Characterization of the FE-I4B pixel readout chip production run for the ATLAS Insertable B-layer upgrade

M. Barbero1, M. Backhaus1, M. Garcia-Sciveres2, D. Pohl1

1. Physikalisches Institut, Universität Bonn
2. Lawrence Berkeley National Laboratory
Table of Contents

- Motivation for the new ATLAS Pixel Front End
- Main results from FE-I4B IC characterization
- Powering Scheme for IBL
- Interim report on wafer probing results
Motivation for FE-I4

„Insertable B-Layer“

- Recover from eventual failures in present Pixel system, esp. B-Layer
- Ensure excellent tracking, vertexing and b-tagging performance during LHC phase I
- Add robustness to tracking with high luminosity pileup

Upgrade of outer layers for HL-LHC

- New pixel detector planned
- 2 removable internal layers radii about 3.5 – 10 cm
- 2-3 fixed outer layers radii about 15 – 25 cm
- Lower costs
- FE-I4 fits requirements for outer layers in terms of
 → Hit occupancy
 → Radiation hardness

→ Small radius: ~3.5 cm
→ Higher hit occupancy per pixel
→ Increased radiation damage
→ Need for low material to reduce multiple scattering
FE-I4 reminder

- 19 x 20 mm² → ~6 times size of FE-I3
- Pixel size 50 x 250 µm → FE-I3: 50 x 400 µm
- 26,880 pixels
- Organized in 336 rows and 40 double columns
- Readout organized in four pixel regions, hits buffered at pixel level until LV1-trigger → cope with high occupancies
List of Changes FE-I4A \(\rightarrow\) FE-I4B

- **FE-I4A**: prototype:
 - different pixel flavours
 - three powering options prototype
 - DCDC
 - Serial Powering
 - Direct powering
 - No internal reference voltage

- **FE-I4B**: experiment chip:
 - Uniform pixel matrix.
 - Provided different options for \(V_{\text{ref}}\) generation
 (see dedicated slide)
 - DC-DC charge pump removed

- Other fixes in FE-I4B:
 - Limited test charge injection
 \(\rightarrow\) Pulser Output impedance
 100K \(\rightarrow\) 40K
 \(\rightarrow\) Low leakage switches for \(C_{\text{inj}}\) selection
 - Selected DACs: Adjusted Slope, centered.
 - Reference current setting internal register \(\rightarrow\) wire bond pads
 (SEU safe)
Saturation in test charge injection circuitry observed in FE-I4A.
Test Pulse Injection Response

- Saturation in test charge injection circuitry observed in FE-I4A.
- Improved situation in FE-I4B.
 - Decreased output impedance, low leakage transistors for transmission gate switches.

Injection Pulse in all injection modes

FE-I4A

- Injection mode:
 - no Cinj, all DCs
 - single Cinj, all DCs
 - both Cinj, all DCs
 - no Cinj, 1/4 DCs
 - single Cinj, 1/4 DCs
 - both Cinj, 1/4 DCs
 - no Cinj, 1/8 DCs
 - single Cinj, 1/8 DCs
 - both Cinj, 1/8 DCs
 - no Cinj, single DC
 - single Cinj, single DC
 - both Cinj, single DC

FE-I4B

- Injection mode:
 - no Cinj, all DCs
 - single Cinj, all DCs
 - both Cinj, all DCs
 - no Cinj, 1/4 DCs
 - single Cinj, 1/4 DCs
 - both Cinj, 1/4 DCs
 - no Cinj, 1/8 DCs
 - single Cinj, 1/8 DCs
 - both Cinj, 1/8 DCs
 - no Cinj, single DC
 - single Cinj, single DC
 - both Cinj, single DC
Uniform Pixel Matrix

- **FE-I4A**:
 - Pixel **prototype** flavours.
 → Non uniform pixel matrix.
 - Externally powered top row ESD rails (not accessible with sensor mounted).
Uniform Pixel Matrix

- **FE-I4A:**
 - Pixel *prototype* flavours.
 - Non uniform pixel matrix.
 - Externally powered top row ESD rails (not accessible with sensor mounted).

- **FE-I4B:**
 - Single pixel flavor chosen
 - Uniform pixel matrix.
 - ESD rails internally powered.
• IBL Half Stave consists of 6 double chip planar silicon sensor modules + 4 single chip 3D silicon sensor modules.
IBL Powering Scheme

Half Stave

- IBL Half Stave consists of 6 double chip planar silicon sensor modules + 4 single chip 3D silicon sensor modules.
- 4 Front End chips build one IBL power group.
• IBL Half Stave consists of 6 double chip planar silicon sensor modules + 4 single chip 3D silicon sensor modules.
• 4 Front End chips build one IBL power group.

• Each Front-End chip holds two on-chip LDOs for analog and digital supply voltage.
• In chip regulators in “partial shunt mode“:
 – LDO with additional minimum I_{in}.
 → Regulator consumes I_{min} if $I_{\text{load}} < I_{\text{min}}$.
 → No additional power consumption when modules configured.
 → Transients lower than in pure LDO mode.
• Different reference voltage options integrated in FE-I4B.
Regulator Reference Voltage Options

• Regulator needs $V_{\text{ref}} = \frac{1}{2} V_{\text{out}}$.

• Two Options:
 - Bandgap reference.
 - Tuneable V_{ref} from I_{ref}.
V_{ref} Option Features

Bandgap Reference
- V_{ref} increases with dosis.
- Possible danger for FE, if analog regulator voltage constantly increases above 1.6 V

Tuneable V_{ref}
- Good tuning range if I_{ref} is correct.
- I_{ref} powered from analog regulator → Power up issues @ low temperatures.

LDO Test VrefBG + VrefTune

VDDA Power Up Test @ -40°C
IBL Powering Scheme

- Tie together $V_{\text{ref tune}}$ and V_{refBG} → two benefits:
 - Additional startup current → safe power up I_{ref} at low temperatures.
 - The resulting reference is between the two initial references

 \[
 V_{\text{ref}} = \frac{2}{\left(\frac{1}{V_{\text{ref tune}}} + \frac{1}{V_{\text{refBG}}}\right)}
 \]

 → still tuneable and safe operation after heavy irradiation.

- Chosen powering scheme:
 - Tuneable and bandgap V_{ref} tied together for analog regulator.
 - Tuneable reference voltage for digital regulator
 → Safe analog V_{ref} at IBL end of lifetime dose.
 → Reliable power up at very low temperatures (tested down to -60 °C).
 → Keep possibility to adjust regulator output for both regulators.
Wafer Level Tests

- Current Consumptions
 - Several IC configurations
Wafer Level Tests

- Current Consumptions
 - Several IC configurations
 - Full digital activity
- IC calibration
 - Reference Current setting
 - Charge Calibration
 - Calibration voltage characteristics
 - Injection Capacitance

Current Consumption → Abort Probing

Global IC Cuts
Wafer Level Tests

- Current Consumptions
 - Several IC configurations
 - Full digital activity
- IC calibration
 - Reference Current setting
 - Charge Calibration
 - Calibration voltage characteristics
 - Injection Capacitance
- Digital readout logic
 - Data processing
 - Four pixel digital region
 - Latency counters
 - Hit Buffers
- Analog performance
 - Threshold / Noise Distribution
 - Injection delay circuitry
- Digital Periphery Blocks
 - Scan Chain Tests for all blocks
 - IDDQ tests on some wafers at Aptasic

\[\text{[ZIVKOVIC]} \]
• Mean capacitance of 10 wafers: 6.0 fF. Simulated capacitance: 5.7 fF. (large uncertainty expected)
• All measurement results (6000 ICs) between 5.5 fF and 6.8 fF
Threshold / Noise Distribution

- Threshold not tuned on wafer
 → Large spread in mean threshold.

- Mean noise in good agreement with expectation.
Main „Yield killer“
24 FE-I4B wafers used for this plot

• ~ 8%: too high current: run gets aborted to protect probe needles.
• ~ 23%: Total Pixels Failing: IC fails if > 0.2% of all pixels show errors in any test.
30 out of 90 IBL wafers probed.

Preliminary Yield FE-I4B: \((60.7 \pm 2.3)\%\).
Summary

• IBL Frond-End electronics production run (FE-I4B) submitted October 2011
• Changes wrt. full scale prototype FE-I4A effective
• Detailed IC characterization on single IC level far advanced
• Production run wafer probing ongoing
 – Extensive wafer probing in Bonn (15,000 values per wafer)
 – Probing at Aptasic, some repetition, few more tests (Iddq)
 → See [ZIVKOVIC]
 – 31 wafers probed (28 unpatched, 3 patched)
 – Preliminary yield in expected range: 60.7 % green ICs
• Module assembly started, first flip chipped modules arrived
ESD problem + patched FE-I4B

• **Analog** regulator simplified ESD protection scheme.
ESD problem + patched FE-I4B

- Digital regulator simplified ESD protection scheme.
- High potential ESD rail floating → danger for pads connected to gate of transistor (V_{ref2}).
• Digital regulator simplified ESD protection scheme.
• High potential ESD rail floating → danger for pads connected to gate of transistor (V_{ref2}).
• „External“ (wire bond order) or „metal layer“ fix (FE-I4B_{patched}) provides full ESD protection.
Threshold Map Tuned

Threshold mod 0 chip 0

Threshold mod 0 chip 0

Noise mod 0 chip 0

Noise mod 0 chip 0

Constant 5510
Mean 3135
Sigma 36.49

Constant 3354
Mean 114.6
Sigma 9.234

"Channel" = row+336*column+26880*chip

"Channel" = row+336*column+26880*chip
- Best I_{ref}-DAC setting centered in FE-I4B.
- Tuned I_{ref} between 1.95 µA and 2.05 µA.