 235, 236
Brownlee, D.E., 216
Buran space shuttle, 342
Burns, R.G., 412
Burroughs, E.R., 438
CAESAR (Comet Atmosphere Encounter and Sample Return), 4
Callisto (Jupiter satellite), 38, 40, 130, 151
Calypso (Saturn satellite), 91, 105, 144, 173, 175
Cassini, G.D., 3, 13, 28
Cassini Saturn orbiter, 1–191, 195, 196, 201, 204, 221, 222, 253, 299, 318, 377, 423
Centaur asteroids, 48, 49, 50, 179
Centaur stage (see also Centaur G prime), 6, 29
Centaur G-prime stage, 4
Central Scientific Research Institute of Machine Building (TsNIIMASH), 300
Challenger Space Shuttle accident, 6, 202, 258, 281, 389
Chandra X-ray Observatory, 41, 281
Clarke, A.C., 318
Clementine (DSPSE) spacecraft, 317
Cluster satellites, 333, 363
CNES (Centre National d’Etudes Spatiales), 290, 312, 314, 317, 332, 367, 368, 369
Columbia Space Shuttle accident, 258, 385
Columbus, C., 459
Comet 1P/Halley, 196, 212, 222, 228, 229, 230, 235, 287, 288, 423
Comet 1P/Halley, missions to, 196, 212, 216, 222, 228, 235, 287, 288
Comet 2P/Encke, 250, 251–252
Comet 6P/d’Arrest, 250, 251, 253
Comet 9P/Tempel 1, 235, 237, 238–240, 283
Comet 10P/Tempel 2, 196, 216, 251
Comet 19P/Borrelly, 207–208, 209, 210–214, 228, 229
Comet 21P/Giacobini-Zinner, 214, 251, 256
Comet 26P/Grigg-Skjellerup, 214, 251, 256
Comet 41P/Tuttle-Giacobini-Kresak, 256
Comet 45P/Honda-Mrkos-Pajdušáková, 256
Comet 67P/Churyumov-Gerasimenko, 283
Comet 73P/Schwassmann-Wachmann 3, 250, 251–252
Comet 76P/West-Kohoutek-Ikemura, 202
Comet 103P/Hartley 2, 231, 238, 256
Comet 107P/Wilson-Harrington: see Asteroid (4015) Wilson-Harrington
Comet 114P/Wiseman-Skiff, 402
Comet 201P/LONEOS, 423
Comet C/1995 O1 Hale-Bopp, 251
Comet C/2001 Q1 NEAT, 251
Comet C/2006 P1 McNaught, 437
Comet D/1978 R1 Haneda-Campos, 216
Comets, knowledge of, 210–214, 228–231, 232–237, 238–240
Comets, missions to, 202, 207–214, 216–241, 250–256
Comet Intercept and Sample Return (CISR), 216
Conestoga launcher, 201
CONTOUR (Comet Nucleus Tour), 218, 242, 243, 250–256
Cornell University, 371
CRAF (Comet Rendezvous/Asteroid Flyby), 3, 4, 6, 7, 9, 218
Cryobots, 258

d’Arrest, H.L., 253
Daedalus human propulsion aircraft, 312
Daphnis (Saturn satellite), 92, 162, 181
Darwin, C.R., 333
DASH (Demonstrator of Atmospheric reentry System with Hyperbolic velocity), 262
Dawn asteroid mission, 215
DeeDri (Deep Driller), 310, 311
Deep Impact, 215, 231, 235, 237, 238, 239
Deep Space 1, 196–216, 221, 228, 257, 267
Deep Space 3, 196
Deep Space 4, 223
Deimos (Mars satellite), 242, 287, 290, 350, 363, 387, 423
Delta II, 203, 328, 223, 246, 254, 256, 260, 282, 283, 296, 301, 304, 320, 333, 378
Delta II Heavy, 283, 378, 380
Delta III, 260, 283, 310
Department of Energy, 260
DLR (Deutsche Zentrum für Luft- und Raumfahrt), 7
Dryden research center, 314
DSN (Deep Space Network) and the Canberra, Goldstone, Madrid antennae, 6, 8, 11, 29, 30, 42, 51, 81, 171, 190, 203, 256, 316, 318, 382, 459
Dynamo Mars orbiter, 316

Encke, J.F., 251
Energiya launcher, 342
Eos (Eole-Venus) mission, 1
Epimetheus (Saturn satellite), 48, 90, 100, 112–113, 122, 141, 159, 171, 175, 190
Erriapus (Saturn satellite), 132
ESA Space Science Advisory Committee, 333
Esnault-Pelterie, R., 2
Europa (Jupiter satellite), 40, 41, 99, 100, 130, 179, 241, 256–258, 260
Europa lander, 258
Europa, missions to, 241, 256–258, 260–261
Europa Orbiter, 256–258, 260–261
European Deep Space Stations, 333, 334
European Space Foundation, 3
European Space Operation Center (ESOC), 4, 6, 81, 348
European Space Technological Center (ESTEC), 4
Eurostar telecommunication satellite bus, 334
Evolved Expendable Launch Vehicle (EELV), 258, 260–261
Exodus mission, 247–248
ExoMars 348, 369
EXOS C satellite, 288
Explorer 49, 216
F-16 fighter jet, 296
FIDO (Field Integrated, Design, and Operations), 307–308
Fire and Ice: see Outer Planet/Solar Probe program
Flexi missions, 332–333
Fobos mission, 10, 287, 336, 337
Fobos 2, 287, 361
Fobos-Grunt, 348, 363, 364, 365
Fornjot (Saturn satellite), 132
Frank, A., 225
Fregat stage, 296, 333, 342, 366
Fucino space communication station, 318
Galilean satellites: see Io, Europa, Ganymede, Callisto
Galileo Jupiter orbiter and probe, 1, 2, 4, 5, 16, 27, 32, 36, 37, 39, 40, 41, 74, 179, 180, 191, 196, 221, 224, 241, 256, 257, 258, 281, 377, 423
Gamma-Ray Bursts, 320, 321, 331
Ganymede (Jupiter satellite), 1, 27, 40, 46, 130, 151, 217
Gautier, D., 2
General Relativity, 18, 42, 45
Genesis mission, 216, 217, 242, 243–250
Geotail, 288
Giotto probe, 16, 212, 214, 216, 221–222, 228, 235, 253
Glenn Research Center, 198, 312
Globalstar communication satellites, 334
Goddard Space Flight Center, 236, 381
Goldin, D.S., 8, 196, 306, 314
Goldstone radiotelescope: see Deep Space Network
Gore, A.A. Jr., 8
Great Observatories, 281
Green Bank observatories, 76
Greip (Saturn satellite), 132
GRO (Gamma-Ray Observatory), 281
Gusev, M.M., 378
H-II launcher, 333
H-IIA launcher, 262
Hayabusa (MUSES-C) asteroid sample return, 261–280, 287, 342
Helin, E., 202
Heliopause, 167
Heliosphere, 167, 290
HER (Halley Earth Return), 216
Hera asteroid sample return mission, 262
Hermes European shuttle, 19
Herschel infrared space telescope, 156
Heteroclinic Connecting Trajectories, 244, 247
Hillary, E.P., 423
Himalia (Jupiter satellite), 37, 38
Hirst, D.S., 339
Hiton (MUSES-A), 261, 288, 290
Horizon 2000 program, 6
Hubble Space Telescope, 13, 25, 37, 40, 41, 45, 46, 48, 61, 67, 125, 176, 184, 208, 210, 281
Husband, R.D., 385
Huygens, C., 6, 28
Hydrobot, 258
Hyperion (Saturn satellite), 28, 33, 94, 100, 105, 106–108, 130, 137, 139, 184, 188
Hyrrrokin (Saturn satellite), 132
IBEX (Interstellar Boundary Explorer), 167
ICE (International Cometary Explorer), 210
Ice Clipper, 241
Ijiraq (Saturn satellite), 132
IKI (Institut Kosmicheskikh Isledovanii), 295, 299, 320
INTERNARSNET, 366
International Comet Mission, 196
International Solar-Polar Mission: see also Ulysses, 4
International Space Station, 8
Interstellar missions, 167
Io (Jupiter satellite), 36, 27, 40, 46, 47, 99, 154
Ip, W.-H., 2
IRAS (InfrarRed Astronomy Satellite), 280, 281
ISAS (Institute of Space and Astronautical Sciences), 261, 262, 266, 267, 287, 288, 291
ISO (Infrared Space Observatoy), 280, 281, 282
Itokawa, H., 266
IUS (Inertial Upper Stage), 258
Janus (Saturn satellite), 48, 90, 112–124, 122, 144, 145, 149, 150, 151, 165, 171, 190
Jarnsaxa (Saturn satellite), 132
JAXA (Japanese Aerospace Exploration Agency), 267, 277, 279, 294
Index 525

Jodrell Bank radiotelescope, 305, 345
Johnson Space Center, 232, 242, 246, 248, 307
Johns Hopkins University, 195
Joint Working Group for US-European cooperation in planetary exploration, 3–4
JPL see Jet Propulsion Laboratory
Juno Jupiter orbiter, 191
Jupiter, knowledge of, 39–40, 41
Jupiter, missions to, 36–41, 256–258

Kari (Saturn satellite), 132
Kepler Mars orbiter, 333
Kitt Peak observatory, 254
Kitty Hawk Mars airplane, 312, 313–314
Kiviuk (Saturn satellite), 132
Kubrick, S., 318
Kuiper Belt, 50, 212, 218, 235
Kuiper Belt, missions to, 356, 258, 260, 261, 296
Kuma Kogen observatory, 294

Lagrangian points, 62, 105, 108, 174, 184, 243, 244, 246, 247, 248, 293
Lake Vostok, 258
Landsat satellites, 320
Langley Research Center, 312, 313, 314
Lawrence, K., 203
Leonid meteor stream, 291
Lewis Research Center: see Glenn Research Center
Lilienthal, O., 314
LINEAR (Lincoln Near Earth Asteroid Research), 264
Loge (Saturn satellite), 132
Luna 24, 223
Lunar-A, 288, 291
Lunar Prospector, 216
Lunokhod 1, 443
Lunokhod 2, 463
Luton, J.-M., 8
Lyod: see Pluto Kuiper Express

MAGE (Mars Airborne Geophysical Explorer), 313–314
Magellan, F. (Magalhães, F.), 427, 435
Magellan Venus orbiter, 2, 3, 7, 16
Marie Curie rover, 308
Mariner program, 369
Mariner 7, 350
Mariner 9, 363
Mariner Jupiter-Saturn: see also Voyager, 1
Mariner Mark II program, 4, 6, 7, 9
Mariner R, 10
Mars, Soviet Mars probes, 320
Mars 3, 306
Mars 6, 19
Mars 8: see also Mars 96, 10
Mars 96 mission: see also Mars 98 mission, 288, 296, 332, 333, 334, 335, 336, 337, 367, 368
Mars 2001 mission, 332
Mars, missions to, 202, 242, 287–463
Mars Aerobot Mission, 314
Mars aircraft: see also Aircraft for Mars Exploration
MAGE, Kitty Hawk, Otto, ARES, 312–314, 315, 316, 317
Mars balloons, 296, 314, 315, 316, 317
Mars Climate Orbiter, 294–296, 298, 301–304, 315, 317, 318, 369
Mars Exploration Program, 316–317, 369, 446
Mars Express, 309, 316, 332–366, 367, 370, 379, 397, 401, 402, 432, 444, 446
Mars Geoscience/Climatology Orbiter: see also Mars Observer, 3
Mars human missions, 195, 307, 310, 316, 319, 320, 324, 329
Mars Micro-missions, 295, 312–316
MARSNET, 366
Mars network: see also NetLander, 316, 317, 369
Mars Observer, 14, 195, 255, 295, 305, 317, 320

Mars penetrators: see also Deep Space 2, 296, 315, 316

Mars Reconnaissance Orbiter, 317, 348, 361, 437, 447, 448, 451, 454, 459

Mars Science Laboratory 'Curiosity', 332, 366, 432, 446, 463

Mars Science Orbiter, 369

Mars Scout, 317

Mars Smart Lander: see also Mars Science Laboratory, 317

Mars Surveyor 1998 lander: see Mars Polar Lander

Mars Surveyor 1998 orbiter: see Mars Climate Orbiter

Mars Surveyor 2001 orbiter: see Mars Odyssey

Mars Telecommunications Orbiter, 368

Mars telecommunication satellites, 314–316

Mars Together, 296

Masursky, H., 34

MAV (Mars Ascent Vehicle), 309–312

Max Planck Institute, 2, 16

MCO: see Mars Climate Orbiter

Méchain, P., 251

Medicina radiotelescope, 305

MER: see Mars Exploration Rovers

Mercury, missions to, 215, 223, 242

Mercury manned spaceflight program, 460

MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging), 242, 378

METEOR satellite, 201

Methone (Saturn satellite), 48, 121, 132, 140, 180

Metis (Jupiter satellite), 40

Meudon Astronomical Observatory, 2

MGS: see Mars Global Surveyor

Mimas Mars orbiter, 316

Mimas (Saturn satellite), 33, 46, 48, 56, 84, 91, 99, 100, 123, 131, 132, 133, 140, 144, 150, 151, 152, 156, 161, 162, 164, 169, 173, 183, 184, 185, 186, 188

MINERVA (Micro/Nano Experimental Robot Vehicle for Asteroid), 263, 269, 270–271

Mir space station, 339

MIT (Massachusetts Institute of Technology), 312, 412

MPF: see Mars Pathfinder

MPL: see Mars Polar Lander

MRO: see Mars Reconnaissance Orbiter

MSO: see Mars Science Orbiter

MSR: see Mars Sample Return

MTO: see Mars Telecommunications Orbiter

Mu-3SII launcher, 288

Mu-5 launcher: see M-V

Mundilfari (Saturn satellite), 132

MUSES-A: see Hiten

MUSES-B Haruka, 261, 291

MUSES-C: see Hayabusa

MUSES-CN rover, 263

N-1 launcher, 342

Nakajima Ki-43 Hayabusa aircraft, 266

Narvi (Saturn satellite), 132

NASDA (National Space Development Agency), 262, 267

National Academy of Sciences, 1, 3, 280

National Research Council, 4

Naval Research Laboratory, 313–314

NEAR (Near Earth Asteroid Rendezvous), 195, 216, 250, 264

NEAT (Near-Earth Asteroid Tracking) program, 251

Neptune, missions to, 179

New Millennium program, 196–197, 215, 299, 301

NExT (New Exploration of Tempel 1) mission, 237–241
NOTSNIK, 310
Nozomi (Planet-B), 264, 287–294, 312, 334, 337
NSTAR (NASA Solar Electric Propulsion Technology Application Readiness), 198, 215
Nuclear Electric Propulsion (NEP), 196

Owen satellite, 210–211
O’Keefe, S., 380
OMV (Orbital Maneuvering Vehicle), 281
Open University, 337, 341, 347
Opportunity rover: see Mars Exploration Rovers

OSCAR (Orbiting Sample Capture and Return), 311, 367
Otto Mars glider, 314
Out-of-the-Ecliptic missions: see Ulysses
Outer Planet/Solar Probe program, 256–261

Owen, T., 3
Oxford University, 242, 295

Paaliaq (Saturn satellite), 132
Pallene (Saturn satellite), 48, 122, 132, 134, 154, 183, 188
Palomar observatory, 204
Pan (Saturn satellite), 48, 56, 57, 91, 100, 131, 144
PanAmSat 5 satellite, 201
Pandora (Saturn satellite), 48, 103, 177
Pascal Mars meteorologic network, 316
Phobos (Mars satellite), 202, 242, 290, 350, 353, 361, 363, 364, 365, 368, 397, 423, 438
Phoebe (Saturn satellite), 26–27, 36, 45, 48–50, 71, 106, 108, 137, 179, 183
Phonix Mars lander, 149, 330, 363, 444
Pioneer 11, 1, 15, 16, 51, 53, 55, 58, 62, 190
Pioneer Anomaly, 42
Pioneer Venus mission, 1, 4
Pioneer Venus Multiprobe, 201
Pioneer Venus Orbiter, 295
Plamyia: see Solar Probe
Planet-B: see Nozomi
Planet-C ‘Akatsuki’, 287
Planetary Observer program, 216
Planetary Society, 299

PLUTO (Planetary Underground Tool) mole, 377, 378, 342
Pluto Fast Flyby (PFF), 197
Pluto Ku flyby (PK), 256, 258, 260, 261, 296
Polydeuces (Saturn satellite), 62, 117, 144
PPARC (Particle Physics and Astronomy Research Council), 341
PREMIER (Programme de Retour d’Echantillons Martiens et Installation d’Expériences en Reseau), 367–368
Prometheus (Saturn satellite), 48, 56, 67, 91, 92, 124–125, 160, 171, 173
Proteus satellite bus, 332
Proton launcher bus, see 8K82K
Purple Pigeons, 2
Radioisotope Electric Propulsion (REP), 196
RKA (Rossiyskoye Kosmisheskoye Agenstvo), 296
Rosetta comet mission, 196, 201, 310, 333, 334, 367
RTG (Radioisotope Thermal Generator), 8, 10, 28, 29, 32, 42, 196, 258, 260
Russian Academy of Sciences, 333
Russian Space Agency (see RKA)

Sakigake, 288
Saturn V launcher and derivatives, 342
Saturn, missions to, 1–191
Schiaparelli, G.V., 377
Schwassmann, A., 252
Scott (see Deep Space 2)
Scott, R.F., 301
SEDSat 1, 203
SERT (Space Electric Rocket Tests), 196
SERT 2 satellite, 210
Shackleton, E.H., 400
Shepard, A.B. Jr, 460
Shoemaker, E.M., 228
Siarnaq (Saturn satellite), 132
SIRTF (Space Infrared Telescope Facility): see Spitzer space telescope
Skathi (Saturn satellite), 132
Skoll (Saturn satellite), 132
Index

University of Arizona, 23
University of Arkansas, 262
University of California, San Diego, 242
University of Chicago, 16
University of Chile, 316
University of Hawaii, 3
University of Rome, 337
University of Washington, 216
Uranus, missions to, 179
Urey, H.C., 242
US Air Force, 214, 221, 245, 318
Utah Test and Training Range (UTTR), 221, 231, 232, 245, 246, 248

Vega, Soviet Venus-Halley probe, 16, 221, 222, 235, 253, 293
Vega balloons, 293
Venera, Soviet Venus probes, 299
Venus, knowledge of, 32
Venus Express, 363
Venus Multi-Probe Mission (VMPM), 216
Venus Orbiting Imaging Radar (VOIR), 2, 3
Venus Radar Mapper (see Magellan)
Venus sample return, 223
Very Large Telescope (VLT), 185
VESAT (Venus Environmental Satellite), 242–243
Vesta mission, 4, 6
Viking 1, 324, 364, 455
Viking 2, 402, 423, 441
Voyager, outer solar system mission, 1, 2, 8, 11, 13, 14, 15, 18, 24, 27, 39, 40, 41, 47, 49, 50, 51, 55, 56, 58, 59, 61, 62, 68, 69, 71, 82, 84, 98, 101, 102, 105, 106, 108, 120, 125, 127, 134, 141, 167, 221, 369
Voyager 1, 2, 14, 15, 19, 20, 22, 45, 46, 53, 63, 66, 82, 92, 114, 116, 117, 161, 170, 187
Voyager 2, 14, 48, 53, 58, 71, 84, 88, 96, 123, 128, 189, 190, 210, 288

Wachmann, A.A., 252
Weak stability boundaries, 288
Weiler, E.J., 317
Westerbork radiotelescope, 307, 345

Skytak, space station, 460
Small Explorer program, 195
SMART 1, 215–216
SOCCER (Sample of Comet Coma Earth Return), 216, 218, 261
Solar Electric Propulsion (SEP), 196, 215, 261
Solar Probe, 256, 258–260, 261, 296
Solar System Exploration Committee (SSEC), 3, 4
Solar Wind Sample Return: see Genesis
Soyuz launcher, 333, 342, 366, 368
Space Science Board, 1
Space Shuttle, 2, 4, 6, 27, 218, 220, 221, 258, 280, 385, 389, 446
Space Shuttle flight STS-47, 221
Space Telescope: see Hubble Space Telescope
Spacelab, 280
Spacewatch telescope, 254
Sputnik, L., 283
Spitzer space telescope, 137, 280–284, 378
Squyres, S.W., 413
Stanford University, 305, 345
Stern, S.A., 446
Suess, H.E., 242
Suess-Urey: see Genesis
Suisei (Planet-A), 288
Suttungr (Saturn satellite), 132

Tarqeq (Saturn satellite), 132
Tarvos (Saturn satellite), 132
Telesto (Saturn satellite), 108, 144, 175
Tethys (Saturn satellite), 3, 46, 66, 90, 105–106, 108, 111, 131, 133, 134, 137, 142, 144, 145, 147, 148, 155, 158, 161, 164, 169, 170, 181, 184, 188, 189
Thebe (Jupiter satellite), 40
Thyrmr (Saturn satellite), 132
Titan, missions to, 1–191
Titan IV, 6, 9, 26, 27, 28, 281, 282
Tolstoy, A.N., 378
Triton (Neptune satellite), 50

Ulysses out-of-ecliptic mission, 8, 15, 16, 36, 50, 156, 217, 243, 250, 293, 423
<table>
<thead>
<tr>
<th>Whipple, F.L., 251–252</th>
<th>Wild, P., 217</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whipple shield, 219–220, 222, 227, 228, 231, 240, 253</td>
<td>Wind satellite, 32</td>
</tr>
<tr>
<td>Widefield Infrared Explorer (WIRE), 306</td>
<td>Ymir (Saturn satellite), 132, 137</td>
</tr>
</tbody>
</table>